

低度訓練資源的深度學習方法 及產業應用範例

林嘉文 (Chia-Wen Lin) 清華大學電機系教授 & AI研究中心副主任 cwlin@ee.nthu.edu.tw

Schools of Machine Learning Algorithms

5 Connectionists: CNNs

LeNet 1998

AlexNet (Supervision) 2012

6 Connectionists: CNNs

		place	top 5 error
2011	Compressed Fisher kernel + SVM	1st	25.8%
2012	SIFT + GIST + LBP + PA classifier	2nd	26.1%
2012	Supervision	1st	16.4%
2013	Clarifai	1st	11.5%
2014	VGG	2nd	7.3%
2014	GoogLeNet / Inception	1st	6.6%
2014	Andrej Karpathy	n/a	5.1%
2015	Batch Normalization Inception	n/a	4.8%
2015	Inception v3	2nd	3.6%
2015	ResNet	1st	3.6%
2016	Inception-ResNet	n/a	3.1%

6/9/2020

Computing for Al

Graphics Processing Unit (GPU)

Tensor Processing Unit (TPU)

Neural Processing Unit (NPU)

8

Data for Al

Data for Al

Era of Data Exploration

9

- 90% ----- Currently, 90% data were generated in recent two years
- 1.7 MB ----- In 2020, each person will generate 1.7 MB per second on average
- ▶ 50 B ----- In 2020, there will be \geq 50 B Internet devices

Status of Data Usage

- 0.5% ----- The current percentage of data analyzed/used
- 10% vs. 65M ----- We can obtain 65M revenue for every increased 10% data usability

Features are The Keys

Off-the-shelf visual features

SIFT [Lowe, IJCV'04] Citations: 43465

Constellation model [Fergus et al., CVPR'03] Citations: 2551

HoG [Dalal & Triggs, CVPR'05] Citations: 20174

DPM [Felzenszwalb et al., PAMI'10] Citations: 5093

Conventional Approaches vs. Deep Learning

Conventional approaches

13

Fixed/engineered features + trainable classifier

Deep learning / End-to-end learning / Feature learning

Trainable features + trainable classifier

slide: Y LeCun & MA Ranzato 6/9/2020

Deep Learning = Learning Hierarchical Rep.

- Each layer of hierarchy extracts features from output of previous layer
- All the way from pixels \rightarrow classifier

14

Layers have the (nearly) same structure

Neural Networks and Neurons

- Neural networks are presented as layers of interconnected neurons
 - Each layer of neurons takes messages from output of previous layer

What are Deep Neural Networks (DNNs)

DNN is neural networks with many hidden layers

AlexNet (2012)

- Similar framework to LeCun'98 but:
 - Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)
 - GPU Implementation (50x speedup over CPU)
 - Trained on two GPUs for a week

Geoffrey Hinton

Evolution of # of Layers of CNNs

科技部AI計畫:低標註資源應用之深度學習技術開發

產業應用 Multimedia Data 低標註資源應用之深度學習技術開發 半導體製程 應用技術 **擴增、去噪技術** (聯電) 偵測、分群 Video 低標註資源應用 資訊 針對低標註資源應用 之小樣本深度學 之影像分類,資料擴 習技術開發 運動影片分析 增及遷移式學習 (子計畫三) (子計畫一) (巨資中心) Image 人臉追蹤與識別 (光寶) 低標註資源應用 低標註資源應用 之資料擴增與網 之影像分割 路學習策略 (子計畫二) (子計畫四) 物件切割、 Music Guidance 鋼品數位指紋分析 (中鋼) information

Problems in AI & Deep Learning

Recent Significant Process on AI was mainly on DL

- in **supervised learning** applications
 - basically kind of curve fitting
 - requires comprehensive & good-quality labelled training data
- Many applications can only use "weakly-supervised", "semi-supervised" & "non-supervised" learning

Low-shot learning

Low-Shot (few-, one-, zero-shot) Learning Problems:

- Low Labeling Resource (amount & information)
- Small Training Set
- Unbalanced (Biased) Training Data
- Label Noise (cloud-sourcing, different professional opinions)
- Domain Shift

Low-Shot Learning for Semantic Segmentation

semi-supervised learning

23

unsupervised learning

One/Few-Shot Learning

Learn a concept from one or only a few training example

Input

Novel Class

Result

One/Few-Shot Learning

25

variation

6/9/2020

Retinal Image Analysis for Diabetes Eye Diseases Detection & Recognition target

Application Examples

Industry Application Face Augmentation for Low-Shot Recognition

30

Chia-Wen Lin (林嘉文), IEEE Fellow Professor, Department of Electrical Engineering National Tsing Hua University, Taiwan cwlin@ee.nthu.edu.tw

Motivation: Difficulties in Face Recognition

- In surveillance applications, there often exist environmental interferences:
 - Illumination variations
 - Pose/Viewpoint changes
 - Facial expressions

31

Occlusions (eyeglasses, masks)

Motivation: Collecting Rich Training Data?

