Interactive Modeling and Animation – From 2D to 3D

Speaker: Ph.D. Chih-Kuo Yeh (葉智國)

Computer Graphics Group/Visual System Lab

Computer graphics

Modeling

Animation

Rendering

Celluloid Animation

2.5D Cartoon Hair Modeling and Manipulation

2.5D Cartoon Hair Modeling

Chih-Kuo Yeh, Pradeep Kumar Jayaraman, Xiaopei Liu, Chi-Wing Fu and Tong-Yee Lee, "2.5D Cartoon Hair Modeling and Manipulation." IEEE Transactions on Visualization and Computer Graphics, vol. 21, no. 3, pp. 304–314, 2015. (SCI)

Related Work

[Sugisaki 2005]

[Chai 2012 Siggraph]

Overview

(a) input

(b) segmentatic

Input cartoon image

Curve Extraction

- By using M.-M. Cheng. Curve structure extraction for cartoon images. In Harmonious Human Machine Env., pages 13-25, 2009.
- Smooth and simplify the curves.

Delaunay Triangulation

• Delaunay Triangulation is used to partition the image

Graph Cut From Dual Graph

• Markups for segmenting hair strands

Graph Cut From Dual Graph

Segmentation

Cartoon Hair Layering

Junctions and Cusp Points

- Cusp point
- Junction

Junction

Example Cartoon Hairs

Properties of the junction metric

The Region Overlap Metric

$$\Phi_R(A,B) = \delta_A - \delta_B$$

Extreme case study

Local layering metric

$$\Phi(A,B) = \hat{\Phi}_J(A,B) + \Phi_R(A,B) / |L_{AB}|^2$$
$$\hat{\Phi}_J(A,B) = s(p_1) \Phi_J(\alpha_1,\beta_1) + s(p_2) \Phi_J(\alpha_2,\beta_2)$$
$$\Phi(A,B) > 0: A \leftarrow B$$
$$\Phi(A,B) < 0: A \rightarrow B$$
$$\Phi(A,B) = 0: A \leftrightarrow B$$

Layering Optimization

$$\operatorname{argmin}_{\{x_i\}} \left\{ -\sum_{i \in V'} \Phi(v_i) x_i - \sum_{e_{ij} \in E'} \phi_{ij} x_i x_j \right\}$$
$$\phi_{ij} = \operatorname{tan} \left(\left(\theta_{ij} \mod \pi \right) - \frac{\pi}{2} \right) \right)$$

Junction metric for layering

- If α is close to π and β is close to $\pi/2$, we regard A as on top of B, i.e., $B \rightarrow A$.
- If $\alpha \approx \beta$, the junction metric should not suggest any ordering preference, i.e., $A \leftrightarrow B$.
- If $\alpha + \beta \approx \pi$, the junction metric should not suggest any ordering preference, i.e., $A \leftrightarrow B$
- If β is close to 0 while α is not close to 0 and π , we regard **B** as on top of **A**, i.e., $A \rightarrow B$

$$\Phi_{J}(\alpha,\beta) = \left| (\alpha \mod \pi) - \frac{\pi}{2} \right| - \left| (\beta \mod \pi) - \frac{\pi}{2} \right|$$

$$\operatorname{argmin}_{\{x_i\}} \left\{ -\sum_{i \in V'} \Phi(v_i) x_i - \sum_{e_{ij} \in E'} \delta_{ij} \phi_{ij} x_i x_j \right\} \qquad \phi_{ij} = \operatorname{tan} \left(\left(\theta_{ij} \mod \pi \right) - \pi / 2 \right) \right)$$

Cartoon Hair Completion

Input

Without completion

With completion

Cartoon Hair Completion

Vector fields

Hamiltonian function

 $H_p(x) = \frac{1}{2} x^T A_p x + x^T B_p$

$$\begin{cases} \dot{C}_{p}(t) = \left(\frac{\partial H_{p}(C_{p}(t))}{\partial y}, -\frac{\partial H_{p}(C_{p}(t))}{\partial x}\right) \\ \frac{\partial H_{p}(C_{p}(s))}{\partial t} = 0 \end{cases}$$

