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» Neural networks

» Convolutional neural net-work
» Generative adversarial network
» Recurrent neural network

» Others. like DBN (deep belief network) , AE (AutoEncoder)




Neural networks
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convolutional neural net-work

R-CNN: Regions with CNN Features
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generative adversarial network
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Image style transfer using convolutional neural networks
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recurrent neural network

Architecture of RNN
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(a) Image (b) Voxel (¢) Point cloud (d) Mesh




Voxel

» 3D ShapeNets: A deep representation for volumetric shapes

» VoxNet: A 3D convolutional neural network for real-time object recognition

» Volumetric and multi-view CNNs for object classification on 3D data
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3D object recognition based on voxel representation and deep model




Voxel

» Volumetric 3D mapping in real-time on a CPU
» OctNet: Learning deep 3D representations at high resolutions

» O-CNN: Octree-based convolutional neural networks for 3D shape analysis

» Octree generating networks: Efficient convolutional architectures for high-
resolution 3D outputs

» Hierarchical surface prediction for 3D object reconstruction




Voxel
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Voxel representation based on Octree




Multi-view image

» Image-guided 3D model labeling via multiview alignment

» Multi-view convolu-tional neural networks for 3D shape recognition
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Learning multi-view feature fusion using CNN




Multi-view image

» Learning local shape descriptors from part correspondences with multiview

convolutional networks
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Extraction of local shape descriptor using images from local and global views




Multi-view image

» 3D shape segmentation with projective convolutional networks

Ground-truth ShapeBoost ShapePFCN Ground-truth ShapeBoost ShapePFCN
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Point cloud

» Point

» Gragh




Point cloud

» PointNet: Deep learning on point sets for 3D classification and segmentation

» PointNet++: Deep hierarchical feature learning on point sets in a metric space
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Point cloud

» A new model for learning in graph domains
» The graph neural network model

» Spectral networks and locally connected networks on graphs
» 3D graph neural networks for RGB-D semantic segmentation
» SyncSpecCNN: Synchronized spectral CNN for 3D shape segmentation

» RGCNN: Regularized graph CNN for point cloud segmentation

» Dynamic graph CNN for learning on point clouds




Poin

444

t cloud

width=671,height=350,dpi=110

Point
Cloud

+
*

OO —— \ [ SO —— [EnErmt—
> EdgeConv ;-»uyer I  EdgeConv ;.uu.yaz.)Q EdgeConv  »

>

Feature Concat.
& Multi-layer
Perceptron

Architecture of DynGCNN

Segmentation
Output




Mesh

» Gragh
» Manifolds

» Traditional descriptor




Mesh

» Geodesic convolutional neural networks on riemannian manifolds

» ShapeNet: Convolutional neural networks on non-euclidean manifolds

(a) Examples of local (b) Example of angular and
geodesic patches radial weights

Geodesic polar system built on mesh surface




Mesh

» Learning shape correspondence with anisotropic convolutional neural
networks

» Learning class-specific descriptors for deformable shapes using localized
spectral convolutional networks

» Geometric deep learning on graphs and manifolds using mixture model CNNs




Mesh

» 3D mesh labeling via deep convolutional neural networks
(curvature (CUR), PCA feature (PCA), shape diameter function (SDF), distance from medial surface
(DIS) , average geodesic distance (AGD), shape context (SC), and spin image (SI) )

» Jointly learning shape descriptors and their correspondence via deep triplet

CNNs
» Learning 3D keypoint descriptors for non-rigid shape matching
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» Dense human body correspondences using convolutional networks

(a) Full-to-full correspondence (b) Full-to-partial correspondence
[llustration of shape correspondence
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» 3Dmatch: Learning local geometric descriptors from RGB-D reconstructions
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Key-point matching based on voxel representation
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» Learning shape correspondence with anisotropic convolutional neural

networks |
Filter Bank 1
P Filters .
-5{06 Q@—
§ maxi»
- 9e- o &
Filter Bank () _ . 15
e &@—
oy @ L

J1 J A J

AMP Output Q-dim

Input M-dim LIN Rel.U GC

Shape correspondence based on Geodesic CNN

» Deep functional maps: Structured prediction for dense shape correspondence
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» A method of 3D model retrieval by the spatial distributions of components

» Jointly learning shape descriptors and their correspondence via deep triplet CNNs
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» Learning local shape descriptors from part correspondences with multiview
convolutional networks

» Learning part-in-whole relation of 3D shapes for part-based 3D model

retrieval
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Multi-scale shape matching based on multi-view images
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» Deep correlated metric learning for sketch-based 3D shape retrieval

» Sketch-based 3D shape retrieval using convolutional neural networks
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» Convolutional-recursive deep learning for 3D object classification

» Learning rich features from RGB-D images for object detection and
segmentation

» Multimodal deep learning for robust RGB-D object recognition

» A deep representation for volumetric shapes

» VoxNet: A 3D convolutional neural network for real-time obiect recognition
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» Deeppano: Deep panoramic representation for 3-D shape recognition
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3D Shape

» Predictive and generative neural networks for object functionality
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» PointNet: Deep learning on point sets for 3D classification and segmentation

» PointNet++: Deep hierarchical feature learning on point sets in a metric space
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» 3D mesh labeling via deep convolutional neural networks

» Unsupervised 3D shape segmentation and co-segmentation via deep learning
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» Transforming auto-encoders

» Deepstereo: Learning to predict new views from the world’s imagery

» Learning to generate chairs, tables and cars with convolutional networks
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» Spatial transformer networks (STN)

» View synthesis by appearance flow

» Transformation-grounded image generation network for novel 3D view
synthesis
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Multi-view images generated from a single view image
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» Learning a predictable and generative vector representation for objects

» Learning a probabilistic latent space of object shapes via 3D generative-
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» Pixel2Mesh: Generating 3D mesh models from single RGB images
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Deform an coarse ellipsoid mesh into a refined mesh using CNN




ﬁ il H ,]jz

» Transforming auto-encoders

» Deepstereo: Learning to predict new views from the world’s imagery

» Learning to generate chairs, tables and cars with convolutional networks
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» Transforming auto-encoders

» Deepstereo: Learning to predict new views from the world’s imagery

» Learning to generate chairs, tables and cars with convolutional networks
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» Shape completion using 3D-encoder-predictor CNNs and shape synthesis
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» Shape inpainting using 3D generative adversarial network and recurrent
convolutional networks
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» High-resolution shape completion using deep neural networks for global
structure and local geometryv inference
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» Learning to reconstruct high-quality 3D shapes with cascaded fully

convolutional networks
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» Point cloud completion of foot shape from a single depth map for fit matching
using deep learning view synthesis

» Deep learning anthropomorphic 3D point clouds from a single depth map
camera viewpoint
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» Deformable shape completion with graph convolutional autoencoders
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» Variational autoencoders for deforming 3D mesh models
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» Biharmonic deformation transfer with automatic key point selection
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Figure 1: The pipeline of our algorithm.
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» Learning free-form deformations for 3D object reconstruction
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» Analogy-driven 3D style transfer

» Learning detail transfer based on geometric features

2 apel
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(a) Input (target) mesh (b) Details from each source mesh (blue) are synthesized on the target mesh (pink)
without details

» Functionality preserving shape style transfer
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