# Neural Collage Transfer: Artistic Reconstruction via Material Manipulation

Ganghun Lee, Minji Kim, Yunsu Lee, Minsu Lee\*, Byoung-Tak Zhang\* Seoul National University

**CVPR 2023** 

01

**INTRODUCTION** 

02

**RELATED WORK** 

03

**METHOD** 

04

**RESULT** 

05

CONCLUSION

## **INTRODUCTION**



Given an image and materials, each output collage was generated based on the proposed complexity-aware multi-scale collage method.

## **RELATED WORK**

#### **Neural Style Transfer (NST)**

- 1. NST has been a prominent technique in the field of artistic style transfer.
- 2. The goal of NST is to transform a target image while preserving the content of the target style.
- 3. Conventional NST methods employ pixel-wise gradient descent or trained models to approximate the distribution of the target style.
- 4. Advanced NST models, despite covering various styles, are limited in their applicability to collage styles.
- 5. Pixel-wise style extraction in NST primarily focuses on common patterns for various styles, while collage styles require a different approach.

## RELATED WORK

#### **Stroke-based Rendering (SBR)**

- 1. SBR is an automated method using discrete elements like strokes to generate non-photorealistic images.
- 2. Training involves human sketch demonstrations, facing challenges due to data collection.
- 3. Training the painting agent without supervision using RL, overcoming challenges of supervised methods.
- 4. Utilizing fully-differentiable painting designs for optimization.
- 5. Primarily concentrated on environments where stroke structures are pre-modeled, such as sketches and paintings.

## **RELATED WORK**

#### **Collage Generation**

- 1. Previous research has explored artistic collage generation but hasn't specifically focused on collage transfer.
- 2. CLIP-CLOP generates collage artworks from text prompts using predefined strokes with modifiable properties.
- 3. The approach in this paper uses non-predefined materials for collage, generating images.

#### **Collage MDP**

- 1. Preliminary
- 2. State and Transition
- 3. Action Design
- 4. Differentiable Collage
- 5. Reward Function

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

Value function

$$V_{\pi}(s_t) = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{T-t-1} r_T$$

$$\pi^* = \operatorname*{argmax}_{\pi} V_{\pi}(s)$$

$$s_{t+1} = \mathcal{P}(s_t, a_t) = (\delta(C_t, M_t, a_t), I, M_{t+1}, (T_M - t_M)/T_M, c)$$

#### **Collage MDP**



Remaining time 
$$l_t = (T_M - t_M)/T_M$$

#### **Collage MDP**

- 1. Preliminary
- 2. State and Transition
- 3. Action Design
- 4. Differentiable Collage
- 5. Reward Function

$$a = \langle x_{cut}, y_{cut}, w, h, p_1, p_2, p_3, p_4, x_{glue}, y_{glue}, \theta, v \rangle$$

Material acceptor  $v \in [0, 1]$ If  $v < 0.5 \Rightarrow$  agent can deny a poor given material and request another one

#### **Collage MDP**

- 1. Preliminary
- 2. State and Transition
- 3. Action Design
- 4. Differentiable Collage
- 5. Reward Function



The differentiable rendering process in collage MDP. The actions determining the cutting shapes are input into the pre-trained shaper network  $\psi$ . The resulting mask is then used to cut the material, generating a scrap to be pasted onto the canvas.

#### **Collage MDP**

- 1. Preliminary
- 2. State and Transition
- 3. Action Design
- 4. Differentiable Collage
- 5. Reward Function

$$r_t = sim(C_{t-1}, I) - sim(C_t, I)$$

#### **Training**

- 1. Model-based SAC
- 2. Training Scheme

Value function of traditional RL and SAC

$$V_{\pi}^{RL}(s_t) = \mathbb{E}_{a_t \sim \pi} \left[ Q(s_t, a_t) \right],$$

$$V_{\pi}^{SAC}(s_t) = \mathbb{E}_{a_t \sim \pi} \left[ Q(s_t, a_t) - \log \pi(a_t | s_t) \right].$$

#### **Advanced Techniques**

- 1. Active Material Selection
- 2. Multi-Scale Collage
- 3. Complexity-Aware Multi-Scale Collage

$$Q(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim \mathcal{P}} \left[ V(s_{t+1}) \right]$$

$$m_{t}^{*} = \underset{m}{\operatorname{argmax}} \left( r(s_{t}, a_{t}) + \gamma V(s_{t+1}) \right), \ m \in \mathcal{M},$$
$$a_{t} = \mathbb{E}_{s_{t} \sim \mathcal{P}} \left[ \pi(s_{t}) \right], \ s_{t+1} = \mathcal{P}(s_{t}, a_{t}).$$

#### **Advanced Techniques**

- Active Material Selection
- 2. Multi-Scale Collage
- 3. Complexity-Aware Multi-Scale Collage

$$\mathcal{U} = (u_1, u_2, \dots, u_n)$$
, where  $u_1 > u_2 > \dots > u_n$  and  $u, n \in \mathbb{N}$ 

$$k(u) = (\lceil (W - u)/\rho \rceil + 1)(\lceil (H - u)/\rho \rceil + 1)$$



The sequence of grapes shows our collage generation process.

