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Abstract—The objective and fair evaluation of performances and competitions is a common pursuit and challenge in human society,
and the application of computer vision technology in real-world scenarios brings a ray of hope for this purpose. Nevertheless, it is
still a challenging task to evaluate various types of behaviors accurately, such as performances and competitions, due to anomalies
such as human occlusion and motion blur that hinder the process. To address these hindrances, our DanceFix proposes a new
anomalous skeletal data correction method, called bidirectional spatial-temporal context optical flow correction (STCF), which exploits
the consistency and complementarity of motion information between the two modalities of optical flow and skeletal data to extract pixel-
level motion changes and correct anomalous data. In addition, the attributes of human body parts in motion are usually not uniform, we
propose a part-level dance dataset (Dancer Parts) and part-level motion feature extraction based on task decoupling (PFTD), aiming
to extract human limb-level motion information and improve the confidence of temporal information and accuracy of correction for
abnormalities. Finally, we present the Dancing-Neatly-in-Virtual dataset (DNV), which simulates fully neat group dance scenarios and
anomalous challenges to provide credible labels and validation methods for dance assessment. To the best of our knowledge, this is
the first work to develop quantitative criteria for assessing dance neatness. Experimental results show that the proposed method can
effectively correct anomalous skeletal points, flexibly embed and improve the accuracy of existing pose estimation algorithms, and fully
validate the correction effect of the method on various dance scenes, DNV datasets, and video-based JHMDB datasets.

Index Terms—Action evaluation, anomaly correction, optical flow, part tracking, dance neatness evaluation.

✦

1 INTRODUCTION

HUMAN action recognition and evaluation is an im-
portant research area in computer vision, which has

been widely used in real-world scenarios, such as human-
computer interaction, video monitoring, and video retrieval.
In recent years, the application of action recognition tech-
nology in sports and dance entertainment [1], [2] has slowly
stepped into the limelight, and with the increased attractive-
ness of the game industry, games [3], [4] based on human
interaction such as dance and sports have also extended the
research in motion evaluation.

In this paper, we focus on the challenges involved in the
problem of action recognition and assessment, taking the
dance action assessment as an example, and proposing tar-
geted solutions. Several modalities are available to study hu-
man action, such as RGB video [5], [6], optical flow [7], [8],
shape [9], and skeletal data [10], [11], but these works study
only one modality, ignoring consistency and complementar-
ity of action information among the modalities. Compared
with other modalities, the current commonly used skele-
tal data is lightweight structural data, which is not easily
affected by the background and has higher computational
efficiency and robustness. But the acquisition of skeletal data
in practical applications depends on the detection accuracy
of the pose estimation algorithms. The human dance move-
ments studied in this paper are more variable compared
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with other common movements and have more complex
motion information, which are more prone to abnormalities
such as self-masking, external masking, and motion blurring
leading to inaccurate skeletal data extraction (Fig. 1). This
skeletal information with low credibility will reduce the
accuracy of the dance neatness assessment. In addition, we
find inconsistent motion properties of body parts during
human motion when processing abnormal skeletal data. The
human body has a flexible articulated structure, and each
limb part is interconnected but often has different move-
ment properties. It is difficult to achieve uniform changes
in all body parts during movement. Such differences are
even more obvious in dance movements. For example, there
are more hand-related dance movements, which are usually
more flexible and more intense, with complex movement
change scenarios and large deformations; while the legs
change more gently, with small postural deformations in
certain sequences. If the different movement characteristics
of each part are treated in the same way, it often leads
to inaccurate detection of skeletal points that cause major
disruption to the assessment work.

Besides, in the real world, dance movement evaluation
is not only entertaining and interesting but also has im-
portant practical value. In performance and competition,
people’s evaluation of the same movement sequence is di-
rectly influenced by personal subjective consciousness, and
even industry experts cannot give the same and convincing
scores. While the method of using machines to evaluate
movement sequences under fixed parameter criteria can
fully ensure objectivity and fairness. Research in this area
[12], [13] can be widely used in dance performances, sports
competitions, troop exercises, and other scenarios where
objective assessment is a better alternative to subjective
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assessment, more importantly, it can provide an alternative
perspective for thinking about research in the field of action
recognition and assessment. However, there has been a lack
of credible labeling data and unified quantitative standards
in this area of research, which makes it difficult to achieve
accurate quantitative assessment of movement sequences,
preventing the effective dissemination of research results
and concepts. For example, in this paper, most of the dance
scenes that look neat at a glance are not neat after a closer
look, and the dance scenes that are 100% neat in reality are
difficult to find and do not even exist (Fig. 2), making it
difficult to define the exact neatness of dance data.

a b c d

e

f g h i
j

Fig. 1. Common anomalies in fixed-camera dance. Where a, b, c are
self-masking, d, e, f, g, j are external-masking, h is limb-joining, i, j are
motion blur.

Normal ActionNormal Action Error ActionError Action

Fig. 2. Group dancing is difficult, if not impossible, to achieve completely
neat. The green boxes are normal actions, the red boxes are errors.

Based on the above analysis, we summarize the main
challenges for dance movement assessment as follows:

1) How to solve the shortcomings of a single modality
and improve the accuracy of human motion informa-
tion, especially the extraction of motion information
under abnormal conditions such as occlusion and
motion blur?

2) How to eliminate the influence of non-uniform mo-
tion properties of body parts during human move-
ment and adaptively extract motion information
from each part with various degrees of strenuous-
ness?

3) How to obtain credible labeling data and quantify
uniform evaluation criteria for group movements?

In this paper, we investigate dance movement assess-
ment based on the three main challenges mentioned above.
First, to address the problem of inaccurate extraction of cur-
rent mainstream modality–skeletal data under anomalous
conditions, we exploit the property that the motion informa-
tion expressed among the modalities is consistent with each
other. Among them, optical flow can acutely capture motion
information on horizontal and vertical axes by detecting
pixel intensity changes in continuous frames of images, and
calculate the pixel changes before and after the appearance
of anomalies, which has the potential to solve anomalies
such as occlusion [14]. Therefore, we propose a new method
for anomalous skeletal data correction called bidirectional
spatial-temporal context optical flow correction (STCF). Our
method first extracts the credible pre- and post-temporal
context optical flow information of anomalous frames. Then
calculates the spatial motion changes of skeletal point pixels
with the optical flow information, using the optical flow to
compensate for the defects of skeletal data, the most com-
putationally efficient modality, to maximize the benefits. We
can thus achieve the correction of anomalous skeletal data
by combining the motion consistency of both modalities,
skeletal data and optical flow.

Second, to extract the motion properties of flexible hu-
man body parts more effectively, we decouple the complex
human body into limb parts based on the idea of task
decoupling and conduct a study focusing on the “instance-
level” information of human body parts. The detection and
practice of “instance-level” body parts is already an impor-
tant research area [15], and different levels of body part
information are important for different problems [16], [17],
[18]. Therefore, we construct a part-level dance movement
dataset (Dancer Parts) for the difference in motion proper-
ties of body parts during human movement and propose
a part-level motion feature extraction based on task decou-
pling (PFTD). Through PFTD, we extract the motion prop-
erties of human body parts to determine information such
as candidate skeletal point regions and motion changes,
and use this information to further detect the before and
after frames of abnormal frames, which makes the spatial-
temporal optical flow information of STCF more reliable and
improves the credibility of correction and the accuracy of
dance neatness assessment.

