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Abstract

- Mesh is an important and powerful type of 3D shapes
- The complexity and irregularity of mesh data
- MeshNet is proposed to learn 3D shape representation from mesh data



Introduction

Several types of 3D data:

- Volumetric grid
- Multi-view

- Point cloud

-  Mesh



Introduction(cont’d)

Key contributions of this paper:

- A neural network using mesh for 3D shape representation and design blocks for
capturing and aggregating features of polygon faces in 3D shapes

- Expensive experiments to evaluate the performance of the proposed method, and the
experimental results show that the proposed method performs well on the 3D shape
classification and retrieval task



Related Work

Mesh Feature Extraction

- A symbolic method for calculating the integral properties of arbitrary nonconvex
polyhedra(1984)

- Efficient Feature Extraction for 2D/3D Objects in Mesh Representation(2001)

- Multiresolution Feature Extraction for Unstructured Meshes(2001)

- Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors(2003)

- Surface Feature Detection and Description with Applications to Mesh Matching(2009)

- Intrinsic Shape Context Descriptors for Deformable Shapes(2012)



Related Work

Deep Learning Methods for 3D Shape Representation

Voxel-based methods:

- 3d ShapeNets: A Deep Representation for Volumetric Shapes(2015)

- FPNN: Field Probing Neural Networks for 3D Data(2016)

- Voting for Voting in Online Point Cloud Object Detection(2015)

O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis(2017)



Related Work

Deep Learning Methods for 3D Shape Representation

View-based methods:

- Multi-View Convolutional Neural Networks for 3D Shape Recognition(2015)
Group-View Convolutional Neural Networks for 3D Shape Recognition(2018)



Related Work

Deep Learning Methods for 3D Shape Representation

Point-based methods:

- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation(2017)

- PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space(2017)

- SO-Net: Self-Organizing Network for Point Cloud Analysis(2018)

- Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling(2017)

- PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation(2018)

- Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models(2017)



Related Work

Deep Learning Methods for 3D Shape Representation

Fusion methods:

- Fusionnet: 3D Object Classification Using Multiple Data Representations(2016)
- PVnet: A Joint Convolutional Network of Point Cloud and Multi-view for 3D Shape
Recognition(2018)



Overall Design of MeshNet

| |
I [ voxu | |
| |
_..m 3 "
| 3
| 8 m [
_m = |
©
| 3 I
, & L[exu]
® 5
| € |
| 8 |
P i s s |
EETE
o8
25
P9 xXu
5 PO X U
2 I
m_,-}_ﬁ_,-u..
TiRE | 128
.m_h “ .Md“
S1881 | | 88,
3 BB _

Global Feature
Output Scores




Overall Design of MeshNet(cont’'d)

Regard face as the unit
Split feature of face



Mesh Information
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Structural Descriptor
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Face Rotate Convolution
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Face Rotate Convolution(cont’d)

class FaceRotateConvolution(nn.Module):

def __init__ (self):
super (FaceRotateConvolution, self).__init_ ()
self.rotate_mlp = nn.Sequential(

.Convid(6, 32, 1),

nn.BatchNormid(32),

nn.RelLU(),

nn.Convid(32, 32, 1),

nn.BatchNormid(32),

nn.RelU()

ni
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= |

)

self.fusion_mlp = nn.Sequential(
.Convid(32, 64, 1),
nn.BatchNormid(64),
nn.ReLU(),

nn.Convid(64, 64, 1),
nn.BatchNormid(64),
nn.RelU()

ni

=2 3

= |

def forward(self, corners):
fea = (self.rotate_mlp(corners[:, :6]) +
self.rotate_mlp(corners[:, 3:9]) +

self.rotate_mlp(torch.cat([corners[:, 6:], corners[:, :3]], 1))) / 3

return self.fusion_mlp(fea)



Face Kernel Correlation

- Capturing the “outer” structure of faces and explore the environments where faces

locate
- Model vectors of kernels with parameters in the spherical coordinate system
x = sin 0 cos ¢ ,
y = sin #sin ¢
z = cosf ' «(1, 0, 9)
| »
9///
y
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Face Kernel Correlation(cont’'d)

Define the kernel correlation between the i-th face and the k-th kernel as follows:

1

KC(i,k) = = > Y. Ko(n,m)
NillMi| S
In — m]|?
K,(n,m) = exp(—"——5——)

More similar pairs will get higher values.