External force field

$$F_p(x) = R(-\pi/2)\nabla H_p = R(-\pi/2)(A_p x + B_p)$$
$$F_{ext}(x) = \Omega(x)(tF_p(x) + (1-t)F_q(x))$$

 $\Omega(x) = Sigmoid(\Gamma_p(x) \cdot \Gamma_p(x))$ $\Gamma_p(x) = \max(H_p(p) - H_p(x), 0)$ $\Gamma_q(x) = \max(H_q(x) - H_q(q), 0)$

Iterative Refine Algorithm

Algorithm 1 ITERATIVE_REFINE (C_0, F_{ext})

1: $i \Leftarrow 0$

```
2: while true do
```

3: $i \Leftarrow i + 1$

```
for each sample point C_{i-1}(t) do
4:
```

```
V_{i}(t) \leftarrow ||\dot{F}_{ext}(\mathbf{C}_{i-1}(t)) \cdot N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C}_{i-1}(t))||N(\mathbf{C
5:
```

```
6:
```

```
if C_i(t) outside O(R) then
7:
```

```
return C_{i-1}
8:
```

```
end if
9:
    end for
```

```
10:
```

```
if ||V_i|| < \epsilon then
11:
```

```
return C_i
12:
```

```
end if
13:
```

```
14: end while
```

Cartoon Hair Animation and Manipulation

Hair Editing

As-Rigid-As-Possible Shape Manipulation

Hair Editing

$$\begin{split} \Omega &= w_R \Omega_R + w_H \Omega_H + w_C \Omega_C \\ \Omega_R &= \sum_{i \in V, k \in S} w_i^k \left\| \begin{pmatrix} v_i - s_k \end{pmatrix} - T_k \begin{pmatrix} v_i^{'} - s_k^{'} \end{pmatrix} \right\|^2 \qquad T_k = R_{(1,0)}^{e_k} \begin{bmatrix} s & 0 \\ 0 & 1 \end{bmatrix} R_{e_k}^{(1,0)} \\ \Omega_H &= \sum_{(i,j) \in E} w_{ij} \left\| v_j^{'} - v_i^{'} \right\|^2 \qquad w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij} \\ \Omega_C &= \sum_{i \in C} \left\| v_i - v_i^{'} \right\|^2 \qquad 1. \text{ Deformation term} \\ 3. \text{ Constraint term} \end{split}$$

Hair Braiding

Animation

Keyframe & Inbetweening

Skeletal Animation

Cartoon Hair Animation

 α_0 is the base rotation rate;

d is the distance from the hair root along the skeleton;

 λ is the user-controllable parameter for tuning the amount of hair bending.

p used Lattice Boltzmann model to solve the incompressible Navier-Stokes equation.

3D Reconstruction

3D Laser Scanner

Poisson Surface Reconstruction

Structure from Motion

Interactive 3D Modeling

- Polygonal modeling
- Curve modeling
- Digital sculpting

Workload of Artist

- GUI or menu graphics 4 8 hours
- One level texture 1 2 hours
- One scenery object 4 8 hours
- One detailed object(animated or seen up close, like a gun) 8 12 hours
- One good room in a map 2 4 hours
- Modeling and painting a character 30 50 hours
- Rigging a character 4 8 hours
- Animating a character, per short animation 1 2 hours

Blood Frontier

Introduction

Input image

User annotation

High-relief mesh

3D Rotating Lenticular Poster (rendering)

Chih-Kuo Yeh, Shi-Yang Huang, Pradeep Kumar Jayaraman, Chi-Wing Fu and Tong-Yee Lee, "Interactive High-Relief Reconstruction for Organic and Doublesided Objects from a Photo." IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 7, pp. 1796-1808, July 1 2017. (SCI)

Interactive 3D Reconstruction

- Just input single image
- Folded structures
- Double-sided structures
- Manual effort is quite little

- Handle complex organic objects with multiple occluded regions and varying shape profiles
- Generate high-relief geometry with large viewing angles

OSingle-view 3D Reconstruction

• Fully automatic

• 2008 - Make3D: Learning 3D Scene Structure from a Single Still Image

OSingle-view 3D Reconstruction

• Fully automatic

○2015 - Hallucinating-stereoscopy-single-image

OSingle-view 3D Reconstruction

• User-driven

○2007 - FiberMesh: Designing Freeform Surfaces with 3D Curves

OSingle-view 3D Reconstruction

• User-driven

○2013 - 3-Sweep Extracting Editable Objects from a Single Photo

OSingle-view 3D Reconstruction

• Semi-automatic

○2014 - Ink-and-Ray Bas-Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters

System Overview

• Case (i): Expand a single region from the occluding boundary

 Case (ii): Connect non-neighboring regions under a common occlusion

• Case (iii): Double-sided structures.