Third, to obtain a quantitative research standard and
credible labeling data to enhance the reusability and feasibil-
ity of our work, we construct a dataset that simulates a fully
neat virtual dance scene, called Dancing-Neatly-in-Virtual
(DNV). In this way, quantitative criteria can be developed
for dance assessment, facilitating research in the field and
validating the accuracy and reliability of our DanceFix.
We validate the feasibility of automatic quantitative dance
neatness assessment and the validity of STCF and PFTD
on the DNV, and further validate the effectiveness of the
method in improving the accuracy of pose estimation on a
publicly available dataset.

Generally, the main contributions of this paper are sum-
marized as follows:

• We propose a new anomalous skeletal data cor-
rection method, called bidirectional spatial-temporal
context optical flow correction (STCF), to combat
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anomalies such as occlusion and motion blur and
improve the accuracy of skeletal data.

• To adapt to the variability of the motion of hu-
man body parts, we propose a part-level motion
feature extraction based on task decoupling (PFTD)
to extract information such as candidate regions of
skeletal points and motion changes of human body
parts to obtain more accurate spatial-temporal infor-
mation. Further, to effectively learn the information
at the human body part level, a corresponding part-
level dance movement dataset (Dancer Parts) is con-
structed, which consists of 65 dance video clips with
rich dance types, different dancers, and complex
scenes, and the dancers’ left hand, right hand, left
leg, right leg, and torso are “instance-level” labeled.
PFTD effectively improves the reliability of spatial-
temporal context information and the correction ac-
curacy of STCF.

• We construct a simulated fully neat dance dataset
(DNV), which develops a unified criterion for au-
tomatically quantifying dance neatness assessment,
enabling the assessment of movement neatness for
group dances. To the best of our knowledge, this is
the first work to develop quantitative criteria for as-
sessing dance neatness. Unlike other dance datasets,
DNV provides reliable data of 100% neatness and
facilitates the construction of dance scenarios that
simulate abnormal challenges, which can effectively
validate the accuracy of neatness assessment meth-
ods.

• We conduct a comprehensive evaluation on the DNV
dataset proposed in this paper to verify the effec-
tiveness of our methods, and further, validate the
effectiveness of our methods on the public dataset
JHMDB for the correction of abnormal skeletal data.
The experimental results show that DanceFix can
effectively improve the detection accuracy of the
existing pose estimation algorithms.

The rest of this paper is organized as follows. In Section
2, we review the related work, and in Section 3, we present
the specific framework and detailed information of our
DanceFix. In Section 4, we evaluate the validity of our
method. Finally, we conclude in Section 5.

2 RELATED WORKS

2.1 Action Recognition
Due to the lightweight nature of skeletal data and posture
estimation techniques that have matured in recent years,
skeletal-based action recognition research has become a
mainstream trend. The data-driven approach for human
feature extraction using deep learning techniques gradually
replaces the traditional manual feature approach [19], [20],
and there are three main neural networks for skeleton-based
action recognition: Recurrent Neural Network (RNN), Con-
volutional Neural Network (CNN), and Graph Convolu-
tional Network (GCN). RNN-based approaches are usually
modeled to capture temporal feature sequences between

frames, e.g. Du et al. [21] and Wang et al. [22] build
RNN architectures from the hierarchy of human physi-
cal structures and joint geometric relationships to capture
spatial-temporal feature information, respectively. CNN-
based methods [23], [24], on the other hand, encode and
convert skeletal data into pseudo-images to exploit the ex-
cellent image information processing capability of CNNs. In
contrast, in recent years, GCN-based methods [11], [25] have
begun to explore the human skeletal architecture and refine
the linkage relationships of bones and joints into graphical
structures. Compared with the sequence information of
RNNs and the pseudo-images of CNNs, the graphs utilized
by GCNs are more consistent with the topological structure
of the human body and better represent the dependencies
between skeletal data.

Although skeleton-based action recognition techniques
are becoming more and more mature, the quality of skeletal
data still limits these methods in practical applications,
and pose estimation methods often perform poorly in the
face of scenarios such as occlusion and motion blur. To
solve the anomaly problem of using a single skeletal data
modality, our STCF captures motion information before
and after anomalies using optical flow estimation and cor-
rects anomalous skeletal data by using the consistency and
complementarity of motion information between multiple
modalities to obtain high-quality skeletal data for skeletal-
based action recognition and evaluation studies.

2.2 Human Keypoint Detection

Human keypoint detection from images or videos, also
known as pose estimation, has been an important task in
computer vision. Since many large-scale pose estimation
benchmarks contain only image information, such as COCO
[26], MPII [27], etc., a large amount of pose estimation work
[28], [29], [30] is performed mainly on single-frame images,
and these methods can only estimate frame-by-frame when
processing video and often perform poorly in the face of
occlusion and motion blur scenes common to video. In
recent years, more promising results have been obtained
by modeling temporal features based on video-based pose
estimation to learn and exploit the temporal information of
videos. In particular, Song et al. [31] proposed structured
models for end-to-end training of human poses in videos.
Luo et al. [32] combined long short-term memory (LSTM)
and convolutional pose machine (CPM) [33] for rewriting
multi-stage CNN to RNN using shared weights to extract
pose spatial-temporal features to improve video processing
speed and pose estimation quality. Nie et al. [34] introduced
a lightweight distiller to transfer pose information between
continuous frames using temporal features of the previous
frame to guide the next frame. Recently, more relevant
to our study, Dang et al. [35] designed lightweight plug-
ins to model joint relationships to learn joint correlations,
combining temporal dynamics to transfer pose semantic
features from non-occluded frames to occluded frames.

However, the utilization of temporal features by existing
methods is often limited to one frame before and after to
directly help localize the current frame. While we find that
anomalies such as occlusion and motion blur often lead to
inaccurate pose estimation in multiple continuous frames
in human behavior, especially in complex motion scenes
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Fig. 3. Block diagram of DanceFix. The input video sequence is pre-processed to estimate the initial pose and perform anomalous skeletal data
detection, and the PFTD module extracts part-level motion information to assist in the search for credible spatial-temporal context information.
Then, the STCF module is used to correct the abnormal skeletal data based on the spatial-temporal context optical flow information, and finally to
complete the dance movement neatness assessment.

such as dance and sports competition. For this reason, our
method expands the field of view for extracting spatial-
temporal features, excludes unreliable spatial-temporal fea-
tures, and uses optical flow estimation to capture motion
consistency to correct anomalous skeletal data.

