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1. Introduction

e CNN

o Strong locality bias and spatial invariance
o Ineffective for holistic understanding

e Transformer

o Free to learn complex relationships
o High computational costs

Do we have to re-learn everything we know about the local structure and
regularity of images?

- We hypothesize that low-level image structure is well described by a local
connectivity, i.e. a convolutional architecture.



1. Introduction

e Use CNNs to learn a context-rich vocabulary of image constituents
e Utilize transformers to efficiently model their composition within high-
resolution images




2. Related Work - iGPT

o IGPT
o VQVAE-2
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2. Related Work - VOVAE-2

o (GPT
o VQVAE-2

VQ-VAE Encoder and Decoder Training




3. Approach - Overview
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3.1. Learning an Effective Codebook of Image Constituents

e Anyimage can be represented by a spatial collection of codebook entries
= RHXWX3 |:> Zq c thwxnz

e Asequence of h - windices which specify the respective entries in the
learned codebook




VOVAE

e The encoder E and decoder G learn to represent images with codes from
a discrete codebook
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VOVAE

e The reconstruction is given by

T = G(zq) = G (a(E(z)))

e The model and codebook can be trained via the loss function
Lvo(E,G,Z) = ||z — 2|° + |sg[E(x)] — zqll3
+ Bllsglzq] — E(x)|13




VOGAN

e We propose VQGAN which uses a discriminator and perceptual loss to
learn a perceptually rich codebook

EGAN({E: G, Z}v D) — [10gD(:E) T 1Og(1 - D('%))]

e The complete objective for finding the optimal model

Q* = aggén;n me Emwp(m) [EVQ (E; G: Z)

/\ o VGL [Lrec]
—|—)\£GAN({E1G:Z}3D):| a VGL [EGAN] +5




3.2. Learning the Composition of Images

e Asequence s of indices from the codebook, which is obtained by

replacing each code by its index in the codebook Z

sij = k such that (zq).. = 2
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3.2. Learning the Composition of Images

e |mage-generation can be formulated as autoregressive next-index
prediction

p(s) =11; p(sils<i)

e Maximize the log-likelihood

oC'Transfonner - E::crvp [_ logp ( )]



Conditioned Synthesis

e The task is then to learn the likelihood of the sequence given this
information ¢

p(slc) = HP(Sz'|8<z'aC)

e We first learn another VQGAN to obtain again an index-based
representation r, then simply prependrto s

p(sils<i,T) r € {0,.. ., | Bo|—1}Fexwe




Generating High-Resolution Images

e We have to work patch-wise and crop images to restrict the length of s to
a maximally feasible size during training

e Unconditional image synthesis on aligned data, we can simply condition

on image coordinates
S

T




4.1. Attention Is All You Need in the Latent Space

Comparing Transformer and PixelSNAIL architectures across different
datasets and model sizes

Negative Log-Likelihood (NLL)

Data / Transformer Transformer PixelSNAIL
# params P-SNAIL steps  P-SNAIL time fixed time
RIN / 85M 4.78 4.84 4.96
LSUN-CT/310M 4.63 4.69 4.89
IN/310M 4.78 4.83 4.96
D-RIN /180 M 4.70 4.78 4.88
S-FLCKR /310 M 4.49 4.57 4.64




4.2. A Unified Model for Image Synthesis Tasks

conditioning samples
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4.3. Building Context-Rich Vocabularies

How important are context-rich vocabularies?

e Encode images of size H x W into discrete codes of size H/f x W/f

fl16 downsampling factor

280.68 speed-up




4.4, Quantitative Comparison to Existing Models

Semantic synthesis

Dataset ours SPADE[46]  Pix2PixHD (+aug) [65] CRN [9]

COCO-Stuff 224 22.6/23.9(*%) 111.5 (54.2) 70.4
ADE20K 35.5  33.9/35.7(*) 81.8 (41.5) 73.3




4.4, Quantitative Comparison to Existing Models

Unconditional face synthesis

CelebA-HQ 256 x 256 FFHQ 256 x 256
Method FID | Method FID |
GLOW [37] 69.0 VDVAE (t = 0.7) [ 1] 38.8
NVAE [60] 40.3 VDVAE (t = 1.0) 33.5
PIONEER (B.) [21] 39.2(25.3) VDVAE (t = 0.8) 29.8
NCPVAE [ 1] 24.8 VDVAE (t = 0.9) 28.5
VAEBM [67] 20.4 VOGAN+P.SNAIL 219
Style ALAE [49] 19.2 BigGAN 124
DC-VAE [47] 15.8 ours 114
ours 10.7 U-Net GAN (+aug) [58]  10.9 (7.6)

PGGAN [27] 8.0 StyleGAN2 (+aug) [30] 3.8 (3.6)




