MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation

- SOTA challenging -
 - the quality of video frames from generative models tends to be poor
 - generalization beyond the training data is difficult
 - not capable of simultaneously handling other video-related tasks
 - such as unconditional generation or interpolation
- objective -
 - devise a video generation approach that generates high-quality, time-consistent videos, with computation times for training models measured in 1-12 days using ≤ 4 GPUs

- general purpose framework with Masked Conditional Video Diffusion (MCVD) models
- using a probabilistic conditional **score-based denoising diffusion model**, conditioned on past and/or future frames
- models are built from simple non-recurrent 2D-convolutional architectures, conditioning on <u>blocks of frames</u>

- video tasks -

- future / past prediction
- unconditional generation
- interpolation

Related work

- Diffusion Model Family
 - Denoising Diffusion Probabilistic Models
 - Score-based Generative Models diverse data samples
- drawbacks
 - solving the reverse process is relatively slow

Conditional Diffusion - FDP

$$p(oldsymbol{x}_t|oldsymbol{x}_{t-1}) \stackrel{ extsf{H} \Leftrightarrow}{\longrightarrow} p(oldsymbol{x}_t|oldsymbol{x}_0) \stackrel{ extsf{H} \Leftrightarrow}{\longrightarrow} p(oldsymbol{x}_{t-1}|oldsymbol{x}_t,oldsymbol{x}_0) \stackrel{ extsf{H} \otimes}{\longrightarrow} p(oldsymbol{x}_{t-1}|oldsymbol{x}_t,oldsymbol{x}_0)$$

- Transition kernel: $q_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}),$
- Accumulated kernel :

$$q_t(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}) \implies \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}$$

where $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$, and $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Conditional Diffusion - RDP

- Reverse Diffusion Process -

• Transition kernel :

$$p_t(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}),$$

where $\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t$ and $\tilde{\beta}_t = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t$

Conditional Diffusion - Loss Function

- Loss function -

$$L(\theta) = \mathbb{E}_{t,\mathbf{x}_0 \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \mid t) \right\|_2^2 \right]$$
- Score function -

• definition : $\nabla_{\mathbf{x}} \log p(\mathbf{x})$,

•
$$\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t \mid \mathbf{x}_0) = -\frac{1}{1 - \bar{\alpha}_t} (\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}_0) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \epsilon$$

Conditional Diffusion for Video

- Score-based diffusion models **can be straightforwardly adapted to video** by considering the joint distribution of multiple continuous frame
- sufficient for unconditional video generation, other tasks such as video interpolation and prediction remain unsolved

Video Prediction

- p past frames : $p = \{p^i\}_{i=1}^p$
- k current frames (in immediate future) : $x_0 = \{x_0^i\}_{i=1}^k$
- loss function :

$$L_{\text{vidpred}}(\theta) = \mathbb{E}_{t,[\mathbf{p}] \mathbf{x}_0] \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} || \mathbf{p}, t) \right\|^2 \right]$$

Video Prediction + Generation

- extend the same framework to **unconditional video generation**
- masking (zeroing-out) the past frames with probability $\ p_{mask} = 1/2$ using binary mask $\ m_p$
- loss function :

 $L_{\text{vidgen}}(\theta) = \mathbb{E}_{t, [\mathbf{p}, \mathbf{x}_0] \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), m_p \sim \mathcal{B}(p_{\text{mask}})} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \mid m_p \mathbf{p}, t) \right\|^2 \right]$

• improving the model's ability to perform predictions conditioned on the past

• learns to predict the noise added without any past frames for context

• we can perform **conditional as well as unconditional** frame generation

Video Prediction + Generation + Interploation

- p past frames : $p = \{p^i\}_{i=1}^p$
- k current frames (in immediate future) : $x_0 = \{x_0^i\}_{i=1}^k$
- future frames : $f = \{f^i\}_{i=1}^f$
- loss function :

$$L(\theta) = \mathbb{E}_{t, [\mathbf{p}, \mathbf{x}_0, \mathbf{f}] \sim p_{\text{data}}, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (m_p(m_f) \sim \mathcal{B}(p_{\text{mask}})} \Big[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \mid m_p \mathbf{p}, m_f \mathbf{f}, t) \right\|^2 \Big]$$

• randomly <u>mask the p past frames</u> with probability $p_{mask} = 1/2$, and similarly randomly <u>mask the f future frames</u> with the same probability (but sampled separately)