2.3 Multiple Object Tracking

Multiple object tracking (MOT) has great market potential
and academic value and has been widely interested by
researchers. The classical MOT approach is based on target
detection and data association (TBD), using a target detector
to detect target bounding boxes frame by frame and a
specific data association approach to identify the target iden-
tity. Bewley et al. [36] combined the Kalman filter and the
Hungarian algorithm to propose a crude but effective MOT
framework. Zhou et al. [37] used the detection results of
previous frames to estimate the motion of the current frame
and established tracking links for continuous frames based
on the center position offsets. Zhang et al. [38] retain low-
score detection frames to remove background interference
and effectively track difficult targets such as occlusion and
motion blur. On the other hand, some JDE framework meth-
ods [39], [40] use a unified model to link target detection
and tracking to improve tracking efficiency. In addition,
some recent methods [41], [42] try to apply the Transformer
to the tracking task. The ever-advancing MOT techniques
effectively create target trajectory tracking sequences that
can provide information about human motion for tasks,
such as action recognition and evaluation.

In this paper, we want to track dancers’ motion trajecto-
ries to assist in correct abnormal skeletal data. However, all
these MOT methods only track the whole body or head of
the target, which is less applicable to scenarios with complex
limb movements such as dance, sports. For this reason, we
train a human part-level tracker based on the MOT task to

track human parts at a finer level and capture the differences
in the motion properties of each part.

3 METHOD

As shown in Fig. 3, our proposed dance neatness eval-
uation method DanceFix can be divided into three parts:
initial pose preprocessing module, part-level motion feature
extraction based on task decoupling module (PFTD), and
bidirectional spatial-temporal context optical flow correc-
tion module (STCF). We first preprocess the video sequence
for pose extraction to obtain the initial pose sequence and
detect the abnormal skeletal data. We then input the de-
tected abnormal frames into the spatial-temporal informa-
tion detector to obtain the spatial-temporal context motion
information on its pre- and post-temporal sequences. Mean-
while, we input the video sequence into PFTD to extract the
limb-level motion information and fuse it with the spatial-
temporal motion information to obtain more accurate skele-
tal candidate regions. Then, we obtain the optical flow
motion information corresponding to the spatial-temporal
context information. Finally, the optical flow information
is used to correct within the skeletal candidate regions
to obtain more accurate skeletal information for motion
neatness assessment.

3.1 Bidirectional Spatial-Temporal Context Optical
Flow Correction

In the research of skeletal-based action recognition, anoma-
lies such as occlusion and motion blur lead to undetectable
skeletal data and low detection accuracy, which greatly
limits the upper limit of related research and practical
applications. To improve the credibility of skeletal data, we
propose bidirectional spatial-temporal context optical flow
correction (STCF) for anomalous skeletal data.
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For an input video sequence Iv , assume that it includes

N frames, i.e. Iv =
N∑
t=1

It, It ∈ H×W×3. First, we generate

the initial pose using a pre-trained human pose estimator for
the input video sequence. Then, anomaly detection is per-
formed on the initial pose. Specifically, we consider the low
confidence or the large variance in the confidence sequence
of the human body in the initial pose information, and the
large instantaneous motion rate of the skeleton between two
continuous frames as anomalous skeletal information that
needs to be corrected. We summarize this process as follows:

At =
∑
k

pkt =D(E(It)) (1)

where At denotes the set of abnormal skeletal data in the
detected abnormal frame It, pkt denotes the kth abnormal
skeletal point in the video frame It, and E(·),D(·) are the
human pose estimation and abnormality detection.

Since human motion has a certain degree of continuity
and stability in a very short period, motion information
within a time sequence in the vicinity of a frame is often
related to the motion information of that frame, and many
researchers have demonstrated the value of using temporal
information [25], [35]. However, these researchers tend to
utilize only the information of two continuous frames, while
the current various keypoint detection algorithms often
encounter anomalies in the detection of several continuous
frames, even if only one frame appears to be anomalies.
In practice, such continuous anomalous frames are more
common since dance and sports are with more intense
movements and complex changes in human behaviors. In
this case, the skeletal information of the continuous before
and after frames is often not credible, and the use of this
information is not conducive to our anomaly correction.
Therefore, for abnormal video frames, we extend our vision
to detect anomalies frame by frame within a certain number
of frames, exclude abnormal skeletal data until we find
the nearest credible pre-sequence frame and post-sequence
frame, and extract the past and future information of this
motion.

Next, we extract the corresponding spatial-temporal con-
text optical flow information between the credible before
and after frames to the abnormal frames in order and
reverse order, respectively. We then fuse the credible skeletal
information of the before and after frames with the optical
flow motion information, and extract their motion consis-
tency. To improve the accuracy of the dance movement
neatness assessment, we correct the skeletal point space
information based on the pre-sequence frames and post-
sequence frames and realize the recovery of the skeletal data
of the current abnormal frame. Specifically, for the skeletal
points pi in the pre-sequence frames, we introduce the

forward optical flow information
→
f i between this frame and

the next frame, and use the motion consistency to calculate
the skeletal points pi+1 in the next frame and use it as the
input for the next calculation, and execute the calculation
in order until the abnormal skeletal data is corrected. In
this case, we start with the credible skeletal points pfront
of the initial pre-process frame. In the other direction, we
start from pback to perform the inverse order correction
on the motion information of post-sequence frames, and

finally, fuse the order and reverse order correction results.
In the case of extreme anomalies, we can only obtain a
single credible pre-sequence or post-sequence information,
and we make corrections based on this single information.
The overall process is shown in Fig. 4, and we formalize the
process as follows:

→
ct =

t−1∑
i=front

→
STCF

(
pi,
→
f i, pi+1

)
(2)

←
ct =

t+1∑
i=back

←
STCF

(
pi,
←
f i, pi−1

)
(3)

ct = F
(
→
ct,
←
ct

)
(4)

where,
→
ct and

←
ct are the order and reverse order optical

flow corrections for anomalous skeletal data pt, respectively,
F (·) is the correction fusion operations to obtain the final
correction results ct.

Spatial graphSpatial graph

Fig. 4. Block diagram of bidirectional spatial-temporal context optical
flow correction (STCF).

3.2 Part-level Motion Feature Extraction Based on Task
Decoupling

The human body has a flexible articulated structure. Each
body part can independently carry out different move-
ments, which is the beauty of human movement. However,
this property also leads to inconsistencies in the motion of
the human body parts, with some parts having complex
and fast movements and some parts having slow and calm
movements. If all parts are treated in the same way, the dif-
ferential information from local movements will be ignored.
Therefore, we believe that we can make full use of this
characteristic of each part and propose a part-level motion
feature extraction based on task decoupling (PFTD). PFTD
decouples the human body into individual parts based on
the idea of task decoupling, and performs “instance-level”
part detection and tracking of the human body to extract the
body part-level motion information.