#### **Advanced Techniques**

- Active Material Selection
- 2. Multi-Scale Collage
- 3. Complexity-Aware Multi-Scale Collage

$$\mathcal{U} = (u_1, u_2, \dots, u_n)$$
, where  $u_1 > u_2 > \dots > u_n$  and  $u, n \in \mathbb{N}$ 

$$k(u) = (\lceil (W - u)/\rho \rceil + 1)(\lceil (H - u)/\rho \rceil + 1)$$



The sequence of grapes shows our collage generation process.





#### **Comparison with Single-Scale Collage**

| MNIST (10) |        | Flowers (20) |        | Scene (30) |        | ImageNet (10) |        |
|------------|--------|--------------|--------|------------|--------|---------------|--------|
| Agent      | Target | Agent        | Target | Agent      | Target | Agent         | Target |
| 9          | 9      | Ŷ.           |        |            |        |               |        |
| 5          | 5      | *            | *      |            |        |               | Ų,     |
| 4          | 4      |              |        |            | M      |               |        |
| 7          | 7      | *            | *      |            |        |               | 4      |

### **Comparison with NST**



## Comparison with NST

| Methods         | Cl                             | <i>IP score</i> † [4                | CLIP vote $\uparrow$                | <i>LPIPS</i> [55] ↓ |                                |
|-----------------|--------------------------------|-------------------------------------|-------------------------------------|---------------------|--------------------------------|
| Memous          | content                        | human                               | collage                             | collage             | VGG                            |
| Target          | $0.276\pm{\scriptstyle 0.027}$ | $0.213 \pm 0.018$                   | $0.200 \pm 0.017$                   | 0.633               | -                              |
| AdaAttn [34]    | $0.278\pm{\scriptstyle 0.021}$ | $0.247 \pm 0.018$                   | $0.241 \pm 0.010$                   | 0.027               | $0.597 \pm 0.103$              |
| Adain [16]      | $0.251\pm 0.019$               | $0.239 \pm 0.010$                   | $0.236 \pm 0.008$                   | 0.017               | $0.662 \pm 0.103$              |
| Gatys [8]       | $0.226\pm{\scriptstyle 0.013}$ | $0.260 \pm 0.006$                   | $0.250 \pm 0.006$                   | 0.290               | $0.708\pm{\scriptstyle 0.098}$ |
| Perceptual [22] | $0.239 \pm 0.019$              | $0.246 \pm 0.006$                   | $0.234 \pm 0.007$                   | 0.307               | $0.722\pm 0.117$               |
| StyTR-2 [4]     | $0.261 \pm 0.023$              | $0.238 \pm 0.010$                   | $0.235 \pm 0.009$                   | 0.027               | $0.613 \pm \textbf{0.115}$     |
| Ours (32)       | $0.280 \pm 0.026$              | $0.262 \pm 0.017$                   | $0.281 \pm 0.020$                   | 0.100               | $0.510 \pm 0.111$              |
| Ours (64)       | $0.262\pm{\scriptstyle 0.028}$ | $0.272 \pm 0.020$                   | $0.259 \pm 0.015$                   | 0.667               | $0.565 \pm 0.112$              |
| Ours (128)      | $0.225 \pm 0.023$              | $\textbf{0.288} \pm \textbf{0.015}$ | $\textbf{0.272} \pm \textbf{0.016}$ | 1.000               | $0.610 \pm 0.115$              |

#### **CONCLUSION AND FUTURE WORK**

- Novel RL-based training architecture (MB-SAC) for stroke-based collage transfer.
- 2. Complexity-aware multi-scale techniques enhance the agent's ability to handle different target image sizes.
- 3. Autonomous learning, producing aesthetically pleasing collages without demonstration data.
- 4. Limitations include the constraint to quadrilateral stroke shapes, suggesting potential future extensions to more unconstrained shapes.
- 5. Custom reward factors reflecting intentional distortions or style variations could be added for further improvement.