Video Prediction + Generation + Interploation

- masked -

- future prediction : only future frames are masked
- past prediction : only past frames are masked
- unconditional generation : past and future are masked
- video interpolation : no masked

Architecture

Architecture

- Denoising Network -

- U-net architecture combining the improvements
- this architecture use mix of 2D convolutions , multi-head self-attention, and adaptive group-norm
- use positional encodings of the noise level (t \in [0, 1]) and process it using a transformer style positional embedding :

$$\mathbf{e}(t) = \left[\dots, \cos\left(tc^{\frac{-2d}{D}}\right), \sin\left(tc^{\frac{-2d}{D}}\right), \dots\right]^{\mathrm{T}}$$

where d = 1, ..., D/2, D is the number of dimensions of the embedding, and c = 10000.

Architecture - Normalization

- SPAce-TIme-Adaptive Normalization (SPATIN) -

- noisy current frames (x_t)
 - passed directly to the network
- concatenated conditional frames
 - \circ concatenate past (p) / future (f) conditional frames
 - passed through an embedding that influences the conditional normalization

- Concat -

directly concatenating the conditional frames and noisy current frames together and passing them as the input

Results

Results

Results

	All and a second		1.1	days days			
See See				1793	10 10 10 10 10 10 10 10 10 10 10 10 10 1		16 16
Jok Jok	12 2	A	15 15	There have	<u> </u>		
KKK	Cooperation of the second	Mana		1			mais mais
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A.S. A.S.	10-10-10-10-10-10-10-10-10-10-10-10-10-1	346 346	12 12	a te a te	Not have
	AN STR	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		***	N. N.		
	10-12 10-12	We we			-	AND AND	**
Park Park	1000 1000	They may	1.001 1.001	34.34	Beer Beer	1. K. 1. K.	1- 1-
		ater ater	wither wither	1		Note Parts	and and
7.7	1930 1930	Var Var	in the			16-21-2	
turke turke	P. P. C.P.		*	100 100	7.7	1.2	Mar Mar
N. S.				R. R.	18 18 AS		.at .at

Experiments - Dataset

in order of progressive difficulty :

- 1. SMMNIST : black-and-white digits
- 2. KTH : grayscale, single-humans
- 3. BAIR : color, multiple objects, simple scene
- 4. Cityscapes : color, natural complex, natural driving scene
- 5. UCF101 : color, 101 categories of natural scenes

- sampling method : DDPM, DDIM
 - DDPM is better
- predict only **4-5 current frames at a time**, then autoregressively predict longer sequences for prediction or generation
 - to fit GPU memory budget
 - perform better than other models

Experiments - Metrics

- FVD (Fréchet Video Distance)
- PSNR: $MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) K(i,j)]^2$

 $PSNR = 10 \cdot log_{10}(rac{MAX_{I}^{2}}{MSE})$

• SSIM :

$$\begin{split} l(x,y) &= \frac{2\mu_x\mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1} c(x,y) = \frac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2} s(x,y) = \frac{\sigma_{xy} + c_3}{\sigma_x\sigma_y + c_3} \\ SSIM(x,y) &= [l(x,y)^{\alpha} \cdot c(x,y)^{\beta} \cdot s(x,y)^{\gamma}] \\ SSIM(x,y) &= \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)} \end{split}$$

SMMNIST [5 \rightarrow 10; trained on k]	k	FVD↓	SSIM ↑
SVG [Denton and Fergus, 2018]	10	90.81	0.688
vRNN 1L [Castrejón et al., 2019]	10	63.81	0.763
Hier-vRNN [Castrejón et al., 2019]	10	57.17	0.760
MCVD concat (Ours)	5	25.63	0.786
MCVD spatin (Ours)	5	23.86	0.780

KTH [10 \rightarrow <i>pred</i> ; trained on <i>k</i>]	k	pred	FVD↓	PSNR ↑	SSIM↑
SAVP [Lee et al., 2018]	10	30	374 ± 3	26.5	0.756
MCVD concat (Ours)	5	30	323 ± 3	27.5	0.835
SLAMP [Akan et al., 2021]	10	30	228 ± 5	29.4	0.865
SRVP [Franceschi et al., 2020]	10	30	222 ± 3	29.7	0.870
MCVD concat (Ours)	5	40	276.7	26.40	0.812
SAVP-VAE [Lee et al., 2018]	10	40	145.7	26.00	0.806
Grid-keypoints [Gao et al., 2021]	10	40	144.2	27.11	0.837

- Video prediction

Table 3: Video prediction results on BAIR (64×64) conditioning on p past frames and predicting *pred* frames in the future, using models trained to predict k frames at at time.

