Inverse Projection

Computer Graphies Course, Fall 2023
Presenter: Hanh Le

Inverse Projection

Why Inverse Projection?

3D Reconstruction from Images

Gesture
Recognition

Depth Sensing in Consumer Electronics
Surveillance and Security Camera Calibration

Object Tracking
Robotics

Augmented Reality

Simulations and Virtual Environments

Medical Imaging

3D Reconstruction from Images

Using inverse projection to reconstruct threedimensional scenes from two-dimensional images.

Augmented Reality

Object Tracking

Using inverse projection to track the movement of objects in a video sequence.

Medical Imaging

Using inverse projection to reconstruct three-dimensional images of internal structures from a series of 2D slices.

Robotics

Using inverse projection to perceive and interact with their environment.

Inverse Projection

Inverse Projection Transformation

Inverse Projection Transformation

RGB image

Depth map

Depth map

Data from DDAD Dataset. Left: Image. Middle: Disparity. Right: Uncertainty

Depth estimation - Classical technique

Stereo vision

Depth estimation - Classical technique

Depth estimation - Classical technique

Stereo Setup

Correspondence Matching
Stereo vision

Disparity Calculation

 Depth Calculation$$
\text { Depth }=\frac{\text { Baseline } \times \text { Focal Length }}{\text { Disparity }}
$$

Depth Estimation - Deep learning methods

MiDaS

Structure from Motion

Depth from Focus

Inverse Projection

Inverse Projection

4D homogeneous vector

Inverse Projection

$$
P=\left[\begin{array}{cccc}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{n}{t} & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \quad \Rightarrow \quad P^{-1}=\left[\begin{array}{cccc}
\frac{r}{n} & 0 & 0 & 0 \\
0 & \frac{t}{n} & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & \frac{f-n}{-2 f n} & \frac{f+n}{2 n}
\end{array}\right]
$$

- n is the near clipping plane.
- f is the far clipping plane.
- r and t are the right and top frustum values.

Inverse Projection

$$
\left[\begin{array}{l}
x_{r} \\
y_{r} \\
z_{r} \\
w_{r}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{t}{n} & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & \frac{f-n}{-2 f n} & \frac{f+n}{2 n}
\end{array}\right] *\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Inverse of perspective 4D homogeneous projection matrix
vector

Inverse Projection

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{r} \\
y_{r} \\
z_{r} \\
w_{r}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{t}{n} & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & \frac{f-n}{-2 f n} & \frac{f+n}{2 n}
\end{array}\right] *\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]} \\
& \text { projection matrix } \\
& \text { vector } \\
& {\left[\begin{array}{l}
x_{r} \\
y_{r} \\
z_{r}
\end{array}\right]=\frac{1}{w_{r}}\left[\begin{array}{l}
x_{r} \\
y_{r} \\
z_{r}
\end{array}\right]}
\end{aligned}
$$

Inverse Projection

End.

Hope you enjoy!

