DIFFUSIONRENDERER: Neural Inverse and Forward Rendering with Video Diffusion Models

NVIDIA, University of Toronto, Vector Institute, University of Illinois Urbana-Champaign

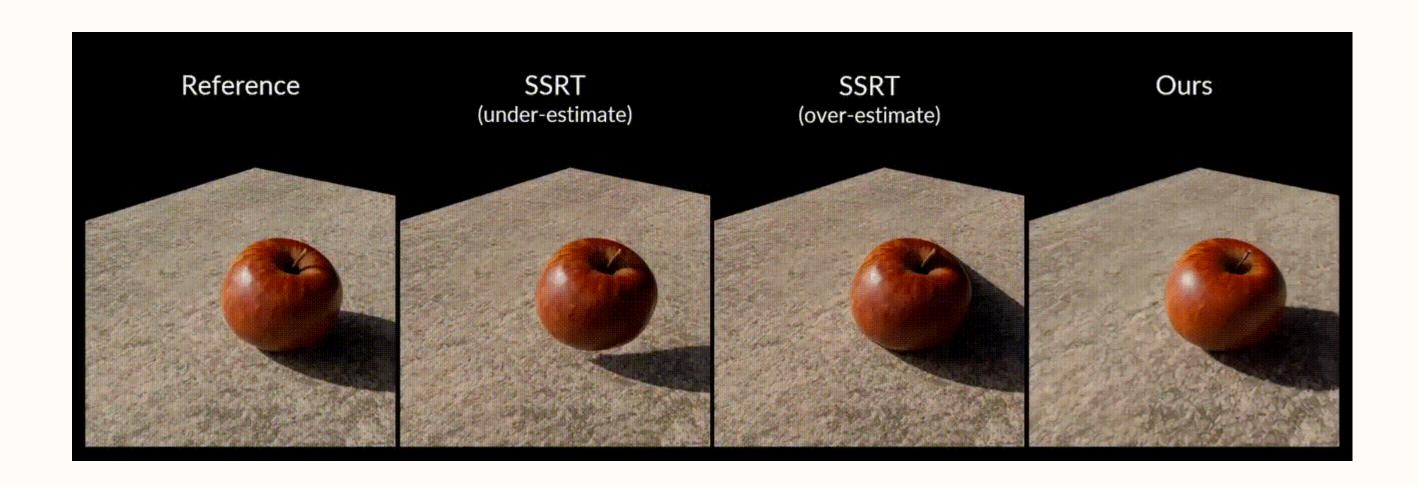
CVPR 2025

Contents

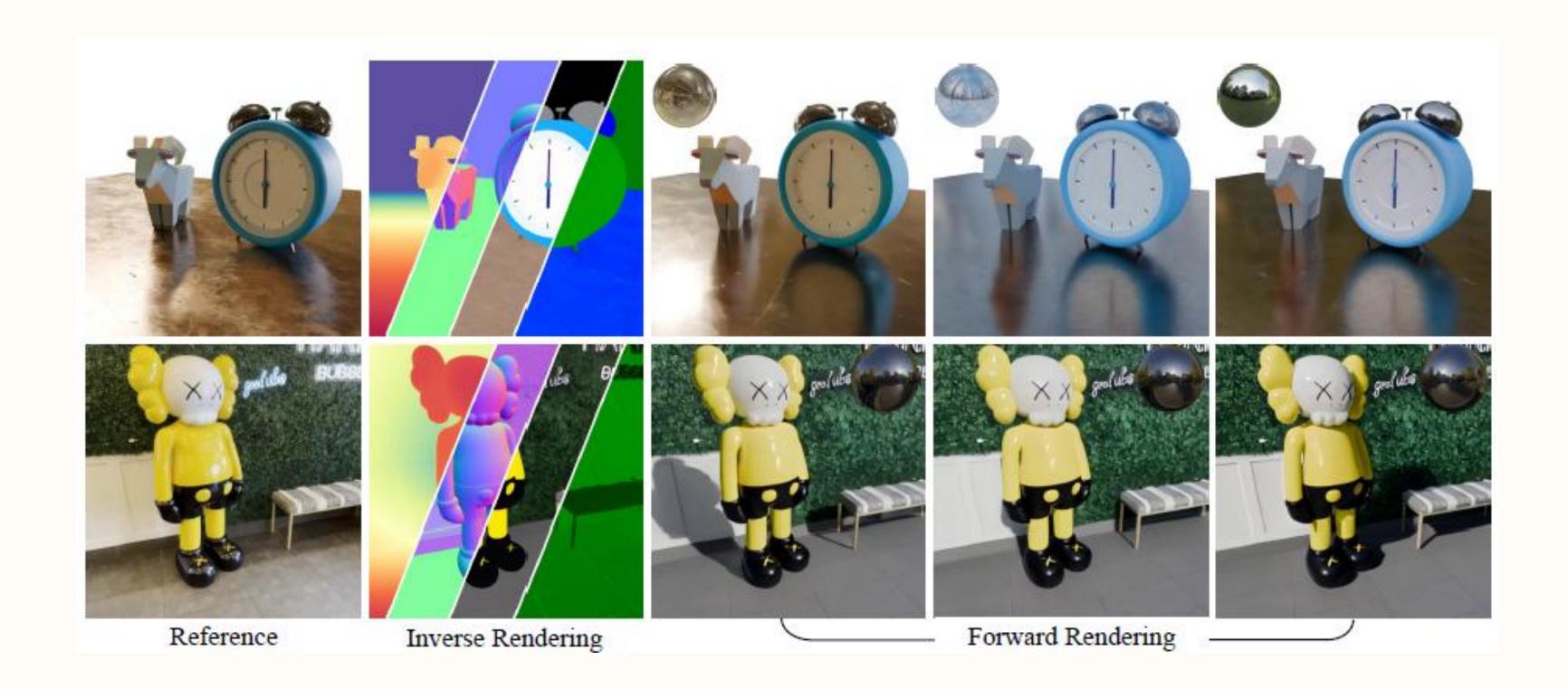
- 1. Introduction
- 2. Related Works
- 3. Methods
- 4. Experiments
- 5. Conclusions and Limitations

