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What is style transfer?

Stylized with Monet's style
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Why Style Transfer?




Applications
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Commercial Art
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Social communication




How does Style Transfer
work?




How Style Transfer methods work?

Style Transfer with and without neural network.
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Model-Optimization-Based Online Neural Methods

Convolution Neural Network (CNN)
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Style Transfer without Neural Networks

Similarity of content
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Style Transfer without Neural Networks

Similarity of content
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Derivation of Neural Style Transfer

I" = argmin Ly (L. 1o, 1) Model-free
: . optimization
= argmin el ([ I+ L1, 1),
{
Model-based
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Model-optimization-based NST
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Per-Style-Per-Model (PSPM) Neural Methods

Perceptual Losses for Real-Time Style Transfer
and Super-Resolution

Style Target gqﬁ,relul_? gqﬁ,relu2_2 Eqb,reluS_S ¢,relud 3

tyl tyl tyl tyl
R o T e YO YU VY
I fW : Tt rr-—""rr-——""""11"""- I
: ' — L :
! I
, '
Input | ! : !
Image Image Transform Net y ' Loss Network (VGG-16) gb :
C e e e = == I . |

Srau3.3
Content Target Covat

P Slide 17



Multiple-Style-Per-Model (MSPM) Neural Methods

Diversified Texture Synthesis with Feed-forward Networks
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Arbitrary-Style-Per-Model (ASPM)

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
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Extensions and Variations of NST

» Doodle Style Transfer [65]

» Stereoscopic Style Transfer [70]

» Portrait Style Transfer [71]

» Video Style Transfer

» Character Style Transfer [78, 79, 80]
» Photorealistic Style Transfer [81, 82]
» Fashion Style Transfer [86]

» Audio Style Transfer [87, 88]
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Extensions and Variations of NST

» Doodle Style Transfer [65]

» Stereoscopic Style Transfer [70]
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» Video Style Transfer
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» Photorealistic Style Transfer [81, 82]
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Video style transfer
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Structure-aware Video Style Transfer with Map Art

THI-NGOC-HANH LE, YA-HSUAN CHEN, and TONG-YEE LEE, National Cheng-Kung

University, Taiwan, Republic of China

Changing the style of an image/video while preserving its content is a crucial criterion to access a new neural
style transfer algorithm. However, it is very challenging to transfer a new map art style to a certain video in
which “content” comprises a map background and animation objects. In this article, we present a novel com-
prehensive system that solves the problems in transferring map art style in such video. Our system takes as
input an arbitrary video, a map image, and an off-the-shelf map art image. It then generates an artistic video
without damaging the functionality of the map and the consistency in details. To solve this challenge, we pro-
pose a novel network, Map Art Video Network (MAViNet), the tailored objective functions, and a rich training
set with rich animation contents and different map structures. We have evaluated our method on various chal-
lenging cases and many comparisons with those of the related works. Our method substantially outperforms
state-of-the-art methods in terms of visual quality and meets the mentioned criteria in this research domain.

CCS Concepts: « Computing methodologies — Image manipulation;
Additional Key Words and Phrases: Style transfer video, coherence, map art, CNN, MAViNet

ACM Reference format:

Thi-Ngoc-Hanh Le, Ya-Hsuan Chen, and Tong-Yee Lee. 2023. Structure-aware Video Style Transfer with Map
Art. ACM Trans. Multimedia Comput. Commun. Appl. 19, 3s, Article 131 (February 2023), 25 pages.
https://doi.org/10.1145/3572030
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Video style transfer with map art

Map art is a masterpiece in
which the artist integrates

human portrait and
topograp ’ny to make it appear ,91:5*

as though the two have always =~
l

belonged together.
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Video style transfer with map art
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Challenges

< Transferring the pencil style

< Preserving intensity attributes of background

< Temporal coherency
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Map art style transfer video

Multi-layer Transformer Module
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Ablated Results of MILT module

With convolution With plain With MLT module
layers residual block



Loss function
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Structural preservation loss
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Ablated results of structural preservation loss




Coherence loss

Coherence Loss ===  Map coherency £, + Temporal coherency L,
N

Temporal coherency
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Stylizing video with Map art style
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Stylizing video with Map art style
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New generation of Style
Transfer has come ...
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Diffusion-based style transfer

Forward SDE (data — noise)

x(0 dx = f(x,t)dt + g(t)dw
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Diffusion-based style transfer

Portrait of a
woman stylized
with Renaissance
art

Input promt
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Diffusion-based style transfer

Portrait of a woman stylized with
Renaissance art

@ Challenging to control the result
L 8
« K.
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Diffusion-based style transfer

Portrait of a
woman stylized
with Renaissance
art
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ControlNet Condition
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ControlNet
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ControlNet

Prompt:
“Room"
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ControlNet

Prompt:
"Chief in the kitchen"
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ControlNet

Prompt: "oil painting of
handsome old man,
masterpiece"
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Potential Future work

but form

of Al-created Art!
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End.

Hope you enjoy!
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