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• IDR (Multi-view Neural Surface Reconstruction by Disentangling Geometry and 
Appearance) L. (L. Yariv et al, Neural IPS 2020 Spotlight) 

• Represent the geometry as the zero level set of a neural network 
 

• Opt for  to model a signed distance function (SDF) to its zero level set  

• Estimate camera and 3D geometry/appearance jointly 

• 2D supervision require per-pixel masks 

• NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (B. Mildenhall 
ECCV 2020 Best Paper) 

• Represent the geometry as volumetric density through MLP 

• Using volume rendering techniques to render novel views

Sθ = {x ∈ R3 | f(x; θ) = 0}

f Sθ

Related work



• Neural volume rendering gains popular due to its recent success in synthesizing novel views 

• Geometry learned by neural volume rendering techniques was modeled with a generic density function 
(  in NeRF) 

•  Geometry is extracted using an arbitrary level set of the density function resulting in noisy, and 
low fidelity reconstruction 

• Adaptive approximation of opacity adopted by NeRF lead to a sub-optimal sampling

MLPθ

→

Motivation



• Overview 

• A volume rendering framework for implicit neural surface 

• Contributions 

• Bridging and get the best of two different fields: Volume rendering & Neural implicit surfaces 

• Propose a way to model the volume density as a function of the geometry 

• Contrast to previous works where the geometry was modeled as a function of the volume density (e.g NeRF) 

• Representing volume density as a CDF derived from the learned SDF which represents the geometry of the scene

Overview of VolSDF



Method overview

fφ

Learn scene SDF

(x, ⃗d ) (sφ(x), nφ(x), zφ(x))

Lψ

Learn scene light field

Lψ(x, nφ(x), zφ(x), ⃗d ) = c(x)

σ

Ray 
Distance

Volume rendering

Error bound  

Sample algorithm

Loss

σ(x) = αΨβ(−sφ(x))
Learnable transform

σ(x), c(x)



• A “classic” technique(*) for rendering 2D image of 3D 
scene 

• Transmittance: represents the ratio of ray that is able 
to get through a medium over a certain distance  

•   

• Opacity: complement probability of transmittance 

• (assume every 
ray is eventually occluded)  

• Can be seen as a CDF of some probability 
distribution!  

• Light field of the scene  : color, lighting, 
reflection

T(t) = exp (−∫
t

0
σ(x(s))ds)

O(t) = 1 − T(t), O(0) = 0,O(∞) = 1

L(x(t), n(t), v)

Volume rendering

* Ray Tracing Volume Density, Kajiya et al, SIGGRAPH 1984

Image plane

c

⃗v

t
x(t) = c + t ⃗v

T(tk−1)
T(tk)

I(c, v) = ∫
∞

0
L(x(t),n(t), v)τ(t)dt,

τ(t) =
dO
dt

(t) = σ(x(t))T(t) .

probability density function (PDF) related to   
 

O(t)



• Approximated rendering equation using numerical 
quadrature 

• Sample set  

• Approximated PDF  

• Interval between sampled point 

𝒮 = {si}m
i=1,0 = s1 < s2 < . . . < sm = M

τ(si)

Δs

Volume rendering(cont.)

Image plane

c

⃗v

t
x(t) = c + t ⃗v

T(tk−1)
T(tk)

I(c, v) ≈ ̂I𝒮(c, v) =
m−1

∑
i=1

̂τiLi

̂τi ≈ τ(si)Δs

ΔsΔs Δs

s1 s2 sm



• Signed distance function (SDF) 

• positive-valued outside, negative-valued inside and zero-valued interface 

• SDF gradient , which is always orthogonal to the level sets 

•

∇x(Φ(x))

| |∇x(Φ(x)) = 1 | | , ∀x ∈ ∂Ω

Volume density as transformed SDF



Volume density as transformed SDF(cont.)

• Volume density  as transformed SDF 

• space occupied by , and  be its boundary surface 

• Let  be inside/outside indicator function 

•  be the minimum SDF value to its boundary  

• Model volume density as learnable SDF 

•  

•
  

•  are two learnable parameters

σ(x)

Ω ℳ = ∂Ω

1Ω

dΩ ℳ

σ(x) = αΨβ(−SDF)

Ψβ(s) =

1
2 exp ( s

β ) if s ≤ 0

1 − 1
2 exp ( s

β ) if s > 0

α, β

Ω

ℳ

x1

x2dΩ(x1) > 0

dΩ(x2) < 0



Volume density as transformed SDF(cont.)

• Model volume density as learnable SDF 

•  

•
  

•  are two learnable parameters 

• Benefit ? 

• Some where inside  we will have ,   

• Smoothly decrease when near object’s controlled by factor  

• Using SDF makes it easy for us to extract surface by taking level set 
value zero  

• Allows us to easily estimate the approximation error of opacity (and 
develop algorithms to reduce the error)

σ(x) = αΨβ(−SDF)

Ψβ(s) =

1
2 exp ( s

β ) if s ≤ 0

1 − 1
2 exp ( s

β ) if s > 0

α, β

Ω Ψβ(−dΩ(x)) ≈ 1 σ(x) ≈ α

β

Ω

ℳ x

σ(x)

α



Bound on the opacity approximation error

•  

•  approximated left Riemann sum 

•  :opacity approximation error 

• How to estimate opacity along the ray  ?  

• Since transparency  and 

 

• Estimate opacity :  

• How to lower approximation error  to get accurate 
opacity ?

∫
t

0
σ(x(s))ds = R̂(t) + E(t)

R̂(t) =
k−1

∑
i=1

δiσi + (t − tk)σk

E(t)

O(t)

T(t) = exp (−∫
t

0
σ(x(s))ds)

O(t) = 1 − T(t)

O(t) ≈ Ô(t) = 1 − exp(−R̂(t))

|O(t) − Ô(t) |tk+1tk

t0

. . .
tk−1

. . .

ti−1 ti

Left Riemann sum 

∫
t

0
σ(x(s))ds

σ(k)

σ(k − 1)

ti+1



Bound on the opacity approximation error (cont.)

• What is the upper bound of approximation error ?  

• Derive procedure (omit proof): 

1.  : derive the upper bound of derivative of volume density in arbitrary segment 

2.  derive an error bound for the left Riemann sum approximation of the opacity 

3.  derive upper bound on the opacity approximation error 

•  maximum error bound over all intervals 

• Useful lemmas for enhance sampling algorithm (omit proof): 

• Lemma1: fix  . For any  a sufficiently dense sampling   will provide  

• Lemma2: fix . For any   a sufficiently large  will provide 

|O(t) − Ô(t) |

|
d
ds

σ(x(s)) | ≤
α
2β

exp(−
d⋆

i

β
)

|E(t) | ≤ ̂E(t) =
α
4β

(
k−1

∑
i=1

δ2
i e− d⋆

i
β + (t − tk)2e− d⋆

k
β )

|O(t) − Ô(t) | ≤ exp(−R̂(t))(exp( ̂E(t)) − 1)

B𝒯,β = max
k∈[n−1]

{exp(−R̂(tk))(exp( ̂E(tk+1)) − 1)} ≥ max
t∈[0,M]

|O(t) − Ô(t) |

β > 0 ϵ > 0 𝒯 B𝒯,β < ϵ

n > 0 ϵ > 0 β ≥
αM2

4(n − 1)log(1 + ϵ)
B𝒯,β ≤ ϵ tk+1tk

t0

. . .
tk−1

. . .

ti−1 ti

∫
t

0
σ(x(s))ds

σ (k)

σ (k − 1)

ti+1



Sampling algorithm



Evaluation