Although an “instance-level” human body part anno-
tation dataset has been proposed in the research [15], it
only focuses on the head, palms, and feet, and is not
applicable to dance scenes with complex motion changes
in various human body parts. To detect and track the
dance movements in a more targeted way, we consider
the common motion properties of human limbs based on
dance movements. Since in many dance processes, dancers
in groups often communicate with each other or with the
audience in terms of eye contact and look conveys. The
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demand for neatness of the head is not high, so the head
factor is excluded. Thus, we divide the human body into
five parts: left and right hands, left and right legs, and
torso. Although the dance neatness assessment algorithm
introduced in Section 3.3 only calculates the neatness of
each dancer’s hands and legs, and the torso information
is not directly involved in the assessment work. The self-
masking and non-intentional alignment design of external
masking in real dance scenes do not lead to the invisibility
of the dancer’s whole body, but present as the successive
disappearance and reproduction of various body parts. The
torso, as the center of the body, plays an important role in
bridging various body parts and the re-identification of each
part after the reappearance of the occlusion, and effectively
improves the length and credibility of the tracking sequence
of each part, so we also label the torso. After that, we build
a part-level dance movement dataset (Dancer Parts) based
on five limb parts, which includes a variety of dance types,
scenes, variations, and other rich dance information (Fig.
5). Then, we train and validate our PFTD on this dataset,
which first performs part-level detection for each dancer in
the input video sequence, extracts the spatial information of
each part, and tracks them. The obtained tracking sequence
effectively preserves the spatial-temporal motion informa-
tion of each part, which can provide candidate regions and
motion changes reference information for several skeletal
points involved in that part.

Left-hand Right-hand Left-leg Right-leg TorsoLeft-hand Right-hand Left-leg Right-leg Torso

Fig. 5. An example of Dancer Parts dataset. We label the five parts of
the body: left and right hands, left and right legs, and torso.

In addition, we find that the abnormal frame detec-
tion process of STCF still relies on the detection results
of the keypoint detection algorithm, and the skeletal data
in the temporal sequence near the abnormal frames are
often unsatisfactory. Therefore, we use the part-level spatial-
temporal tracking information obtained by PFTD to verify
spatial location information and motion changes of the
skeletal data of each limb of the dancer. We use the can-
didate regions obtained by PFTD to initially screen the
skeletal points of the limb. And we further screen from
them to find the skeletal points that are consistent with
the overall motion change trend of the limb and match
the relative movement of the articulated limb as credible
spatial-temporal information, and the rest are regarded as
incredible. The experiments prove that the incorporation
of PFTD can eliminate the misjudgment caused by the

incredible skeletal data, and make the correction effect of
STCF sufficiently improved.

3.3 Dance neatness assessment
The modules proposed in this paper are ultimately dedi-
cated to correcting abnormal skeletal data to achieve a valid
and accurate neatness assessment of group dance, using a
machine to provide an objective assessment of the move-
ments. To this end, we propose a dance neatness assessment
algorithm based on the extracted skeletal data. The algo-
rithm comprehensively evaluates the motion, deformation
process, and interconnection of human body parts during
movement. And it acquires static features of each frame in
the input video, deconstructs the human body into coarse-
grained limb features and fine-grained joint features, and
calculates the similarity of limb features based on cosine
similarity and joint features based on a distance metric.
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Fig. 6. An example of 2D poses of the human body numbering. We de-
note the human skeletal points as P = {0, 1, · · · , 14}, each limb as vec-
tor vpi1 ,pi2

, where pi1 ,pi2 ∈ P , each joint angle as θ = {1, 2, · · · , 6},
and split the body part into the left hand, right hand, left leg and right leg
subsets, i.e. Pl−h,Pr−h,Pl−l and Pr−l.

As shown in Fig. 6, we number the 2D poses of the
human body to describe the semantic features of each layer
of the target. We first extract the limb-level features and
split the human limb parts into eight limbs: left forearm,
left upper arm, right forearm, right upper arm, left thigh,
left calf, right thigh, and right calf. After that, we link the
two skeletal points involved in each limb part to form the
limb feature vector vpi1

,pi2
, where pi1 ,pi2 are the corre-

sponding two skeletal points. The cosine similarity of the
same limb feature vector among the dancers is calculated,
and the higher the cosine similarity the closer the limbs
are to parallel, and the more neatly the dancers move. This
method effectively assesses movement neatness from limb-
level characteristics, but each person has different degrees of
limb coordination and each limb part has different degrees
of ease of movement, with the thighs and upper arms
easily achieving neatness, while the more flexible calf and
forearms often have subtle differences. Considering only
the limb-level characteristics tends to ignore these subtle
differences and achieve a high degree of neatness, which
is the challenge of neatness assessment and the dilemma
that realistic group dance is difficult to achieve complete
neatness. Therefore, we extract more fine-grained joint angle
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features, numbering the body joints commonly used in
sports, and each joint angle is denoted by θ = {1, 2, · · · , 6},
representing left elbow angle, left shoulder angle, right
elbow angle, right shoulder angle, left knee angle, and right
knee angle, respectively. We normalize the joint angle values
and use the L1 distance to calculate the degree of difference
in the same joint angle feature among the dancers, measur-
ing the characteristic distance: the smaller the distance, the
neater the movement. Each joint angle is the angle between
two limbs, and this method is based on the neatness of the
relevant limb for a finer level of assessment, which amplifies
the subtle differences and is more meaningful for the study
of neatness assessment. With these two algorithms, the
information from two grainy features of the human body
is fused, and the correlation and neatness of limb and joint
motion information are analyzed comprehensively. For a
group dance with a number M, we formalize the neatness
assessment in one frame as follows:

Slimbs (i1, i2) =
1

L

L∑
l=1

vi1l · vi2l∣∣vi1l ∣∣× ∣∣vi2l ∣∣ (5)

Sjoints (i1, i2) =
1

J

√√√√ J∑
j=1

(
1

1 + θi1j
− 1

1 + θi2j

)2

(6)

NS =
1

M

∑
i1,i2∈M

(
λ1Slimbs (i1, i2) + λ2Sjoints (i1, i2)

)
(7)

Where L and J are the number of limbs and joints, we set
L = 8 and J = 6, i1,i2 are two different dancers, vi1l and vi2l
are the lth limb vectors of the two dancers, θi1j and θi2j are the
jth joint angles of the two dancers, λ1,λ2 are the weights of
limb neatness Slimbs and joint neatness Sjoints, respectively,
and NS is the overall neatness score of the group.

Synthesizing

virtual dataset

Synthesizing

real-world dataset

Fig. 7. Fully neat virtual dance movement dataset (DNV) generation
method. Generate virtual and real-world datasets.

To validate the effectiveness of our neatness assessment
method on credible data with quantitative metrics, we pro-
pose a DNV dataset based on the idea of motion synthesis
[43], [44] to simulate a fully neat dance scenario. As shown
in Fig. 7, we use individual virtual dance moves gener-
ated by, e.g., dance generation algorithms, games, software
tools, etc., to be parsed and replicated, and reconstructed
into virtual group dance moves, and further, we can also
generate real group dances using real individual dances.
In terms of both theoretical and practical validation, the
new dance movement datasets generated are 100% neat,

allowing for quantitative criteria of dance assessment, facil-
itating research in the field, and validating the accuracy and
reliability of our neatness assessment method. To the best of
our knowledge, this is the first work to develop quantitative
criteria for dance neatness assessment.