1. Introduction

- Motivation
 - Classic physically-based rendering (PBR) relies on precise scene representations that are often impractical to obtain in real-world scenarios.

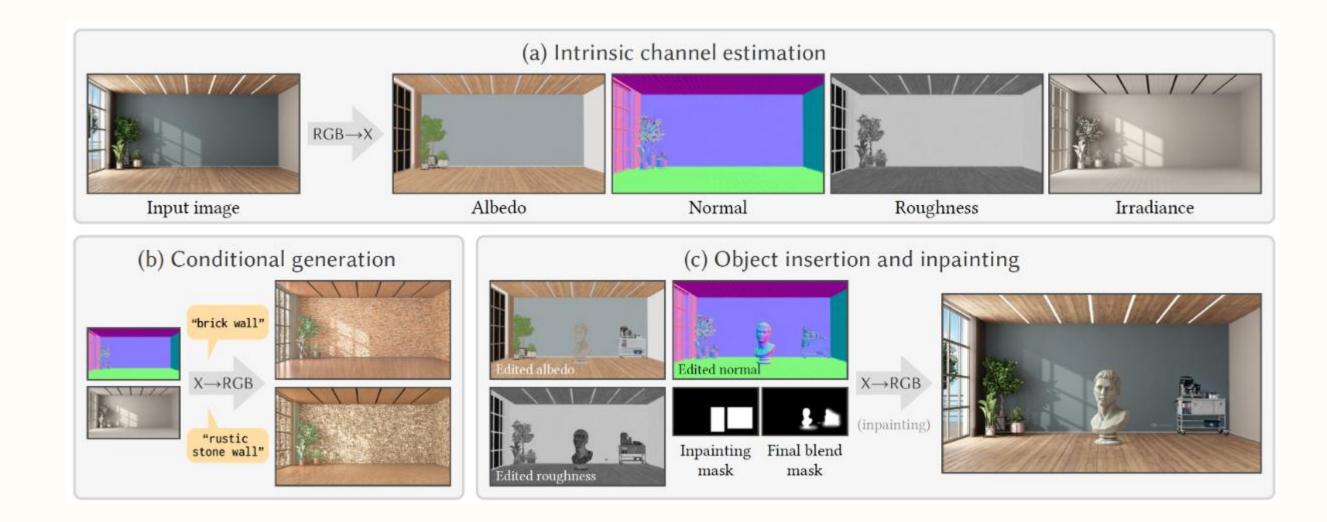


1. Introduction



2. Related Works

- Neural Rendering (RGB \leftrightarrow X)
 - Train image diffusion models to both estimate a G-buffer from an image and to render an image from a G-buffer.
 - Limitation: Absence of temporal coherence