Mesh Convolution
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Combination of Spatial and Structural Features
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Aggregation of Structural Feature

Neighbor  Aggregation for one face Aggregation
Features
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Aggregation methods

Average pooling
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Aggregation methods

Max pooling
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Aggregation methods

Concatenation
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Implementation Details

- The spatial descriptor contains fully-connected layers (64, 64) and output a initial
spatial feature with length of 64.

- In the face rotate convolution, they set K1 = 32 and K2 = 64, and correspondingly, the

functions f(., .) and g(.) are implemented by fully-connected layers (32, 32) and (64, 64).
- Inthe face kernel correlation, they set M = 64(64 kernels) and ¢ = 0.2.



Experiments

3D shape classification and retrieval

. Acc | mAP
Method Modality @) | (@)
3DShapeNets (Wu et al. 2015) | volume | 77.3 | 49.2
VoxNet (Maturana and Scherer | volume | 83.0 -
2015)
FPNN (Li et al. 2016) volume | 88.4 -
LFD (Chen et al. 2003) view 75.5 | 40.9
MVCNN (Su et al. 2015) view 90.1 | 79.5
Pairwise (Johns, Leutenegger, view 90.7 -
and Davison 2016)
PointNet (Qi et al. 2017a) point 89.2 -
PointNet++ (Qi et al. 2017b) point 90.7 -
Kd-Net (Klokov and Lempit- point 91.8 -
sky 2017)
KCNet (Shen et al. ) point 91.0 -
SPH (Kazhdan, Funkhouser, mesh 68.2 | 33.3
and Rusinkiewicz 2003)
MeshNet mesh 919 | 81.9

Table 1: Classification and retrieval results on ModelNet40.

Spatial v v v v v
Structural-FRC v v v v
Structural-FKC v v v v
Mesh Conv v v v v v
Accuracy (%) | 83.5 | 88.2 | 87.0 | 89.9 | 90.4 | 91.9

Table 2: Classification results of ablation experiments on
ModelNet40.

Aggregation Method | Accuracy (%)

Average Pooling 90.7
Max Pooling 91.1
Concatenation 91.9

Table 3: Classification results of different aggregation meth-
ods on ModelNet40.



Experiments

On the Number of Faces

Number of Faces | Proportion (%) | Accuracy (%)
(1000, 1024) 69.48 92.00
(800, 1000) 6.90 92.35
(600, 800) 4.70 93.10
1400, 600) 6.90 91.76
(200, 400) 6.17 90.79
10, 200) 5.84 90.97

Table 4: Classification results of groups with different num-
ber of faces on ModelNet40.



Experiments
On the Time and Space Complexity

#params | FLOPs/
Method (M) sample (M)
PointNet (Qi et al. 2017a) 3.5 440
Subvolume (Qi et al. 2016) 16.6 3633
MVCNN (Su et al. 2015) 60.0 62057
MeshNet 4.25 509

Table 5: Time and space complexity for classification.



Experiments

Feature Visualization

Figure 6: Feature visualization of structural feature.
Models from the same column are colored with their val-
ues of the same channel in features. Left: Features from the
face rotate convolution. Right: Features from the face kernel
correlation.



Conclusions

In this paper, the proposed mesh neural network learns on mesh data directly for 3D shape
representation. It is also able to solve the complexity and irregularity problem of mesh data
and conduct 3D shape representation well.