BAIR (64 × 64) [past $p \rightarrow pred$; trained on k]	p	k	pred	FVD↓	PSNR ↑	SSIM↑
LVT [Rakhimov et al., 2020]	1	15	15	125.8	-	-
DVD-GAN-FP [Clark et al., 2019]	1	15	15	109.8	-	-
MCVD spatin (Ours)	1	5	15	103.8	18.8	0.826
TrIVD-GAN-FP [Luc et al., 2020]	1	15	15	103.3	-	-
VideoGPT [Yan et al., 2021]	1	15	15	103.3		_
CCVS [Le Moing et al., 2021]	1	15	15	99.0	-	-
MCVD concat (Ours)	1	5	15	98.8	18.8	0.829
MCVD spatin past-mask (Ours)	1	5	15	96.5	18.8	0.828
MCVD concat past-mask (Ours)	1	5	15	95.6	18.8	0.832
Video Transformer [Weissenborn et al., 2019]	1	15	15	94-96 ^a	-	-
FitVid [Babaeizadeh et al., 2021]	1	15	15	93.6	_	_
MCVD concat past-future-mask (Ours)	1	5	15	89.5	16.9	0.780
SAVP [Lee et al., 2018]	2	14	14	116.4	-	-
MCVD spatin (Ours)	2	5	14	94.1	19.1	0.836
MCVD spatin past-mask (Ours)	2	5	14	90.5	19.2	0.837
MCVD concat (Ours)	2	5	14	90.5	19.1	0.834
MCVD concat past-future-mask (Ours)	2	5	14	89.6	17.1	0.787
MCVD concat past-mask (Ours)	2	5	14	87.9	19.1	0.838
SAVP [Lee et al., 2018]	2	10	28	143.4	-	0.795
Hier-vRNN [Castrejón et al., 2019]	2	10	28	143.4	-	0.822
MCVD spatin (Ours)	2	5	28	132.1	17.5	0.779
MCVD spatin past-mask (Ours)	2	5	28	127.9	17.7	0.789
MCVD concat (Ours)	2	5	28	120.6	17.6	0.785
MCVD concat past-mask (Ours)	2	5	28	119.0	17.7	0.797
MCVD concat past-future-mask (Ours)	2	5	28	118.4	16.2	0.745

^a 94 on only the first frames, 96 on all subsequences of test frames

- Video prediction

Table 3: Video prediction results on BAIR (64×64) conditioning on p past frames and predicting *pred* frames in the future, using models trained to predict k frames at at time.

BAIR (64 × 64) [past $p \rightarrow pred$; trained on k]	p	k	pred	FVD↓	PSNR ↑	SSIM↑
LVT [Rakhimov et al., 2020]	1	15	15	125.8	_	-
DVD-GAN-FP [Clark et al., 2019]	1	15	15	109.8	-	-
MCVD spatin (Ours)	1	5	15	103.8	18.8	0.826
TrIVD-GAN-FP [Luc et al., 2020]	1	15	15	103.3	-	-
VideoGPT [Yan et al., 2021]	1	15	15	103.3	_	_
CCVS [Le Moing et al., 2021]	1	15	15	99.0	-	-
MCVD concat (Ours)	1	5	15	98.8	18.8	0.829
MCVD spatin past-mask (Ours)	1	5	15	96.5	18.8	0.828
MCVD concat past-mask (Ours)	1	5	15	95.6	18.8	0.832
Video Transformer [Weissenborn et al., 2019]	1	15	15	94-96 ^a	_	-
FitVid [Babaeizadeh et al., 2021]	1	15	15	93.6	1	<u> </u>
MCVD concat past-future-mask (Ours)	1	5	15	89.5	16.9	0.780
SAVP [Lee et al., 2018]	2	14	14	116.4	_	
MCVD spatin (Ours)	2	5	14	94.1	19.1	0.836
MCVD spatin past-mask (Ours)	2	5	14	90.5	19.2	0.837
MCVD concat (Ours)	2	5	14	90.5	19.1	0.834
MCVD concat past-future-mask (Ours)	2	5	14	89.6	17.1	0.787
MCVD concat past-mask (Ours)	2	5	14	87.9	19.1	0.838
SAVP [Lee et al., 2018]	2	10	28	143.4		0.795
Hier-vRNN [Castrejón et al., 2019]	2	10	28	143.4	-	0.822
MCVD spatin (Ours)	2	5	28	132.1	17.5	0.779
MCVD spatin past-mask (Ours)	2	5	28	127.9	17.7	0.789
MCVD concat (Ours)	2	5	28	120.6	17.6	0.785
MCVD concat past-mask (Ours)	2	5	28	119.0	17.7	0.797
MCVD concat past-future-mask (Ours)	2	5	28	118.4	16.2	0.745