 $\theta_a + \theta_b \leq \pi$ and $\hat{c_a}$ and $\hat{c_b}$ are C^1 continuous

- Case (iii): Double-sided structures.
 - Folded structure

System Overview

lcon	Meaning
	Local slope along the out-of-image direction (+Z-axis)
	Positive mean curvature of surface (convexity)
	Negative mean curvature of surface (concavity)

Inflation

• Compute Z-coordinate of boundary vertices a planar region $\phi(x, y)$ $\nabla \phi(x, y) = \vec{\Phi}$

subject to
$$\min_{\vec{\Phi}} \iint_{\Omega} \left| \nabla \vec{\Phi} \right|^2 + \left| \nabla \times \vec{\Phi} \right|^2 \, dx \, dy.$$

 $\vec{\Phi}(x_i, y_i) = \vec{s_i}$, where $\{(x_i, y_i, \vec{s_i})\}$ denotes the set of slope cues in $\phi(x, y)$

Inflation

• Compute Z-coordinate of interior vertices.

a set of regions $\{\phi_i\}$ within each region

$$f^* = \bigoplus_{i=1}^{m} \phi_i$$

$$\nabla^2 \kappa = 0 \text{ and } \nabla^2 f = \kappa \qquad H_{\kappa} = \{\kappa_i\},$$

$$\min_f \int_{\Omega} |\nabla^2 f - \kappa|^2 dA$$

subject to:

$$f(x) = f^*(x) \qquad \forall x \in B_D,$$

$$\nabla f(x) \cdot \mathbf{n} = 0 \qquad \forall x \in B_N,$$

Discrete curvature

$$\kappa \vec{n} = \frac{1}{4A} \sum_{v_j \in N(v_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (v_i - v_j)$$

$$\sum_{\widehat{\kappa}_j \in N(\widehat{\kappa}_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (\widehat{\kappa}_i - \widehat{\kappa}_j) = 0$$

Sample result

Stitching

$$\begin{split} \min_{f'} \sum_{i} \left\{ \int_{\Omega} |\nabla f_{i} - \nabla f'_{i}|^{2} + \left| f'_{i} - f'_{j \in N(i)} \right|^{2} dA \right\} \\ f'_{i}(v_{a}) &\leq f'_{j}(v_{b}) \quad \forall (v_{a}, v_{b}) \in \{Front(f'_{i}) \leq Back(f'_{j})\}, \\ f'_{i}(v_{a}) &= f'_{j}(v_{b}) \quad \forall (v_{a}, v_{b}) \in Stitch(i, j), \end{split}$$

Post – processing

Performance

	# Triangles	Segmentation		Layering	Completion	Inflation					
Inputs						# Slope & Curvature -	Average Compute Time per Region		User	Stitching	Total time
		# Regions	Time			Cues	Slope	Curvature	annotation	5.54	
Bird (Fig. 2)	36846	31	9m 51s	0.029s	2.051s	34	0.0258s	0.2133s	4m 40s	1m 8s	15m 41s
Hockey (Fig. 13, row 1)	52396	53	10m 20s	0.050s	3.682 s	53	0.0248s	0.1615s	6m 1s	2m 5s	18m 30s
Knot (Fig. 13, row 2)	37178	4	5m 45s	0.014s	1.007s	3	0.0787s	0.4889s	0m 23s	0m 45.3s	6m 54s
Elephant (Fig. 13, row 3)	32948	18	12m 31s	0.018s	1.391s	21	0.0299s	0.2565s	2m 45s	1m 2s	16m 19s
Ballet (Fig. 13, row 4)	33180	23	5m 12s	0.024s	1.503s	30	0.0507s	0.2213s	3m 48s	0m 40.7s	9m 42s
Seacow (Fig. 13, row 5)	24842	5	2m 33s	0.009s	0.308s	7	0.0612s	0.4264s	0m 45s	0m 35.8s	3m 54s
Flower (Fig. 14, row 1)	36597	26	4m 59s	0.021s	1.659s	26	0.1279s	0.4830s	3m 10s	0m 39.2s	8m 50s
Shoes (Fig. 14, row 2)	10974	8	2m 24s	0.008s	0.325s	10	0.0777s	0.5301s	1m 15s	0m 10.3s	3m 50s
Pinwheel (Fig. 14, row 3)	23983	18	6m 17s	0.014s	1.473s	18	0.1403s	0.4465s	2m 53s	0m 10.1s	9m 22s