4 EXPERIMENTS

In this section, we conduct extensive experiments on exist-
ing keypoint detection algorithms to verify the effectiveness
of our proposed STCF and PFTD and perform comprehen-
sive ablation experiments to explore the best methods and
results for each part of the framework.

4.1 Datasets and evaluation metrics
We present our collected DNV dataset and Dancer Parts
dataset in this section, where we validate the feasibility
of our STCF and PFTD. In addition, we further validate
our DanceFix on the publicly available video-based dataset
JHMDB [45]. We show the content parameters of the three
datasets in Table 1.

TABLE 1
Content parameters for DNV, Dancer Parts, and JHMDB datasets.

Name FPS Resolution Clips Min
Length

Max
Length

Total
Length Boxes

DNV 30 1280×720 50 60 300 5,300 238
Dancer Parts 30 1920×1080 65 103 1,562 13,666 1,190

JHMDB 15-40 320×240 928 15 40 31,838 928

4.1.1 Dancing-Neatly-in-Virtual Dataset
To define a uniform metric for neatness assessment and
to validate the feasibility of our method in a fully neat
environment, we extract dance information from common
individual dance scenes, replicate and reconstruct them as
group dances and collect them as a DNV dataset. The
DNV dataset consists of the following: 50 group dance
video sequences with different dance movements (25 virtual
characters, 25 real characters), all dancers are fully visible
and move neatly and consistently, with no background
information, and a frame rate of 30 FPS.

The dance movements in this dataset conform to real
dance common sense, and the movements are continuous
and reproducible. The virtual individual dances come from
dance games, avatar generation tools, etc. The real individ-
ual dances come from YouTube green screen dance videos
and are reconstructed into group dances using video editing
tools in unison. The virtual dancers conform to the body
structure of real dancers and can extend the application
scenarios of the dataset, which is meaningful for the study
of application scenarios such as action recognition, keypoint
detection, and other vision fields in games and virtual real-
ity. To better represent the effect of anomalous skeletal data
correction on a small base, we limited these video sequences
to a small frame range with an average frame number of
70 frames. In addition, these group dances have multiple
number sizes ranging from 2-7 people and no masking,
which is to provide a complete 100% neat dataset to verify
the feasibility of the neatness assessment method and the
effectiveness of the correction method. Specifically, we also
use random masking for this dataset to generate specific

Page 7 of 17

For Peer Review Only

Transactions on Visualization and Computer Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

masking sub-datasets to simulate anomalous scenarios in
dances, which facilitates the verification and improves the
performance of DanceFix for anomalous cases.

4.1.2 Dancer Parts Dataset
To make full use of the limb part hierarchical motion in-
formation and solve the problem of non-uniform motion
properties of each part, we collected a new dataset from
YouTube, bilibili, and other video websites. The basic infor-
mation of this dataset is as follows: 65 different group dance
video sequences, 50 for the training set and 15 for the test
set, labeled with the position information of detection boxes
and the tracking sequence for each dancer’s left hand, right
hand, left leg, right leg, and torso, with a video resolution
of 1920×1080 and a frame rate of 30 FPS.

The dataset follows the standard of the multiple object
tracking dataset MOT20 [46] for labeling each part of the
dancer, providing the spatial location information and video
sequence tracking information of each part. To include more
dance scenes for better generalization of our method, we
intercept only a small segment of each dance video and
ensure that it contains at least one continuous segment of
normal dance movements that match the realistic dance
scenes. To make the dataset balanced, we have male, fe-
male, mixed and children, adults, and elders by crowd
categories, Chinese classical dance, Korean dance, European
and American dance, radio gymnastics, square dance, and
fitness gymnastics by dance type, normal unmasking, cam-
era edge masking, dancer self-masking, external masking,
and motion blur by abnormal scenes, and camera fixed
dancer moving and dancer fixed camera moving by moving
situation. The dataset has different costumes, lighting, and
backgrounds, and contains rich information on dance types,
balanced crowd categories, complex dance scenes, and suf-
ficient abnormal information.

4.1.3 JHMDB
JHMDB [45] is one of the most commonly used datasets for
video-based human pose estimation and contains a total of
928 video clips, labeling information for 15 skeletal points
of the human body with 21 action categories. The dataset
possesses a subset division (Sub-JHMDB) where all skeletal
points of the whole body are visible in the video, with a
total of 316 video clips. In addition, the dataset is divided
into three different training and testing subsets, with a ratio
of approximately 3:1 between the amount of training and
testing. To facilitate comparison with previous work [33],
[47], we evaluate our method in these three subset divisions
and report the average results.

4.1.4 Evaluation indicators
To test the results of the dance neatness assessment and the
effect of abnormal skeletal point correction in this paper,
we use the neatness score (NS, introduced in Section 3.3)
as our metric (i.e., the comprehensive neatness of each limb
and joint between dancers). We validate the correction effect
on the human body parts by calculating the NS of the left
hand, right hand, left leg, and right leg using the limbs and
joints involved in them, and calculate the overall NS of the
whole body. In addition, we validate our migration ability
for abnormal skeletal data correction on the JHMDB using

the PCK [48] metric. For the evaluation of the information
extraction effect of PFTD tracking sequences, we use the
multiple object tracking accuracy (MOTA), the number of
identity switches (IDS), identification F1 score (IDF1), and
other related metrics, which are common and important in
the field of MOT and can effectively evaluate the tracking
performance.

4.2 Ablation experiments
In this section, we perform extensive experiments to eval-
uate the performance of the proposed STCF and PFTD
and study the ablation experiments for different parts of
the module chosen to obtain the best results and confirm
the final overall framework. We perform the ablation ex-
periments using AlphaPose [28] as the keypoint detection
backbone. Although AlphaPose is an early pose estimation
algorithm, its still competitive detection accuracy and the
advantages of stable operation and high open-source qual-
ity make it has been widely used in application scenarios
related to posing estimation. On the experimental side, cor-
recting a non-optimal initial pose sequence helps DanceFix
to better investigate the challenges in dance scenarios and
improve the performance of the method.

4.2.1 Ablation experiment of STCF module
We conduct experiments on 10 video sequences of real
human scenes randomly selected from the DNV dataset
and average the results. We compare the STCF module with
the common methods of correcting skeletal data. As shown
in the Real-world Dataset of Table 2, compared with the
methods of directly replacing the abnormal frame skeletal
data with the credible temporal frames (denoted as Replace)
and calculating the abnormal frame skeletal data based on
the movement speed of the skeletal points in the temporal
frames (denoted as Line Speed), our STCF is more effective
in correcting the abnormal skeletal data of the dancer parts,
achieving an NS increasing by 8.38% of the whole body
compared with the original skeletal data of AlphaPose. This
shows that the optical flow motion information has motion
consistency with the skeletal data, and using the comple-
mentarity of the two modalities is beneficial to correct the
abnormal skeletal data and improve the pose estimation
accuracy.