^a 94 on only the first frames, 96 on all subsequences of test frames

- unconditional

Table 5: Unconditional generation of BAIR video frames.

BAIR (64 × 64) $[0 \rightarrow pred;$ trained on 5]	pred	FVD↓
MCVD spatin past-mask (Ours)	16	267.8
MCVD concat past-mask (Ours)	16	228.5
MCVD spatin past-mask (Ours)	30	399.8
MCVD concat past-mask (Ours)	30	348.2

Table 6: Unconditional generation of UCF-101 video frames.

UCF-101 (64 × 64) $[0 \rightarrow 16$; trained on k]	k	FVD↓
MoCoGAN-MDP [Yushchenko et al., 2019]	16	1277.0
MCVD concat past-mask (Ours)	4	1228.3
TGANv2 [Saito et al., 2020]	16	1209.0
MCVD spatin past-mask (Ours)	4	1143.0
DIGAN [Yu et al., 2022]	16	655.0

- Video Interpolation

Table 7: Video Interpolation results (64 × 64). Given p past + f future frames \rightarrow interpolate k frames. Reporting average of the best metrics out of n trajectories per test sample. $\downarrow(p+f)$ and $\uparrow k$ is harder. We used MCVD spatin past-mask for SMMNIST and KTH, and MCVD concat past-future-mask for BAIR. We also include results on SMMNIST for a "pure" model trained without any masking.

	SMMNIST (64×64)					KTH (64×64)				BAIR (64×64)				
	p+f	k	n	PSNR ↑	SSIM↑	p+f	k	n	PSNR ↑	SSIM↑	p+f	k n	PSNR ↑	SSIM↑
SVG-LP Denton and Fergus [2018]	18	7	100	13.543	0.741	18	7	100	28.131	0.883	18	7 100	18.648	0.846
FSTN Lu et al. [2017]	18	7	100	14.730	0.765	18	7	100	29.431	0.899	18	7 100	19.908	0.850
SepConv Niklaus et al. [2017]	18	7	100	14.759	0.775	18	7	100	29.210	0.904	18	7 100	21.615	0.877
SuperSloMo Jiang et al. [2018]	18	7	100	13.387	0.749	18	7	100	28.756	0.893	-		-	_
SDVI full Xu et al. [2020]	18	7	100	16.025	0.842	18	7	100	29.190	0.901	18	7 100	21.432	0.880
SDVI Xu et al. [2020]	16	7	100	14.857	0.782	16	7	100	26.907	0.831	16	7 100	19.694	0.852
	10	10	100	20.944	0.854	15	10	100	34.669	0.943	4	5 100	25.162	0.932
MCVD (Ours)	10	5	10	27.693	0.941	15	10	10	34.068	0.942	4	5 10	23.408	0.914
	I	oure	8	18.385	0.802	10	5	10	35.611	0.963				

Conclusion

- 1. A conditional video diffusion approach for video prediction and interpolation that yields SOTA results.
- 2. A conditioning procedure based on masking past and/or future frames in a blockwise manner giving a single model the ability to solve multiple video tasks : **future/past prediction**, **unconditional generation**, and **interpolation**.
- A convolutional U-net neural architecture integrating recent developments with a conditional normalization technique we call SPAce-TIme-Adaptive Normalization.

Limitations

- become blurry or inconsistent when the number of generated frames is very large
 - needed to scale these models to larger datasets with more diversity and with longer duration video (this work limited by 4-GPU)
 - need for faster sampling methods capable of maintaining quality over time