Portrait Neural Radiance Fields from a Single Image

Chen Gao, Yichang Shih, Wei-Sheng Lai, Chia-Kai Liang and Jia-Bin Huang

Virginia Tech, Google

Introduction

Portrait view synthesis

- camera poses using a light stage
- 3D model based methods only covers the center of the face

NeRF

- modeling the volumetric density and color by MLP
- requires images of static subjects from multiple viewpoints

Introduction

Propose

Train an MLP for a single headshot portrait.

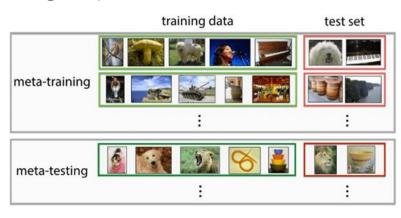
Pretrain MLP

a na ive pretraining performs poorly for unseen subjects

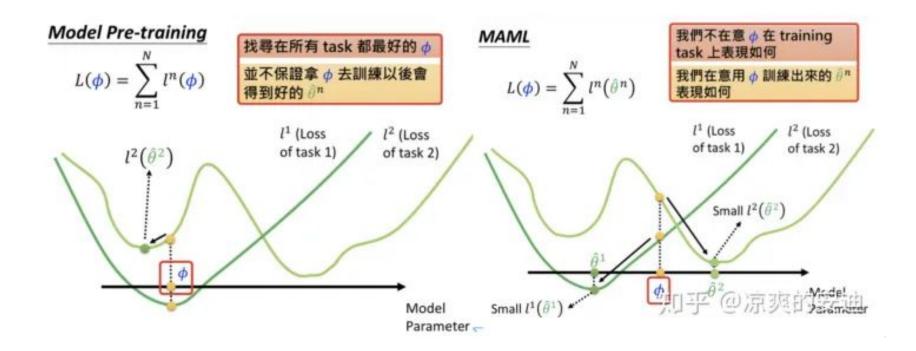
Meta learning

adapts to an unseen subject

Rigid transform

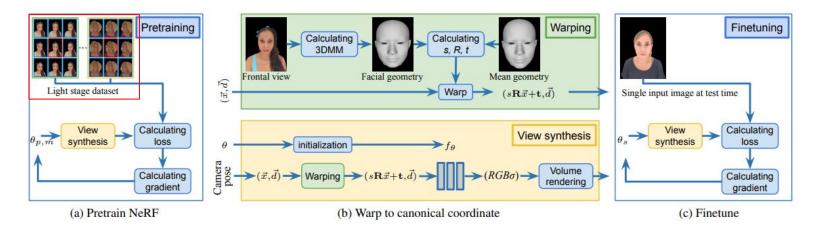

using a rigid transform from the world coordinate in a canonical face space

Dataset


multi-view protrait dataset in a light stage

Meta-Learning

- learn-to-learn
- Machine Learning & Meta Learning
 - \circ ML: y = f(x)
 - Meta-Learning : $f = F^*$, y = f(x)
- Support set (training set), Query set (testing set)
- Task : Training task & Testing task



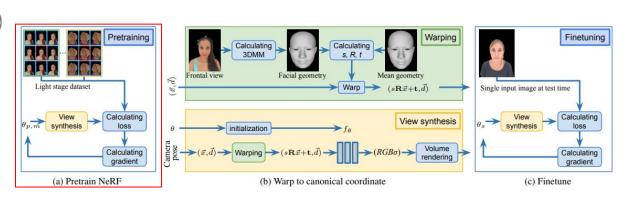
Meta-Learning

Training data

- light stage captures over multiple subjects
- Support set (D_s) : The center view to the front view expected at the test time.
- Query set (D_q) : The remaining views are the target for view synthesis.
- Task (T_m) : NeRF model parameter for subject m from the D_s

Pretraing NeRF

- ullet Goal : Pretrain a NeRF model parameter $heta_p^*$.
- Loop K subjects, model parameter in each subject m as $\theta_{p,m}, m = \{0, ...K-1\}$
- For each task, train D_s and D_q