4.2.2 Ablation experiments of the PFTD module
The PFTD module trains a part-level tracker in our proposed
Dancer Parts dataset, and we show its Loss and AP curve
on the train set in Fig. 8 and its performance metrics on
the test set in Table 3. Important metrics such as MOTA,
IDS, and IDF1 achieve state-of-the-art results in the MOT
domain, which indicates that our PFTD can effectively
extract dancers’ limb-level motion tracking sequences in
dance scenes. To investigate the effect of the incorporation
of the PFTD module on the correction results, we conduct
experiments with the PFTD module for all three correction
methods, denoted as Replace+PFTD, Line Speed+PFTD, and
STCF+PFTD, respectively. The experimental results on Real-
world Dataset in Table 2 show that the incorporation of the
PFTD module improves the whole-body NS of the three
methods by 1.09%, 0.34%, and 1.06%, respectively, which
indicates that the motion tracking information of each body
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TABLE 2
Ablation experiments with STCF and PFTD modules for the NS(%)↑ metric on DNV’s Real-world Dataset and Virtual Dataset.

Real-world Dataset Virtual Dataset

Methods Left-hand Right-hand Left-leg Right-leg All-body Left-hand Right-hand Left-leg Right-leg All-body

AlphaPose [28] 95.34 84.41 89.59 96.50 85.74 94.94 93.82 99.36 98.33 94.39
Replace 95.04 90.39 95.36 98.81 91.48 95.43 95.07 99.47 98.41 94.97

Replace + PFTD 97.74 89.17 95.36 98.82 92.57 95.53 95.11 99.48 98.41 95.00
Line Speed 95.15 90.09 95.36 98.82 91.88 95.44 94.90 99.44 98.41 94.89

Line Speed + PFTD 97.40 89.53 95.37 98.82 92.22 95.51 94.95 99.45 98.41 94.92
Ours(STCF) 95.03 92.22 95.36 98.83 93.19 95.66 94.99 99.48 98.40 95.02

Ours(STCF+PFTD) 97.71 92.80 95.36 98.83 94.25 95.69 95.00 99.48 98.42 95.02

part extracted by PFTD facilitates the acquisition of more
credible before-and-after temporal frames, and that hier-
archical motion information can identify credible skeletal
point candidate regions. In addition, the NS of each limb
part of the original skeletal data has obvious differences,
which is a challenge brought by the non-uniform motion
properties of each body part. Our method extracts the
hierarchical motion features of each part, matches the part
motion trajectories, and targets local corrections, which im-
prove the NS of the left hand, right hand, left leg, and right
leg by 2.37%, 8.39%, 5.77%, and 2.33%, respectively. The
comprehensive correction of whole-body skeletal point data
improved by 8.51% over the original data, which proved the
effectiveness of our PFTD.

(a) (b)

Fig. 8. The Loss curve(a) and AP curve(b) of the part-level tracker on
the Dancer Parts train set.

TABLE 3
The part-level tracker performance on the Dancer Parts test set.

Test data Objects MOTA↑ IDF1↑ IDs↓ MT↑ ML↓ FP↓ FN↓

Dancer Parts-51 4,375 86.2 83.4 29 96.0 0.0 269 302
Dancer Parts-52 2,950 76.9 83.4 7 68.0 0.0 300 375
Dancer Parts-53 1,090 64.0 76.9 11 60.0 0.0 147 234
Dancer Parts-54 1,200 76.6 82.0 4 60.0 0.0 82 195
Dancer Parts-55 3,270 82.9 85.6 13 66.7 0.0 232 314
Dancer Parts-56 3,900 93.4 94.0 12 100.0 0.0 101 139
Dancer Parts-57 3,400 92.2 92.8 6 100.0 0.0 111 148
Dancer Parts-58 2,620 58.2 67.7 50 60.0 0.0 350 694
Dancer Parts-59 4,875 83.2 78.1 33 88.0 0.0 374 415
Dancer Parts-60 2,640 73.7 80.2 17 60.0 0.0 253 426
Dancer Parts-61 1,230 83.7 90.0 2 80.0 0.0 68 130
Dancer Parts-62 3,690 71.2 48.2 50 60.0 0.0 370 644
Dancer Parts-63 1,890 64.9 63.8 48 60.0 0.0 240 378
Dancer Parts-64 3,645 68.9 48.2 43 60.0 0.0 420 470
Dancer Parts-65 4,525 68.4 69.8 32 60.0 0.0 551 846

OVERALL 45,300 77.6 75.8 357 73.8 0.0 4,021 6,241

4.2.3 Ablation experiments for a completely neat virtual
dance dataset

To explore the connection and difference between reality
and virtual, we conduct ablation experiments on two parts
of DNV datasets built based on virtual and real characters.

In Table 2, we can see that each method works better on
the real character dataset than on the virtual dataset. The
possible reason is that both the keypoint detection algorithm
and PFTD are trained on the real person dataset, which are
more accurate in detecting key points for real people and
provides more credible temporal skeletal information. On
the other hand, DanceFix also achieves good results on vir-
tual datasets and demonstrates the feasibility of integration
of this field with scenes such as VR and dance sports games,
which also shows that our method is equally effective in
virtual scenes.

4.2.4 Ablation experiments of neatness assessment meth-
ods

As shown in Table 4, we investigate whether the neatness
assessment method used in this paper is reasonable. We con-
duct experiments using the full DanceFix (i.e., STCF+PFTD)
on a fully neat real dance dataset, calculating cosine sim-
ilarity for limb vectors and distance differences for joint
angles. The experimental results show that limb neatness
tends to present higher than joint neatness, probably be-
cause some body parts (e.g., upper arms, thighs) can easily
reach neatness and make the cosine similarity reach higher
values, while the differences in the remaining parts have
more influence on the joint angle differences than the limb
cosine similarity. It is a challenge to uncover and evalu-
ate the subtle movement differences between dancers, and
combining the results of both limb and joint neatness can
provide a more valuable result for evaluation.

TABLE 4
Ablation experiments with different dance movement neatness

assessment algorithms on the NS(%)↑ metric on the DNV dataset.

Methods Left-hand Right-hand Left-leg Right-leg All-body

Limb neatness 97.86 94.28 99.96 99.97 98.02
Joint neatness 97.56 91.32 90.77 97.69 90.48
Avg neatness 97.71 92.80 95.36 98.83 94.25

4.2.5 Ablation experiment of correction range
In this subsection, we explore the effect of different ranges of
abnormal skeletal point definitions on the correction effect.
We denote the existence of high variance for the skeletal
points confidence sequence of the dancer as HV and the
low confidence of the skeletal points as LC. HV+LC means
that dancers with high variance sequences correct only the
skeletal points with low confidence. All Points means that
all the skeletal points of the dancer are corrected for each
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frame, and PFTD means that all the skeletal points that do
not match the part-level motion properties are corrected.
The results in Table 5 show that low-confidence skeletal
points tend to be anomalous, and LC improves the whole-
body NS by 3.06% over LV+LC. In addition, the whole-
body NS of All Points is further improved, which indicates
that the skeletal points obtained based on the keypoint
detection algorithm cannot rely solely on their confidence
to determine whether they are abnormal or not, and there
are often more abnormal skeletal points judged to be of
high confidence. For this reason, we use the PFTD module
to decouple the human motion information by each part,
match all skeletal points with part-level motion properties,
correct the skeletal points that failed to be matched, and
finally achieve the best correction effect.

