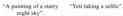
Learning Transferable Visual Models From Natural Language Supervision

Alec Radford ^{*1} Jong Wook Kim ^{*1} Chris Hallacy ¹ Aditya Ramesh ¹ Gabriel Goh ¹ Sandhini Agarwal ¹ Girish Sastry ¹ Amanda Askell ¹ Pamela Mishkin ¹ Jack Clark ¹ Gretchen Krueger ¹ Ilya Sutskever ¹

Image Manipulation/Generation with CLIP With Only 1 / 0 Image & 1 Text



marriage in the mountains

BigSleep

CLIPDraw

VQ-GAN+CLIP

Aliens destroying NYC skyline with lasers. #pixelart

Cheese Cake myStyleTransferCLIP

crayon"

Content Image

CLIPstyler

Colorful glow Starry Ghost A painting of a glow and light castle in the

Steve Jobs Input

FuseDream

Pixary

Motivation

- 1. Concurrent CV system are trained to predict a fixed set of predetermined object categories (image classification)
- 2. Learning directly from raw text about images provides a broader source of supervision
- 3. NLP can solve above problems(BERT, GPT)

Approach

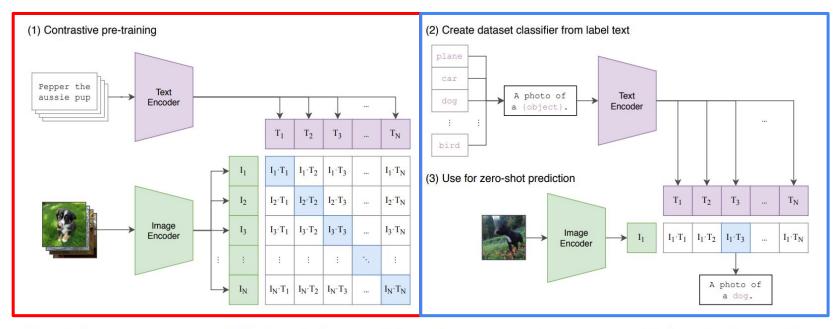


Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Approach

- 1. WebImageText : Large dataset with 400 million (image,text) pairs
 - a. existing datasets, such as MS-COCO and Visual Genom are too small
 - b. large dataset is necessary to capture the full rank if visual concepts and textual descriptions that exist in the real world
- 2. Efficient pre-trained method
 - a. training model on such dataset would be computationally expensive
 - b. masked language model (MLM), where a subset of tokens in an input sequence is masked and the model is trained to predict them based on the remaining token
 - c. image masking, where some of the input tokens corresponding to image regions rather than text

Approach

- 3. Natural Language Supervision
 - a. easier to scale natural language supervision and does not require annotations to be in a classic "machine learning compatible format"
 - b. can learn passively from the supervision contained in the vast amount of text on the internet
- 4. Choosing and scaling a model
 - a. image encoder : ResNet-50, ViT
 - b. text encoder : Transformer

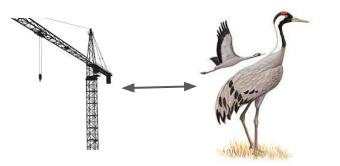
- 1. Zero-shot transfer
 - a. ability of a model perform well on a task it has not been explicitly trained on
 - b. use zero-shot transfer as an evaluation metric
- 2. CLIP for zero-shot transfer
 - a. CLIP: pre-trained to predict if an image and a text snippet are paired together in its dataset
 - i. compute the feature embedding of the the image and feature embedding of the set of possible text
 - ii. product them -> similarity score for each (image,text) pair

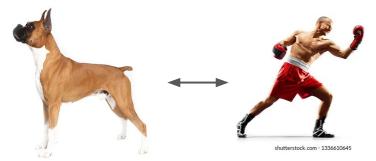
a.