Problems:

- Collecting complete training data with various poses, expressions, and illuminations is time-consuming and expensive
- Difficulty in collecting training samples in many practical applications (e.g., terrorists, public security, person Re-ID)

Scenarios: Low-Shot Face Recognition Scenario #1:

- The face recognizer was trained on frontal faces (with neutral illumination and expression), and it cannot be retrained
- Solution: face normalization (frontalization, deshading, and deexpression)
- Scenario #2:

33

- Face recognizer is retrainable, but can only collected an anemic Training dataset
- Solution: face augmentation (but how?)

Our solution: A unified **Do**main-transferred Face Augmentation Net (**DotFAN**) for identity-preserving face augmentation & normalization

Face Normalization (Deshading & Frontalization)

6/9/2020

CO.

36

Face Augmentation

Synthesizing faces of various poses and illumination patterns in unconstrained situations

Domain-transferred Face Augmentation Net (DotFAN) 37 lighting Anemic Domain id/ Distilled G: un Knowledge 60 **DotFAN** (training) (D) - Co pose Rich Domain (open databases) **Augmented Faces**

FEM: Face-Expert Model FSR: Face Shape Regressor

DotFAN

Experiments: Datasets

- Training datasets for FEM :
 - CASIA-WebFace
 - 494, 414 images from 10, 575 subjects
 - CelebA

39

- 202, 599 images from 10, 177 subjects
- Large-scale face attributes dataset
- Training datasets for FSR:
 - CASIA-Webface
 - CMU MultiPIE
 - Select 13 illumination ppatterns
 - 60 K faces

CMU Multi-PIE

Experiments: Datasets

- Testing Data
 - LFW

40

- 13, 233 images of 5,749 identities
- IJB-A

IJB-A has 25,808 images of 500 identities.

- SurveilFace (LiteOn)
 - SurveilFace 1
 - 1,050 images of 73 identities
 - SurveilFace 2
 - 1,709 images of 78 identities

Face Normalization (Frontalization & Deshading)

Verification accuracy on LFW

Methods	Verification Accuracy
3D	93.6±1.2
HPEN	96.3±0.8
FF-GAN	96.4±0.9
FaceID-GAN (CVPR18)	97.0±0.8
Proposed	99.2±0.4

42 Face Normalization (Frontalization & Deshading)

True-Acceptance-Rate (TAR) of verifications on IJB-A

Methods	@0.01 FAR	@0.001 FAR
PAM	73.3±1.8	55.2±3.2
DCNN	78.7±4.3	-
DR-GAN	77.4±2.7	53.9±4.3
FF-GAN	85.2±1.0	66.3±3.3
FaceID-GAN [32]	87.6±1.1	69.2±2.7
Proposed	93.7±0.5	89.3±1.0

43

Augmentation

(a) 3D templates. (b) CelebA (C) LFW (d) CFP (e) SurveílFace

(a) (b) 0 6 0 13 (c) 0 To 1 (d) artes

(e)

Augmentation: Full Illumination & Pose Codes

Augmentation: Comparison

45

(a) input, (b) StarGAN, (c) FaceID-GAN, and (d) DotFAN (Proposed)