2. Related Works

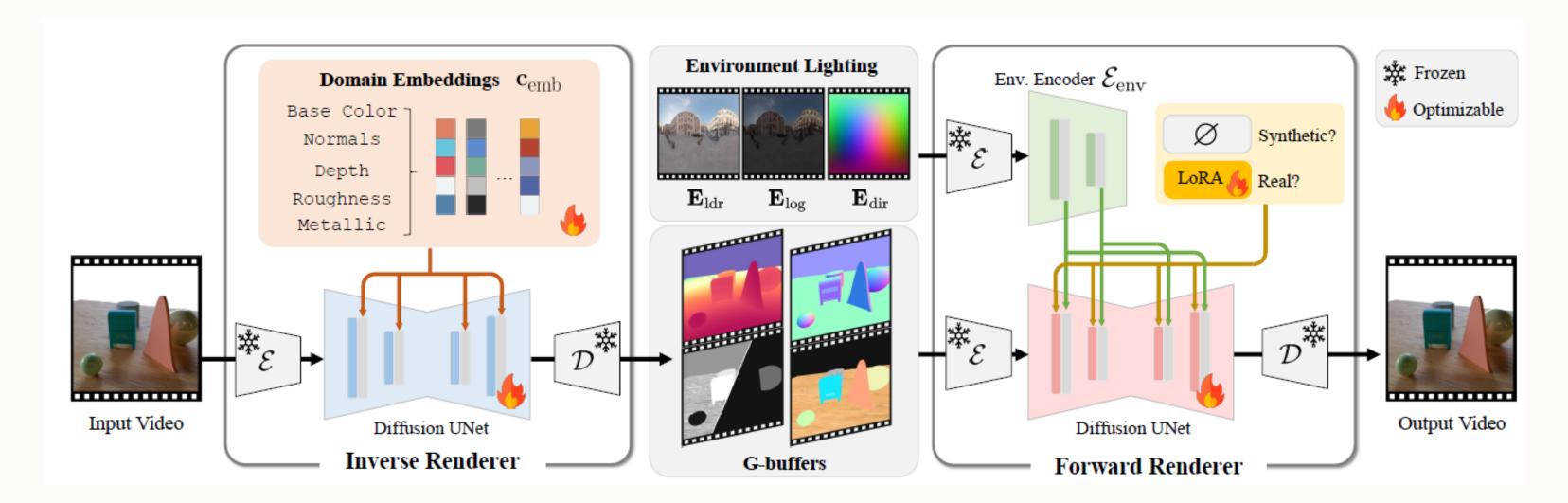
- 3D reconstruction-based relighting
 - Relighting via 3D scene reconstruction from multi-view images and explicit inverse rendering to recover material properties.
 - Limitation:
 - ① Need to optimize for each scene individually
 - **Quality may be affected by practical issues**

2. Related Works

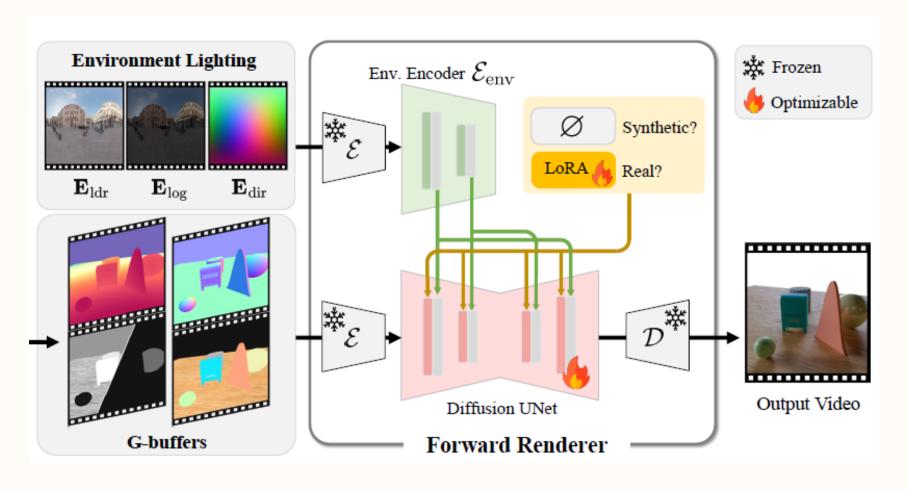
- Diffusion Models
 - Instead of calculating light rays like traditional PBR, the diffusion model treats relighting as a conditional image generation problem.
 - Limitation:
 - **①** Few multi-illumination datasets
 - 2 Existing methods are specialized to a domain