OComparison: Compare with 2014-Ink-and-Ray Bas-Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters

OComparison: Compare with 2015-Hallucinatingstereoscopy-single-image

OComparison: Compare with 2015-Hallucinatingstereoscopy-single-image

Conclusion

- 2.5D Cartoon Hair Modeling and Manipulation
 - We have presented a novel 2.5D approach to modeling, animating, and manipulating hairs in a single cartoon image.
 - We derive an effective layering metric from the Gestalt psychology and our observation on cartoon images
 - We develop a novel layer completion method that can automatically fill the occluding parts of hair strands
 - We devise a simplified simulation model to animate the skeletons in hair strands, including hair editing and hair braiding.

Conclusion

- Interactive High-Relief Reconstruction for Organic and Double-sided Objects from a Photo
 - Just input a single image.
 - We have reconstruct high-relief 3D models
 - Images consider common organic objects with nontrivial shape profile and the reconstruction of objects composed of double-sided structures.

Future Work

- We plan to extend our 2.5D layering model to support local layering.
- We would like to explore ways to produce pseudo 3D effect.
- We plan to study rendering methods to add shadows for 2.5D models.
- We plan to automate the estimation of slope and curvature cues from the image contents.

Acknowledgements

- Adviser:
 - Prof. Tong-Yee Lee
- Collaborators
 - Prof. Chi-Wing Fu (Philip)
 - Prof. Chao-Hung Lin
 - Peng Song
 - Peng-Yen Lin
 - Pradeep Kumar Jayaraman
 - Xiaopei Liu
- NCKU Visual System LAB

References

- Chih-Kuo Yeh, Shi-Yang Huang, Pradeep Kumar Jayaraman, Chi-Wing Fu and Tong-Yee Lee, "Interactive High-Relief Reconstruction for Organic and Double-sided Objects from a Photo." IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 7, pp. 1796-1808, July 1 2017. (SCI)
- Chih-Kuo Yeh, Pradeep Kumar Jayaraman, Xiaopei Liu, Chi-Wing Fu and Tong-Yee Lee, "2.5D Cartoon Hair Modeling and Manipulation." IEEE Transactions on Visualization and Computer Graphics, vol. 21, no. 3, pp. 304–314, 2015. (SCI)
- Chih-Kuo Yeh, Peng Song, Peng-Yen Lin, Chi-Wing Fu, Chao-Hung Lin and Tong-Yee Lee, "Double-sided 2.5D Graphics." IEEE Transactions on Visualization and Computer Graphics, 19.2 (2013): 225-235. (SCI)

Thank You!

Backup Slides

Template Modeling

Limitations

Accuracy of our layering metric

cartoon images	accurac	y (vs G.T.)	average time (sec.)			
(see Fig. 11)	subjects	our metric	subjects	our metric		
First row	90.1%	91.4%	192.0	0.031		
Second row	92.3%	93.5%	382.1	0.042		
Third row	95.9%	97.0%	216.7	0.032		
Fourth row	90.7%	92.3%	231.2	0.020		
Average	92.3%	93.6%	255.5	0.031		

Performance

- 3.4 GHz CPU and 4GB memory.
- Layering computation, 0.031 seconds
- Hair completion (excluding texture inpainting) 1.608 seconds
- Skeleton generation 0.415 seconds
- Deformation 0.015 seconds
- Segmentation :

12 minutes

9 minutes

15 minutes

Failure texture synthesis

Failure segmentation

Methodology

OCompletion

Case (i): Expand a single region from the occluding

OLimitation

