PAPER PRESENTATION

蔡侑軒 CARAMEL

(

 \bigcirc

PAPER

- Dense Human Body Correspondences Using Con volutional Networks
- CVPR 2016

PROBLEMS TO SOLVE

 Find the dense correspondences between 3D sc ans of people

R

CONTRIBUTIONS

- Require partial geometric information in the for m of two depth maps or partial reconstructed su rfaces only
- Work for humans in many poses and wearing m any clothing
- The method mentioned in this paper does not re quire the two people to be scanned from similar viewpoints, and runs in real time

BASIC IDEA

• Formulate the correspondence problem as a cla ssification problem

 Train a feature descriptor on depth map pixels, a nd then train it to solve a body region classificati on problem

- We desire the feature vector to saticfy two prope rties:
 - F depends only on the pixels location on the human body
 - ||f(p) f(q)|| is small when p and q represent nearby points on the human body

 Indirect methods optimize the network architect ure to perform classification (basic idea in this paper)

- The network consists of a descriptor extraction tower and a classification layer
- Peel off the classification layer after training

- Classification networks tend to assign similar (dissimilar) descriptors belonging to the same (different) class
- Satisfy the above properties implicitly
- Computational efficiency

- Between different human models, it is only poss ible to obtain a sparse set of key point correspon dences, while for different poses of the same per son, we may have dense pixel-wise corresponde nces
- Classification network treats all classes equally

- Learn per-pixel descriptors for depth images to solve a group of classification problems
- Use a single feature extraction tower shared by the dif ferent classification tasks

$$\{\mathbf{w}_i^{\star}\}, \mathbf{w}^{\star} = \operatorname*{arg\,min}_{\{\mathbf{w}_i\}, \mathbf{w}} \sum_{i=1}^M l(\mathbf{w}_i, \mathbf{w}),$$

- Two classification tasks
 - Classify key points, used for inter-subject training
 - Classify dense pixel-wise labels by segmenting models into p atches, used for intra-subject training

 For full or partial 3D scans, we compute a per-vertex f eature descriptor by averaging the per-pixel descripto rs of the depth maps

DATASET

- SCAPE
 - 71 registered meshes of one person in different poses
- MIT
 - Animation sequences of three different characters
- Yobi3D
 - A diverse set of 2000 digital characters with varying clothing

DATASET

 Yobi3D dataset covers the shape variability in lo cal geometry, while the SCAPE and MIT datasets cover the variability in pose

DETAILS

- Key point annotations
- For shapes in the SCAPE and MIT datasets, we o nly annotate one rest-shape and use the groundtruth correspondences to propagate annotation

DETAILS

- 500-patch segmentation generation
- Each segmentation is generated by randomly picking 10 points on each model, and then adding the remaining points via furthest point-sampling
- In total we use 100 pre-computed segmentation

DETAILS

- 500-patch segmentation generation
- Each such segmentation provides 500 classes fo r depth scans of the same person(with different poses)

 The descriptor extraction tower takes a depth im age as input and extracts for each pixel a dimens ion d(d = 16 in this paper) descriptor vector

	0	1	2	3	4	5	6	7	8	9	10
layer	image	conv	max	conv	max	$2 \times conv$	conv	max	$2 \times conv$	int	conv
filter-stride	-	11-4	3-2	5-1	3-2	3-1	3-1	3-2	1-1	-	3-1
channel	1	96	96	256	256	384	256	256	4096	4096	16
activation	-	relu	lrn	relu	lrn	relu	relu	idn	relu	idn	relu
size	512	128	64	64	32	32	32	16	16	128	512
num	1	1	4	4	16	16	16	64	64	1	1

 The downsampling not only makes the computa tions faster and more memory efficient, but also removes salt-and-pepper noise

	0	1	2	3	4	5	6	7	8	9	10
layer	image	conv	max	conv	max	$2 \times conv$	conv	max	$2 \times \operatorname{conv}$	int	conv
filter-stride	-	11-4	3-2	5-1	3-2	3-1	3-1	3-2	1-1	-	3-1
channel	1	96	96	256	256	384	256	256	4096	4096	16
activation	-	relu	lrn	relu	lrn	relu	relu	idn	relu	idn	relu
size	512	128	64	64	32	32	32	16	16	128	512
num	1	1	4	4	16	16	16	64	64	1	1

 The upsampling implicitly performs linear smoo thing between the descriptors of neighboring pi xels

	0	1	2	3	4	5	6	7	8	9	10
layer	image	conv	max	conv	max	$2 \times conv$	conv	max	$2 \times conv$	int	conv
filter-stride	-	11-4	3-2	5-1	3-2	3-1	3-1	3-2	1-1	-	3-1
channel	1	96	96	256	256	384	256	256	4096	4096	16
activation	-	relu	lrn	relu	lrn	relu	relu	idn	relu	idn	relu
size	512	128	64	64	32	32	32	16	16	128	512
num	1	1	4	4	16	16	16	64	64	1	1

- We introduce one layer for each segmentation of each person in the SCAPE and MIT datasets and one shared layer for all the key points
- Employ softmax as loss function

TRAINING

- Randomly pick a task(key points or dense label s) for a random partial scan and feed it into the network for training
- If the task is dense labels, we also randomly pick a segmentation among all possible segmentations

RESULT

C

RESULT

ρ

Q

RESULT

ρ

C

LIMITATION

• Supervised learning problems

Any questions?

Good Luck!