Face Recognition Performance Comparison

46

Method	LFW SurveilFace		rveilFace-1	SurveilFace-2					
	ACC	AUC	@FAR=0.001	@FAR=0.01	AUC	@FAR=0.001	@FAR=0.01	AUC	
(a) Sub-CelebA(3) (totally 30, 120 images)									
RAW	83.1	90.2	20.5	34.4	83.2	18.0	33.3	84.8	
StarGAN	85.9	92.5	25.1	39.6	87.5	27.4	46.7	91.4	
FaceID-GAN	92.5	97.6	34.6	53.5	92.8	32.3	54.0	94.3	
Proposed 1x	93.6	98.1	35.7	56.2	93.6	34.7	57.8	95.0	
Proposed 3x	94.7	98.7	36.8	58.3	94.6	36.5	60.8	95.6	
			(b) Sub-Celeb	A(8) (totally 75,	, 796 ima	ges)			
RAW	94.0	98.5	37.8	58.7	94.4	38.3	61.0	95.2	
StarGAN	94.3	98.5	42.6	60.7	94.9	42.8	65.6	95.8	
FaceID-GAN	96.5	99.3	48.1	65.6	96.0	45.7	67.9	96.8	
Proposed 1x	97.3	99.5	53.2	71.2	97.0	49.1	72.2	97.2	
Proposed 3x	97.2	99.5	53.2	68.9	96.9	47.3	70.0	97.1	
			(c) Sub-CelebA	(13) (totally 116	6, 659 im	ages)			
RAW	96.3	99.1	47.4	67.8	96.2	43.5	67.0	96.5	
StarGAN	96.7	99.3	48.3	68.1	96.7	46.3	70.0	96.7	
FaceID-GAN	97.2	99.5	53.3	71.3	97.0	50.2	72.3	97.4	
Proposed 1x	97.6	99.6	56.2	. 75.1	97.7	50.4	73.9	97.7	
Proposed 3x	97.5	99.7	56.7	75.5	97.7	53.9	72.2	97.8	
(d) CelebA (full CelebA dataset, 202, 599 images)									
RAW	97.6	99.6	53.5	73.8	97.7	48.7	73.0	97.5	
StarGAN	97.7	99.6	55.0	74.2	97.7	53.0	73.8	97.6	
FaceID-GAN	98.0	99.7	57.6	76.4	98.1	54.1	76.5	98.0	
Proposed 1x	98.3	99.8	62.4	80.9	98.4	57.1	76.7	98.1	
Proposed 3x	98.4	99.7	61.4	78.9	98.2	54.7	77.8	98.0	

6/9/2020

Face Recognition Performance Comparison

Summary

We propose GAN-based approaches to deal with the following difficult problems:

Face Normalization & Augmentation

Illumination variations

- Pose variations
- Both illumination & pose variations

Industry Application Data-Driven Prediction of IC Fabrication

Chia-Wen Lin (林嘉文), IEEE Fellow Deputy Director, Al Technology Research Center Professor, Department of Electrical Engineering National Tsing Hua University, Taiwan cwlin@ee.nthu.edu.tw

IC Fabrication Process

6/9/2020

Lithography

IC Layout vs. Actual Circuitry (SEM Image)

55

Lithography+Etching can be formulated as a nonlinear shape deformation process

Optical Proximity Correction (OPC)

56

6/9/2020

Optical Proximity Correction (OPC)

without OPC

with OPC

IC Design for Manufacturability (DfM)

58

6/9/2020

LithoNet for IC Fabrication Simulation

Datasets

61

1. UMC1

Experiment

Total **1,042 pairs** (942 pairs for training and 100 pairs for testing)

Each pair contains a layout image and its SEM image

2. UMC2

Total **7,483 pairs** (7,399 pairs for training and 84 pairs for testing)

Seven different fabrication parameters (Ranging from - $0.9 \sim +0.9$)

Each pair contains a layout image and its SEM image

- Metrics
 - Intersection Over Union (IoU)
 - SSIM
 - Per pixel error rate

$$ext{SSIM}(\mathbf{x},\mathbf{y}) = rac{(2\mu_x\mu_y+C_1)(2\sigma_{xy}+C_2)}{(\mu_x^2+\mu_y^2+C_1)(\sigma_x^2+\sigma_y^2+C_2)} ext{.}$$

Evaluation of LithoNet

⁶⁴ Prediction with New IC Fab Parameters

Configure parameter =-0.45	Configure parameter =-0.3	Configure parameter =-0.15	Configure parameter =0	Configure parameter =0.15	Configure parameter =0.3	Configure parameter =0.45
				222X		

Evaluation of OPCNet

67 Summary

- We proposed LithoNet and OPCNet for DfM of IC-Fab achieve promising accuracy and achieve 200x faster than an optical model-based prediction
- Challenge: Interdisciplinary research with partners having different technical background (also fun!)
- Impact: Lead to a paradigm shift in CAD tools for DfM of IC-Fab? (IC-Fab now hires an OPC team to establish the simulation models)
- Next research topics:

Low-shot learning (data-driven + model-based approach?)
 Quality metrics for assessing IC layout

Conclusion

- The success of deep learning usually relies on the availability of large-scale well-labelled training data.
- In practice, it is often difficult to collect sufficient amount of well-labelled training samples.
- Low-shot learning has good potential to resolve part of deep learning problems in practical applications.