Pretrain D_s

$$\theta_m^{t+1} = \theta_m^t - \alpha \nabla_{\theta} L_{D_s}(f_{\theta_m^t})$$

Pretrain D_q

$$\theta_m^{t+1} = \theta_m^t - \beta \nabla_{\theta} L_{D_q}(f_{\theta_m^t})$$

$$\theta_{p,m}^{t+1} = \theta_{p,m}^t - \beta \nabla_{\theta} L_{D_q}(f_{\theta_m^t})$$

$$\theta_{p,m} = \theta_{p,m}^{N_q - 1}$$


Support

Query

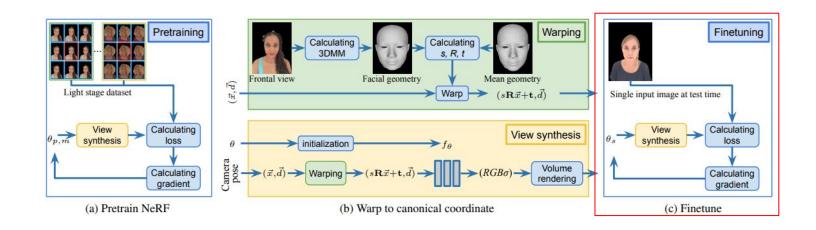
Updates by θ_m^*

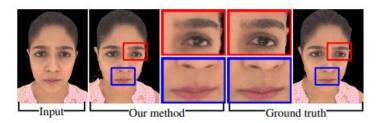
Canonical face space

- normalize the world coordinate to canonical space
- rigid transform : $x' = s_m R_m x + t_m$

(a) Subject (b) World coordinate

(c) Canonical (d) face coordinate


(d) Mean face


Pretraining Warping Finetuning Calculating Calculating 3DMM Frontal view Facial geometry Mean geometry T Light stage dataset Warp Single input image at test time Calculating Calculating View synthesis loss Calculating Calculating gradient gradient (a) Pretrain NeRF (b) Warp to canonical coordinate (c) Finetune

use SVD decomposition to optimize rigid transform between F_m and \bar{F}

Finetuning and rendering

- a single frontal view of the subject s
- rigid transform between the world and canonical coordinate.
- finetune the pretrained model parameter
- sample the camera ray in the 3D space, warp to the canonical space

PSNR:

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

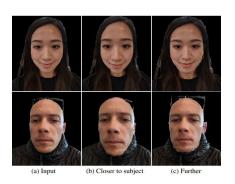
 $PSNR = 10 \cdot log_{10}(\frac{MAX_I^2}{MSE})$

SSIM:

$$egin{aligned} l(x,y) &= rac{2\mu_x\mu_y+c_1}{\mu_x^2+\mu_y^2+c_1}c(x,y) = rac{2\sigma_x\sigma_y+c_2}{\sigma_x^2+\sigma_y^2+c_2}s(x,y) = rac{\sigma_{xy}+c_3}{\sigma_x\sigma_y+c_3} \ SSIM(x,y) &= [l(x,y)^lpha \cdot c(x,y)^eta \cdot s(x,y)^\gamma] \ SSIM(x,y) &= rac{(2\mu_x\mu_y+c_1)(2\sigma_{xy}+c_2)}{(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)} \end{aligned}$$

LPIPS

 use pre-defined network to computers the image similarity


	PSNR ↑	SSIM ↑	LPIPS ↓
Jackson et al. [25]	10.23	0.4356	0.485
Wang et al. [68]	14.70	0.4578	0.380
Zakharov et al. [77]	15.25	0.4746	0.403
Siarohin et al. [56]	15.90	0.5149	0.437
Xu et al. [74]	18.91	0.5609	0.276
Our method	23.92	0.7688	0.161

Perspective manipulation

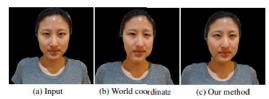
moving the camera from the subject and adjusting the focal length

Initialization

compares the results from different initialization methods.

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{m} \mathcal{L}_{\mathcal{D}_s}(f_{\theta}) + \mathcal{L}_{\mathcal{D}_q}(f_{\theta})$$

(a) Random (b) Pretrain


(b) Pretrain by (5) (c) Our method

(d) GT


Table 2. Ablation study on initialization methods.

Initialization	PSNR ↑	SSIM ↑	LPIPS ↓
Random	14.99	0.5763	0.491
Pretrain by (5)	22.87	0.7824	0.215
Our method	23.70	0.8051	0.178

Canonical face coordinate

Input views in test time

Limitaiton

Table 3. Ablation study on canonical face coordinate.

Coordinate	PSNR ↑	SSIM ↑	LPIPS \
World	24.80	0.8167	0.172
Canonical (our method)	24.98	0.8178	0.156