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INTRODUCTION

Multi-agent systems find various robotic applications and there has been an ever-increasing interest in

the automatic learning of multi-agent behaviors.
e Complex behaviors can be automatically acquired, e.g., by Multi-Agent Reinforcement Learning
(MARL) algorithms, through a gazillion of reward- or curiosity-guided random behavior explorations.
e Specifcally, (MA)RL requires a huge number of environment-interacting experiences, and supervised
learning algorithms rely on a dataset of groundtruth control signals.
e We propose the frst differentiable and scalable learning method for collision-free multi-agent
navigation policies.
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Multi-agent navigation
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centralized robot routing algorithm

learning-based semi-centralized
navigation policy search (the
average RL training cost is around
10 hours on average, as reported

by [1])
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e the same spherical shape with a unifed radius of r
® any pair of two agents do not overlap at any time instance

dist(z{', z§) > 2r
dist(z$,0,) 27
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e the following Markov Decision Process (MDP)
® navigation is encoded in a reward function R

e the state transition function f and the policy i
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DIFFERENTIABLE & SCALABLE POLICY
SEARCH




R(z{*")

Our method consists of novel designs of functions f, R, and TTi
we tried to use an autodifferentiation system [36] to re-implement the ORCA algorithm

ORCA and its variants confne each agent to independent feasible subdomains so that linear

programming problems can be solved separately.

Although this method signifcantly lowers the computational overhead, it prevents gradient

information from propagating to neighboring agents
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ORCA ‘ Implicit
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e we turn to the more recently proposed IC algorithm ‘
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where U (z;,x;) is a stiff potential function defined as:

1
|z — x5 -2

U(iBi,CEj) — (4)
e should be satisfed at any time instance a € [t, t + At], which could be achieved via continuous
collision check.
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Unfortunately, it is well-known that the distance between line segments is non-differentiable

® we propose an “inconsistent” optimizer

e the line-search algorithm takes care of the entire time period [t, t+At] by ensuring that each search
step represents a collision-free linear sub-trajectory.

e Asaresult, the entire trajectory generated by the optimizer is exactly piecewise linear.
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Kernel-Based Policy Parameterization

divergence-free constraints can already prevent a considerable portion of local, inter-agent collisions

or boundary penetrations.
Rotating motions are generated by the following kernel:
Here 3 and d control the strength of swirl and motion velocity,

5(p,6) £ dexp (-alp-pof?) % (adp). (6)

the accumulated velocity feld V is then rasterized onto a dense grid. To further enforce the

divergence-free condition
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MLP(0,0) = (¢1 - ¢k ).

Layer Kernel Stride #Filters/#Neuron Activation
Convi (7,7) 1 8 MaxPool.+ReLLU
Convy (7,7) 1 12 MaxPool.+ReLLU
Convy (55 1 16 MaxPool.+ReLU
Convyg (3.,3) 1 20 MaxPool.+ReLLU
MLP;  / / 128 ReLU
MLP,  / / 5K Sigmoid
e During each iteration of training, we sample a batch B and optimize R over a receding horizon of H
timesteps
0 0 tR t+hAt 10
< 0+ Vo Y R(z;7"7"). (10)
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We compare our method with three model-free RL baselines (PPO [46], SAC [47], and DDPG [48]) to

train our policy using the same reward function.
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Fig. 5: Comparison as Figure 3 in a congested scenario (right).
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R('L“At) mm dist;j(xz!) — min dist;(z*2),  (12)
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e We present an end-to-end differentiable learning algorithm for multi-agent navigation tasks
e we show that our method outperforms the model-free RL algorithm by more than one order of
magnitude