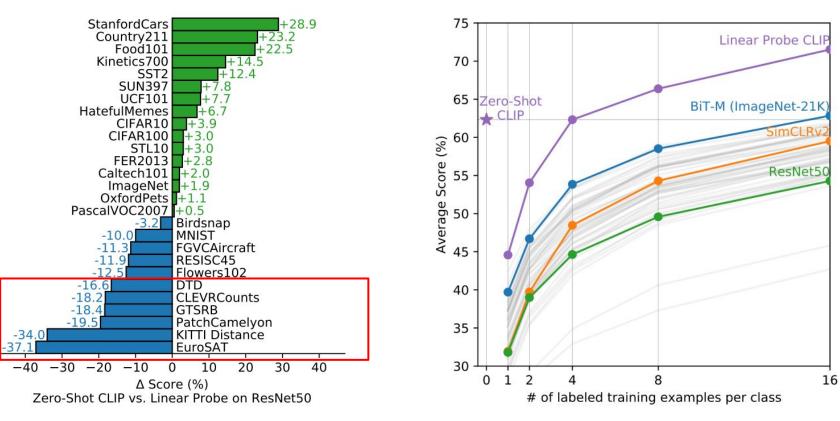
1. CLIP outperforms Visual N-Grams on ImageNet and performs well on task it has not been explicitly trained

	aYahoo	ImageNet	SUN	
Visual N-Grams	72.4	11.5	23.0	
CLIP	98.4	76.2	58.5	

- 1. prompt engineering
 - a. standard image classification datasets treat the information naming or describing classes as an afterthought and annotate images with just a numeric id of the label (then mapping id to their names)
 - b. Prompt: construct natural language prompts that can be used to guid the model's prediction
 - i. use a template-based approach where they construct prompts by filling in placeholders with relevant information about the task at hand "A photo of a {label}."



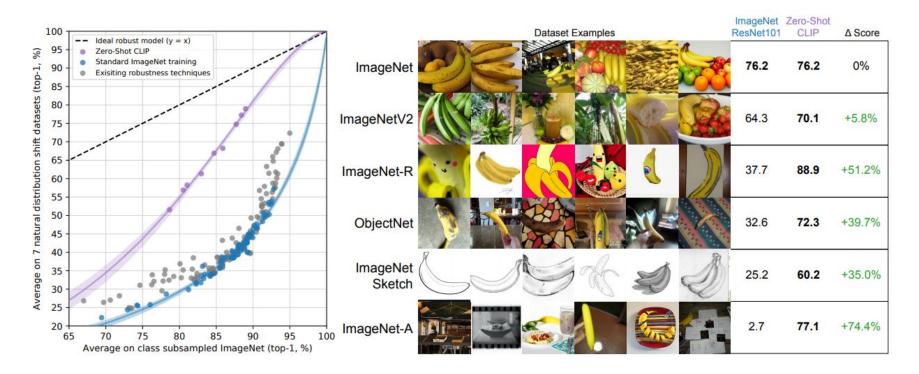




- 1. zero shot performance of CLIP
 - a. impressice on some task but it still quite weak on several kinds of tasks such as
 - i. specialized (e.g. satellite image classification)
 - ii. abstract and systematic tasks (e.g. counting the number of objects)
 - iii. self-driving related tasks (e.g. classifying the distance of the nearest car)
 - b. its performance is not yet perfect

Representation Learning Capabilities of CLIP

- 1. discovering and extracting useful features or representations from raw data
- 2. common way to evaluating the quality of representation
 - a. fit a linear classification on a representation extracted from the model and measures its performance on varios dataset
 - b. linear probe, fine-tune



Comparison to Human Performance

- Dataset : Oxford IIT Pets dataset select which of the 37 cat or dog breed best matched the image
- Zero-shot : the humans were given no examples of the breeds and asked to label.
- One-shot : one sample image of each breed and in the two-shot experiment they were given two sample images of each breed

	Accuracy	Majority Vote on Full Dataset	Accuracy on Guesses	Majority Vote Accuracy on Guesses
Zero-shot human	53.7	57.0	69.7	63.9
Zero-shot CLIP	93.5	93.5	93.5	93.5
One-shot human	75.7	80.3	78.5	81.2
Two-shot human	75.7	85.0	79.2	86.1