TABLE 5
Ablation experiments for different ranges of corrections and ranges of
temporal information on the NS(%)↑ metric on the DNV dataset. Rows
and columns represent different ranges of corrections and ranges of

temporal information, respectively.

Methods 4 frames 6 frames 8 frames 10 frames All frames

LV 87.09 87.10 87.12 87.13 86.95
LC 88.94 88.26 87.95 88.40 89.83

LV + LC 86.38 87.11 87.15 86.93 86.77
All Points 92.43 92.54 92.76 92.67 91.51

PFTD 92.45 93.48 92.94 93.49 94.25

4.2.6 Ablation experiments of the range of temporal infor-
mation

We conduct ablation experiments on the credible range of
temporal information, using 4 frames, 6 frames, 8 frames, 10
frames, and all frames as the credible range for correction.
The results are recorded in Table 5. We can see that it is
difficult to identify a uniform range of temporal information
that can be utilized for different correction ranges, but after
using our PFTD to filter the temporal frames matching the
part-level motion properties, the confidence of temporal
frames is significantly improved, and the best correction
results are achieved using the full range of frames.

4.2.7 Ablation experiments of different optical flow estima-
tion backbones

Optical flow motion information is one of the most impor-
tant pieces of information in this paper, and to investigate
the effect of the optical flow network on the final correction
performance, we conduct ablation experiments on five dif-
ferent optical flow estimation backbones, FlowFormer [49],
GMA [50], GMFlowNet [51], RAFT [52], and FlowNet2 [53],
and the experimental results are given in Table 6. Flow-
Former achieves the best results when performing optical
flow estimation in the group dance scenario in this paper.

4.3 Results and comparison
4.3.1 Correction effects on state-of-the-art methods
We report the correct results after applying our method
to state-of-the-art human pose estimation methods. On the
same representative device environment (a Tesla V100, Py-
Torch 1.8.0), we use the open source code and pre-trained
models of these state-of-the-art methods to obtain their pose

TABLE 6
Ablation experiments with different optical flow estimation backbones

on the NS(%)↑ metric on the DNV dataset.

Methods Left-hand Right-hand Left-leg Right-leg All-body

FlowFormer 97.71 92.80 95.36 98.83 94.25
GMA 97.23 92.68 95.36 98.83 93.85

GMFlowNet 96.57 89.53 94.18 99.96 93.76
RAFT 97.32 92.57 95.36 98.82 93.89

FlowNet2 96.59 91.35 94.22 98.82 91.60

detection results and obtain the initial dance movement
neatness based on the pose sequence. We then use our
method to detect and correct the initial skeletal sequence for
abnormal skeletal data and show the experimental results
in Table 7. The table has several blocks, and we list the
initial dance movement neatness of all algorithms in the first
row of each block, and the second row shows the correction
effect of the algorithm after adding our method. We can
see that our method has a good correction effect on each of
the algorithms, with an average increase of 3.34% in whole-
body NS. It is worth noting that there are cases of mediocre
corrections for single body parts, possibly because each
pose estimation algorithm has different detection effects
on various parts of the body, and some of the initial pose
sequences provide part-level skeletal data that are poorly
detected.

TABLE 7
Comparison of the correction effect of applying DanceFix to the latest

pose estimation algorithm on the NS(%)↑ metric.

Methods Left-hand Right-hand Left-leg Right-leg All-body

AlphaPose [28] 95.34 84.41 89.59 96.50 85.74
+DanceFix(Ours) 97.71 92.80 95.36 98.83 94.25

Hrnet [54] 94.94 93.45 91.65 92.90 89.56
+DanceFix(Ours) 94.33 94.02 93.93 95.18 91.77

UDP [55] 94.92 96.86 94.23 97.69 90.58
+DanceFix(Ours) 96.88 97.51 94.23 97.69 92.24

DEKR [56] 97.13 93.10 87.31 95.38 88.70
+DanceFix(Ours) 97.57 93.01 93.07 96.53 91.30

LiteHrnet [29] 97.79 95.90 94.22 95.38 92.90
+DanceFix(Ours) 97.68 96.93 96.53 97.68 96.26

DarkPose [30] 97.16 95.50 96.54 100.00 91.39
+DanceFix(Ours) 96.92 96.16 96.54 100.00 92.39

PVT [57] 93.92 84.71 93.06 99.98 87.41
+DanceFix(Ours) 96.14 88.71 96.52 99.99 94.50

PVT2 [58] 94.54 96.77 95.36 99.98 92.58
+DanceFix(Ours) 94.42 96.41 96.52 99.99 94.37

RSN [59] 95.35 93.17 89.60 97.67 87.36
+DanceFix(Ours) 96.08 94.13 95.37 98.83 91.64

Scnet [60] 97.37 95.47 94.22 96.53 91.71
+DanceFix(Ours) 97.37 95.58 95.38 97.68 92.61

4.3.2 Effectiveness comparison on public datasets
We further validate the effectiveness and migration capabil-
ities of our methods on the video-based JHMDB dataset. We
perform a modification based on SimpleBaseline2D (SBL)
[47] and CPM [33]. For an accurate and efficient comparison,
we perform initial pose estimation using pre-trained models
based on three split subsets of these methods. We evaluate
the impact of different detectors based on a comparison
of Faster R-CNN [61] and Yolov3 [62]. In addition, we
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find that the PCK normalized by person size seems to be
saturated, and using the classical PCK normalized by torso
size [48] can better demonstrate the effectiveness of the
method. We took a threshold value of 0.2 for reporting,
i.e., PCK@0.2. As shown in Table 8, our method achieves
good corrections with both different target detectors, and
STCF improved on average by 2.60% after correction on
SBL and 1.62% on average compared to CPM. And with the
addition of the PFTD module (STCF+PFTD), we achieved
an average improvement of 5.69% and 8.47% on SBL and
CPM, respectively.

TABLE 8
Comparison of the correction effect of applying DanceFix to SBL and

CPM on the JHMDB dataset on the PCK@0.2 metric.

