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Style Transfer

from an early stage to a mature topic



Content

1. Commercial benefits of Style Transfer
used in Style Transfer
Style Transfer on other medium, i.e., styles

4. Challenges and Future work of Style Transfer.



Why Style Transfer?
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Commercial Art

TECH / ARTIFICIAL INTELLIGENCE / CULTURE

Christie’s sells its first Al portrait for
$432,500, beating estimates of $10,000

/ The image was created using a
machine learning algorithm that
scanned historical artwork

Christie's & .
@Christiesinc - Follow

#AuctionUpdate The first Al artwork to be sold
in a major auction achieves $432,500 after a
bidding battle on the phones and via
ChristiesLive bit.ly/2PVN2ly

By JAMES VINCENT
Oct 26, 2018, 1:03 AM GMT+8 | [0 0 Comments

11:22 PM - Oct 25, 2018

® Reply T, Share
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Gaming

Google’s Stadia uses Style S
Transfer ML to manipulate video w2117
game environments f ¥ in
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Virtual reality




Social communication
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How does Style Transfer work?
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How Style Transfer methods work?

Style Transfer with and without neural network.
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Model-Optimization-Based Online Neural Methods
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Style Transfer without Neural Networks

arg min £, (1. I,. I) o
. B ' ' Similarity of style
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Source: [Gatsy et a. ]
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Derivation of Neural Style Transfer
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" = arg min £ (1., L, g (1)), I = g (L)
g

Per-style-per-Model

A 4

Multiple-style-per-Model

Arbitrary-style-per-Model
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Per-Style-Per-Model (PSPM) Neural Methods

Perceptual Losses for Real-Time Style Transfer
and Super-Resolution

Justin Johnson, Alexandre Alahi. Li Fei-Fei
{jcjohns, alahi, feifeili}@cs.stanford.edu

Department of Computer Science, Stanford University
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Textures

Multiple-Style-Per-Model (MSPM) Neural Methods

Diversified Texture Synthesis with Feed-forward Networks

Yijun Li', Chen Fang®, Jimei Yang®, Zhaowen Wang®, Xin Lu”, and Ming-Hsuan Yang'

'University of California, Merced ?Adobe Research

{¥1i62, mhyang}fucmerced. edu {zfang, jimyang, zhawang, xinl }@adobe . com
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Figure 1. Architecture of the proposed multi-texture synthesis network. It consists of a generator and a selector network.
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Arbitrary-Style-Per-Model (ASPM)

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

Xun Huang Serge Belongie
Department of Computer Science & Cornell Tech, Comell University
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Extensions and Variations of NST

= Doodle Style Transfer [65]

= Stereoscopic Style Transfer [70]

= Portrait Style Transfer [71]

= Video Style Transfer

= Character Style Transfer [78, 79, 80]
= Photorealistic Style Transfer [81, 82]
= Fashion Style Transfer [86]

= Audio Style Transfer [87, 88]
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Extensions and Variations of NST

= Doodle Style Transfer [65]
= Stereoscopic Style Transfer [70]

= Portrait Style Transfer [71]

« Video Style Transfer

= Character Style Transfer [78, 79, 80]
= Photorealistic Style Transfer [81, 82]
= Fashion Style Transfer [86]

= Audio Style Transfer [87, 88]
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Artistic style transfer for videos

Manuel Ruder, Alexey Dosovitskiy, Thomas Brox*

Department of Computer Science
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Other medium of art




What is Painting?

Painting is characterized by colors and designs. Painting is of different types such as painting on canvas, oil
painting on canvas, watercolor painting, acrylic painting and the like. You make use of turpentine oil in the case
of painting. You need to have a palette while painting on canvas using oil colars. Oil colors, acrylic and types of
pigments are used in the art of painting.

Painting needs sufficient time to dry. Oil painting and acrylic cannot be very easily erased or altered. You need
to have different kinds of brushes with different bristles in the case of painting.

A person who paints is called either an artist or a painter. It Is also interesting to note that there is a market
value for both drawing and painting works. Works of painting have a greater market value than the works of
pencil and charceal drawing. This is cne of the reasons why painting is considered a very expensive hobby.
The painting equipment is expensive to buy when compared to drawing equipment. It is interesting to note that
any art exhibition would hold both the types of artworks, namely drawings and paintings. This explains that
there is a clear difference between drawing and painting. Now let us summarize the difference as follows.

What is Drawing?

It is important to know that drawing is characterized by lines and shades. Drawing is of different types such as
line drawing, shade drawing and object drawing. A person who draws is called an artist. Drawing needs no

turpentine oil, unlike painting. Pencil, crayons, and charcoal can be used in the art of drawing. You need not

use a palette while drawing an object or a human figure.

Drawing needs no time to dry. Pencil drawings can be rubbed and redone quite easily because graphite can be
easily erased. You need not use brushes in the case of drawing. As a matter of fact, scale and other measuring
equipment are used in the case of drawing.

https://www.differencebetween.com/difference-between-drawing-and-vs-painting/



Painting vs Drawing
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Published: 28 September 2020

Map art style transfer with multi-stage framework

Chiao-Yin Shih, Ya-Hsuan Chen & Tong-Yee Lee &
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Fig. 3 System Overview.



Portrait Map Art Generation by Asymmetric Image-to-Image

Translation

Yuxin Zhang, *Fan Tang, "Weiming Dong, *Thi-Ngoc-Hanh Le, $
Changsheng Xu, %and Tong-Yee Lee |
- (= ’ (=

May 10, 2022
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Cyele = consistency loss

Cycle — consistency loss

Adversarial
Loss
F 2 Cyele — consistency loss

(a) The full structure (b} Forward cycle-consistency loss (¢ Backward cycle-consistency loss

Fig. 2: Overview of our asymmetric image-to-image translation model structure.
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(e) PMA results generated by our model
S



Structure-aware Video Style Transfer with Map Art

Just Accepted

Authors: Thi-Ngoc-Hanh Le, Ya-Hsuan Chen, Tong-Yee Lee Authors Info & Claims

ACM Transactions on Multimedia Computing, Communications, and Applications « Accepted on November 2022
e hitps://doi.org/10.1145/3572030

Published: 23 November 2022 Publication History
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by ours

Map art
- "- ‘-v -ﬁ'

Fig. 1. Our proposed model can transfer the map art styles from artists on various contents.
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Multi-layer Transformer Module

MArt-Encoder Structural Preservation loss
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Stylizing video with Map art style
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Future Challeges

= Evaluation methodology

= Interpretable Neural Style Transfer.
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Potential future work

= 3D surface stylization
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Potential Future work

but create new form of Al-created Art!
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End.

Hope you enjoy!
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