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Introduction

e large-scale text-conditioned image generation models

o generating astonishing high-quality images given only text descriptions

o DALL-E 2, Imagen, Parti, etc.,

e Style transfer, compositional generation and Semantic mixing

o  Style transfer :stylizes a image according to the given style while preserving the content.
o Compositional generation : composes multiple individual components to generate a scene
o  Semantic mixing : fuse multiple semantics into one single novel object
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MagicMix

Approach

o requiring neither re-training nor user-provided masks

Method

o Layout semantics: corrupting a given real photo or denoising from a pure Gaussian noise from a

given text prompt

o  Content semantics generation : injects a new concept and continues the denoising process until

obtain the final synthesized results.
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METHOD
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o generate images of mixed semantics by denoising the noisy layout images with a prompt

o Image-text mixing &Text-text mixing
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METHOD

Image-text mixing
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layout semantic: image

content semantic : text prompt

Craft its corresponding layout noises from step K . to K

conditional generation process progressively mixes the two concepts by denoising

Foreach stepk € [K ., K__ |, the generated noise of mixed semantics is interpolated with the layout
noise to preserve more layout details.
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METHOD

e mixing ratio control :

o K. :the noisy layout image contains rich details from the given layout image
o K __ :idestroy the irrelevant details and preserve the coarse layout.

max *
o Varying time-step for content injection.

m  when Kis small : limited number of denoising steps only modify a small part of image content.
m  Much K'is required to ensure sufficient steps for mixing (e.g., corgi and coffee machine), (e.g.,

corgi and husky)
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METHOD

o  Preserving more layout details.
m Vv controls the ratio between layout and content semantics.
o  Optimal value of v.
m determined by the semantic similarity between the two concepts
m  when two concepts has are extremely dissimilar diffusion model requires a large value of v
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METHOD

e weighted image-text cross attention
o Inspired by Prompt-to-Prompt
o  Concept removal
m negative s : the diffusion models to generate an image with a layout similar to that of a text
prompt while the non-text prompt object
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APPLICATIONS

e Semantic style transfer
o Style transfer : the content image is stylized based on the reference style image without
changing the image content
o Allows the user to inject new semantics while preserving the spatial layout and geometry
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APPLICATIONS
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Novel object synthesis

existing object (e.g., bus).
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allows the synthesis of novel objects by injecting new concepts (e.g., coffee machine) into an

source image
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APPLICATIONS

e Breed mixing
o mixing two different species or animals

+ mouse

+ German shepherd + bulldog

+ horse + clownfish + dolphin + goldfish +koi + blue tang
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APPLICATIONS

e Concept removal
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remove original semantic and let
the model to decide what to
generate aside from its original
content.
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APPLICATIONS

e Text-text semantic mixing
o text-text mixing mode : the final synthesis result is unpredictable.

“Bus” + “Coffee “Hamburger” + “Watermelon “Pumpkin” +
machine” “Lamp” slice” + “Bread” “Speaker”

“Fire extinguisher” +
“Flamingo”

“Donut” + “Corgi” + “Rabbit” + “Chicken” +
“Camera lens” “Piggy bank” “Bag” “Teapot”




LIMITATIONS

e Shape similarity : two concepts cannot be mixed if they do not share any
shape similarity

Source image +corgi Source image +corgi Source image +cat