PCK@0.2↑

Methods Sub1 Sub2 Sub3 Avg

Detector:Faster R-CNN [61]

SBL [47] 74.74 67.14 75.70 72.53
+Ours(STCF) 77.09(↑2.35) 70.09(↑2.95) 78.24(↑2.54) 75.14(↑2.61)
+Ours(STCF+PFTD) 79.06(↑4.32) 74.06(↑6.92) 80.67(↑4.97) 77.93(↑5.40)

CPM [33] 59.19 52.78 61.67 57.88
+Ours(STCF) 61.09(↑1.90) 54.35(↑1.57) 63.29(↑1.62) 59.58(↑1.70)
+Ours(STCF+PFTD) 67.71(↑8.52) 61.83(↑9.05) 69.54(↑7.87) 66.36(↑8.48)

Detector:Yolov3 [42]

SBL [47] 74.84 65.62 74.53 71.66
+Ours(STCF) 74.42(↑2.58) 68.50(↑2.88) 76.80(↑2.27) 74.24(↑2.58)
+Ours(STCF+PFTD) 79.80(↑4.96) 73.22(↑7.70) 79.79(↑5.26) 77.64(↑5.97)

CPM [33] 59.03 52.67 61.04 57.58
+Ours(STCF) 60.72(↑1.69) 54.4(↑1.37) 62.58(↑1.54) 59.11(↑1.53)
+Ours(STCF+PFTD) 67.83(↑8.80) 61.51(↑8.87) 68.73(↑7.69) 66.03(↑8.45)

PC
K
@
0.
2/
%

Correction	effect	of	each	joint	part

76.12​76.12

68.22​68.22
65.15​65.15

76.2​76.2
73.74​73.74 75.73​75.73

4.46​4.46

6.72​6.72

5.32​5.32

5.57​5.57
6.27​6.27 4.13​4.13

74.96​74.96

67.35​67.35
63.95​63.95

76.48​76.48
73.22​73.22 74.04​74.04

4.85​4.85

7.18​7.18

5.84​5.84

5.41​5.41
7.15​7.15 5.4​5.4

64.41​64.41

52.11​52.11
49.29​49.29

64.83​64.83

57.73​57.73 58.9​58.9

7.72​7.72

7.77​7.77

6.52​6.52

8.94​8.94

10.48​10.48 9.39​9.39

63.65​63.65

51.76​51.76
48.73​48.73

64.62​64.62

57.94​57.94 58.77​58.77

8.05​8.05

8.61​8.61

7.15​7.15

7.92​7.92

9.72​9.72 9.28​9.28

1.SBL+Faster	R-CNN 1+DanceFix(Ours) 2.SBL+Yolov3 2+DanceFix(Ours)
3.CPM+Faster	R-CNN 3+DanceFix(Ours) 4.CPM+Yolov3 4+DanceFix(Ours)
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45
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75
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Fig. 9. Correction results of the DanceFix on the JHMDB test set of each
joint part. The bottom of each bar shows the initial effect of the original
method, while the top shows the increased effect after adding ours.

In addition, we report the average correction effect across
joints on the JHMDB in Fig. 9. Our method achieves a
more balanced correction effect across joints, with the wrist
tending to be less effective, possibly because the wrist region
is more flexible and more susceptible to motion blur.

4.3.3 Visualizations of correction effect
We show the typical anomaly correction effect of DanceFix
in the dance scene in Fig. 10 and Fig. 11, and the typi-
cal anomaly correction effect of DanceFix on the JHMDB
dataset in Fig. 12. We report our correction effect for abnor-
mal cases, such as occlusion, motion blur, and environmen-
tal influence of the scene. From the visual effects, we can see
that DanceFix can effectively solve the abnormal skeletal

Corrected poseInput poseImage Corrected poseInput poseImage

Fig. 10. Correction results of the DanceFix in the dance scene regarding
the anomalies of self-masking (rows 1-2), external masking (row 3) and
limb-joining (row 4).

Corrected poseInput poseImage Corrected poseInput poseImage

Fig. 11. Correction results of the DanceFix in the dance scene regarding
environmental factors such as hair, costume and background (rows 1-2),
motion blur (row 3) and common errors (row 4).

data in the human pose estimation scene. We show more
visualizations of correction effect in the Appendix.

5 CONCLUSION

In this paper, we focus on exploring the challenges faced in
action recognition and evaluation using dance movement
assessment as an example, aiming to correct inaccurate
skeletal data due to anomalies such as occlusion and motion
blur. To address this important issue, we first propose a
bidirectional spatial-temporal context optical flow correc-
tion module (STCF), which is a new method for correcting
anomalous skeletal data by exploiting the motion consis-
tency and complementarity of the two modalities of optical
flow and skeletal data. To obtain credible spatial-temporal
information, we collect the Dancer Parts dataset and train a
part-level dance movement tracker based on this dataset,
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Corrected poseInput poseImage Corrected poseInput poseImage

Fig. 12. Correction results of the DanceFix on the JHMDB test set
regarding anomalies such as occlusion (rows 1-2), motion blur (row 3),
low light and environmental influence (row 4).

which constitutes a part-level motion feature extraction
based on task decoupling module (PFTD) to extract the
body part-level motion information to obtain more credible
temporal frames. After that, we collect the DNV dataset to
define a unified criterion for automatic quantitative dance
movement assessment to examine the neatness assessment
and correction effects. We conduct extensive experiments on
the proposed modules to find the best correction effect, and
the experimental results show that our DanceFix can flexibly
plug into the latest pose estimation methods and all of them
can efficiently correct abnormal skeletal data and improve
the accuracy. Further, to the best of our knowledge, we are
the first to define automatic quantitative criteria for dance
movement assessment, and we hope that our work will
provide a meaningful and interesting idea for the movement
assessment of dance and sports competitions with a highly
realistic value.
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1  

Supplementary Material 
 

In this supplementary material, we show more visualizations of anomalous skeletal data 
correction effect that could not be included in the main manuscript due to the lack of space. 

✦ 
 

1 VISUALIZATIONS OF CORRECTION EFFECT 

1.1 occlusion 

We show the correction of anomalous skeletal data in the 

occlusion case in Fig. 1and Fig. 2. In this subsection, occlusion 
cases include both self-masking and external masking. 

1.2 motion blur 

We show the correction of anomalous skeletal data in the motion 
blur case in Fig. 3. 

1.3 limb-joining 

We show the correction of anomalous skeletal data in the limb-

joining case in Fig. 3. 
 

 

 
1.4 environmental influence 

We show the correction of anomalous skeletal data in the 

environmental influence case in Fig. 4. Common environ- mental 
influences include hair, clothing, backgrounds, low lighting, etc. 

1.5 common errors 

We show the correction of anomalous skeletal data in the 

common errors case in Fig. 3 and Fig. 4. Common errors refer to 
false detections and missed detections. 

 
Fig. 1: Correction results of the DanceFix in the dance scene regarding the anomalies of occlusion 

cases. The occlusion cases include both external masking (rows 1-2) and self-masking (rows 3-4). 
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Fig. 2: Correction results of the DanceFix in the dance scene and JHMDB dataset regarding the 

anomalies of occlusion cases. There are all the self-masking cases. 
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Fig. 3: Correction results of the DanceFix in the dance scene and JHMDB dataset regarding the 

anomalies of limb-joining (rows 1-3), motion blur (rows 4-5) and common errors (row 6). 
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Fig. 4: Correction results of the DanceFix in the dance scene and JHMDB dataset regarding the 

anomalies of environmental influence (rows 1-4) and common errors (rows 5-6). 
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