Computer Graphics Course, Fall 2023

Presenter: Hanh Le

Why Inverse Projection?

3D Reconstruction from Images

Augmented Reality

Gesture Recognition

Depth Sensing in Consumer Electronics

Surveillance and Security

Camera Calibration

Object Tracking

Simulations and Virtual Environments

Robotics

Medical Imaging

3D Reconstruction from Images

Using inverse projection to reconstruct three-dimensional scenes from two-dimensional images.

Augmented Reality

Using inverse projection to place virtual objects accurately in the real-world environment.

Object Tracking

Using inverse projection to track the movement of objects in a video sequence.

Medical Imaging

Using inverse projection to reconstruct three-dimensional images of internal structures from a series of 2D slices.

Robotics

Using inverse projection to perceive and interact with their environment.

Inverse Projection Transformation

Inverse Projection Transformation

RGB image

Depth map

Depth map

<u>Data from DDAD Dataset</u>. Left: Image. Middle: Disparity. Right: Uncertainty

Stereo vision

Stereo vision

Stereo Setup

Correspondence Matching

Disparity Calculation

Stereo vision

Stereo Setup

Correspondence Matching

Disparity Calculation

Stereo vision

Stereo Setup

Correspondence Matching

Disparity Calculation

Stereo Setup

Correspondence Matching

Disparity Calculation

Stereo vision

Stereo Setup

Correspondence Matching

Disparity Calculation

$$Depth = \frac{Baseline \times Focal\ Length}{Disparity}$$

Depth Estimation – Deep learning methods

MiDaS

Structure from Motion

Depth from Focus

$$P = egin{bmatrix} rac{n}{r} & 0 & 0 & 0 \ 0 & rac{n}{t} & 0 & 0 \ 0 & 0 & -rac{f+n}{f-n} & -rac{2fn}{f-n} \ 0 & 0 & -1 & 0 \end{bmatrix} \hspace{0.5cm}
ho -1 = egin{bmatrix} rac{r}{n} & 0 & 0 & 0 \ 0 & rac{t}{n} & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & rac{f-n}{-2fn} & rac{f+n}{2n} \end{bmatrix}$$

- \bullet *n* is the near clipping plane.
- f is the far clipping plane.
- ullet and t are the right and top frustum values.

$$\begin{bmatrix} x_r \\ y_r \\ z_r \\ w_r \end{bmatrix} = \begin{bmatrix} \frac{n}{r} & 0 & 0 & 0 \\ 0 & \frac{t}{n} & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & \frac{f-n}{-2fn} & \frac{f+n}{2n} \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Inverse of perspective 4D homogeneous projection matrix

vector

$$\begin{bmatrix} x_r \\ y_r \\ z_r \\ w_r \end{bmatrix} = \begin{bmatrix} \frac{n}{r} & 0 & 0 & 0 \\ 0 & \frac{t}{n} & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & \frac{f-n}{-2fn} & \frac{f+n}{2n} \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Inverse of perspective 4D homogeneous projection matrix

vector

$$\begin{bmatrix} x_r \\ y_r \\ z_r \end{bmatrix} = \frac{1}{w_r} \begin{bmatrix} x_r \\ y_r \\ z_r \end{bmatrix}$$

Photo credited by Daryl Tan

End.

Hope you enjoy!

