
Minkowski Penalties: Robust Differentiable 
Constraint Enforcement for Vector Graphics

Authors: Jiří Minarčík, Sam Estep, Wode Ni, Keenan CraneAuthors Info & Claims

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024



INTRODUCTION



● This paper describes an optimization-based framework for finding arrangements of 2D shapes subject 

to pairwise constraints.

● We approach this problem through the minimization of novel energetic penalties, derived from the 

signed distance function of the Minkowski difference between interacting shapes.

● initialized from a wildly infeasible state, and, unlike many common collision penalties, can handle open 

curves that do not have a well-defined inside and outside.

● it supports rich features beyond the basic no-overlap condition, such as tangency, containment, and 

precise padding, which are especially valuable in the vector illustration context.



RELATED WORK



● Robotics and Motion Planning: 
○ In robotics, penetration depth is commonly used to resolve or prevent collisions in a dynamical context [Kim et al. 

2002]. For instance, Minkowski differences are used to detect interpenetration [Kockara et al. 2007], or suggest a 

direction for contact resolution [Dobkin et al. 1993], but we did not find work that directly differentiates 

penetration depth. 

○ Conversely, recent work on differentiable collision detection/resolution does not use Minkowski-based penalties 

[Zimmermann et al. 2022], and is limited to convex geometry [Tracy et al. 2023; Montaut et al. 2023]. 

● Physical Simulation and Geometry Processing:
○  Since the objective is to find a non-intersecting state, most of these methods consider only feasible initialization, 

often using domain-specific knowledge [Smith and Schaefer 2015]. These methods also consider only volumetric 

domains that have an inside/outside [Bridson et al. 2005]



BACKGROUND



● Minkowski Difference

● Signed Distance Functions



PENALTIES



Rectangle Penalties:

● Intersection over Union: The overlap area |𝐴 ∩ 𝐵| normalized by 
total area |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|—known as intersection 
over union [Rezatofighi et al. 2019]. Here the gradient can be zero 
even when 𝐴 and 𝐵 overlap (e.g., they form a “cross”, or 𝐴 ⊂ 𝐵).

● Coordinate Projection: The minimum of the horizontal and vertical 
range of overlap, which is nonzero if 𝐴 ∩ 𝐵 ≠ ∅. Again, the gradient 
can be zero in, e.g., nested or “cross” configurations.

● Repulsive Corners: The sum of Coulomb potentials 1/|a𝑖 − b𝑗 | over 
all pairs of rectangle corners a𝑖 , b𝑗 . Here, a balance of Coulomb 
forces can still yield overlapping configurations.

● SDF at Corners: The sum of min(0, −𝜙𝐴 (b𝑖)) over all corners of 𝐵 and 
likewise for 𝐴, which is zero if all corners of 𝐴 are outside 𝐵 and vice 
versa. Here, rectangles can again overlap in a “cross.” 

● Pyramid Overlap: Consider a pyramid over each rectangle, with 
height inversely proportional to area. Since tall, narrow pyramids 
“pierce through” large, flat ones, their overlap volume has a nonzero 
gradient for intersecting configurations [Jacobson 2021]. However, 
this volume is hard to differentiate (we use finite differences of 
mesh booleans), and does not apply to general shapes.



● Open Curves:  An open curve 𝛾 (like a line segment or hemicircle) 

does not have a well-defined “inside” and “outside.”

● Padding: A common case is accounting for stroke width, which 

effectively pads the original shape. A benefit of our SDF-based 

formulation is that we achieve exact padding by simply adding or 

subtracting 𝑤 from the penetration depth 𝜙𝐶 (0)



● Polygonal Approximation : Prior to computing Minkowski differences, we approximate all Bézier curves 

by polygons.

● both partitioning and polygon union can be hard to implement efficiently and robustly. We instead opt 

for convolution, which is efficient in practice, and comes with a wellestablished theory . 



● Minkowski Difference of Polygons :
○ More generally, for simple nonconvex polygons there are two basic methods: decomposition and convolution 

[Wein et al. 2023]. Decomposition partitions 𝐴 and 𝐵 into convex regions, takes all pairwise Minkowski sums of 

these regions, and merges the sums [Margalit and Knott 1989]. However, both partitioning and polygon union 

can be hard to implement efficiently and robustly [Behar and Lien 2011].

● We instead opt for convolution



OPTIMIZATION



● Automatic Differentiation: 
○ use reverse-mode autodiff [Speelpenning 1980] to differentiate penalties

○ Tools from machine learning, like PyTorch [Paszke et al. 2019], focus on relatively simple tensor-based 

computation and are ill-suited to our scalar- and algorithm-heavy penalty functions. 

○ Here, more conventional engines such as Zygote [Innes et al. 2019] and Enzyme [Moses and Churavy 2020] are 

more suitable. 

○ In particular, since we target web-based applications , we use Rose [Estep et al. 2024], which runs natively in the 

browser (and was two orders of magnitude faster than Zygote).



Exterior Point Method:

● Following a strategy suggested by Ye et al. [2020], we adopt an exterior point method to solve

● This method permits infeasable initialization, via progressive stiffening of constraints.



 Guarantees and Failure Modes:

● Suppose, for instance, we want to enforce the no-overlap predicate 𝐴 ∩ 𝐵 = ∅, via the 

penalty P𝑑 (𝐴, 𝐵)

● For simplicity, imagine that 𝐴 is fixed, and 𝐵 can only translate by an offset p ∈ R2

● we get a nonzero gradient |∇p𝜙𝐶 | = 1 whenever 𝐴 and 𝐵 overlap

● Moreover, since the gradient norm is bounded away from zero (namely, always equal to 

1), we cannot have an infeasible limit poin



RESULTS AND 
EVALUATION



● In this section we evaluate the effectiveness of our approach and compare it to alternative methods

●







LIMITATIONS AND FUTURE 
WORK




