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● Dense Human Body Correspondences Using Con
volutional Networks

● CVPR 2016

PAPER



● Find the dense correspondences between 3D sc
ans of people

PROBLEMS TO SOLVE



● Require partial geometric information in the for
m of two depth maps or partial reconstructed su
rfaces only

● Work for humans in many poses and wearing m
any clothing

● The method mentioned in this paper does not re
quire the  two people to be scanned from similar 
viewpoints, and runs in real time

CONTRIBUTIONS



● Formulate the correspondence problem as a cla
ssification problem

BASIC IDEA



● Train a feature descriptor on depth map pixels, a
nd then train it to solve a body region classificati
on problem

IMPLEMENTATION



● We desire the feature vector to saticfy two prope
rties:
– F depends only on the pixels location on the human body
– ||f(p) – f(q)|| is small when p and q represent nearby points    

on the human body

IMPLEMENTATION



● Indirect methods optimize the network architect
ure to perform classification   (basic idea in this 
paper)

IMPLEMENTATION



● The network consists of a descriptor extraction   
tower and a classfication layer

● Peel off the classification layer after training

IMPLEMENTATION



● Classification networks tend to assign similar   
(dissimilar) descriptors belonging to the same  
(different) class

● Satisfy the above properties implicitly
● Computational efficiency

IMPLEMENTATION



● Between different human models, it is only poss
ible to obtain a sparse set of key point correspon
dences, while for different poses of the same per
son, we may have dense pixel-wise corresponde
nces

● Classification network treats all classes equally

IMPLEMENTATION



● Learn per-pixel descriptors for depth images to solve 
a group of classification problems

● Use a single feature extraction tower shared by the dif
ferent classification tasks

IMPLEMENTATION



● Two classification tasks
– Classify key points, used for inter-subject training
– Classify dense pixel-wise labels by segmenting models into p

atches, used for intra-subject training

IMPLEMENTATION



● For full or partial 3D scans, we compute a per-vertex f
eature descriptor by averaging the per-pixel descripto
rs of the depth maps

IMPLEMENTATION



● SCAPE
– 71 registered meshes of one person in different poses

● MIT
– Animation sequences of three different characters

● Yobi3D
– A diverse set of 2000 digital characters with varying clothing

DATASET



● Yobi3D dataset covers the shape variability in lo
cal geometry, while the SCAPE and MIT datasets 
cover the variability in pose

DATASET



● Key point annotations
● For shapes in the SCAPE and MIT datasets, we o

nly annotate one rest-shape and use the ground-
truth correspondences to propagate annotation
s

DETAILS



● 500-patch segmentation generation
● Each segmentation is generated by randomly pi

cking 10 points on each model, and then adding 
the remaining points via furthest point-samplin
g

● In total we use 100 pre-computed segmentation
s

DETAILS



● 500-patch segmentation generation
● Each such segmentation provides 500 classes fo

r depth scans of the same person(with different 
poses)

DETAILS



● The descriptor extraction tower takes a depth im
age as input and extracts for each pixel a dimens
ion d(d = 16 in this paper) descriptor vector

NETWORK



● The downsampling not only makes the computa
tions faster and more memory efficient, but also 
removes salt-and-pepper noise

NETWORK



● The upsampling implicitly performs linear smoo
thing between the descriptors of neighboring pi
xels

NETWORK



● We introduce one layer for each segmentation of 
each person in the SCAPE and MIT datasets and 
one shared layer for all the key points

● Employ softmax as loss function

NETWORK



● Randomly pick a task(key points or dense label
s) for a random partial scan and feed it into the 
network for training

● If the task is dense labels, we also randomly pick 
a segmentation among all possible segmentatio
ns

TRAINING



RESULT



RESULT



RESULT



● Supervised learning problems
LIMITATION



Any questions?



Good Luck!
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