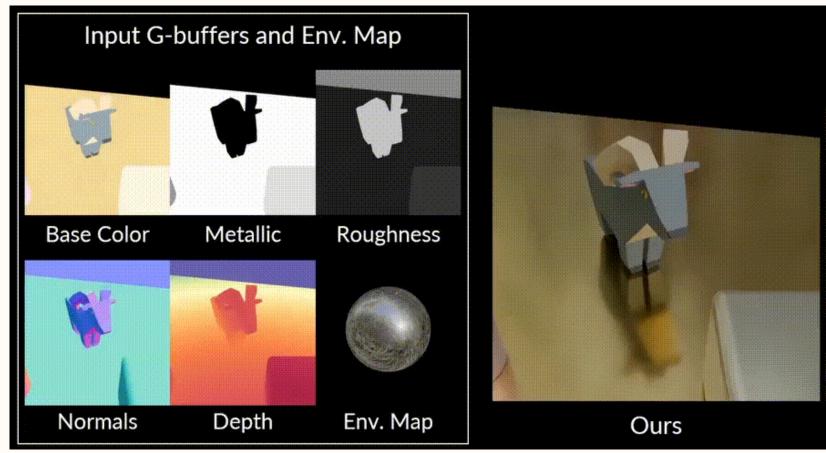
3. Method - Overview

- Diffusion Renderer
 - ① Neural forward renderer
 - ② Neural inverse renderer

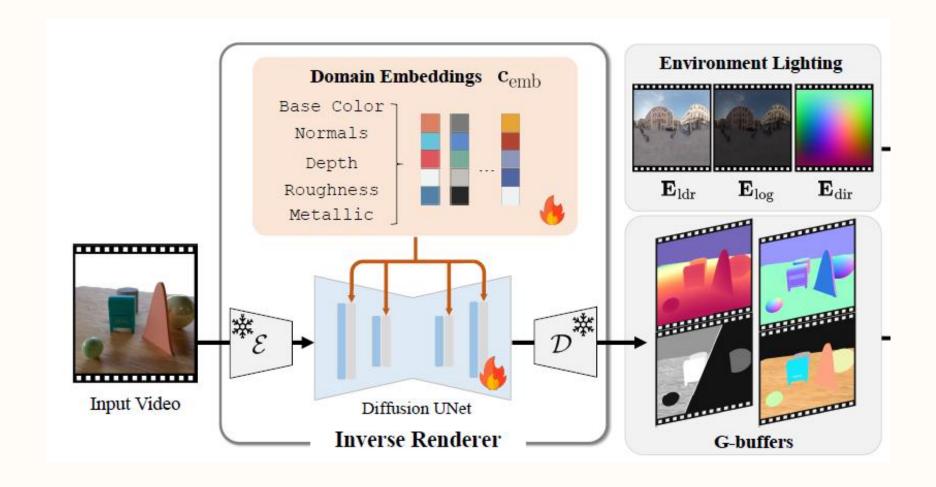


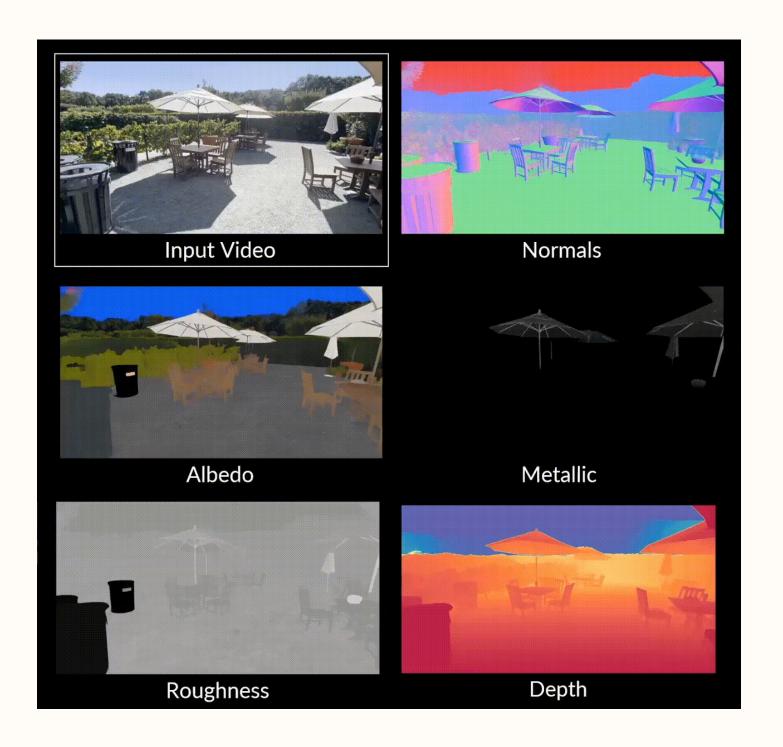
3. Neural Forward Rendering





3. Neural Inverse Rendering





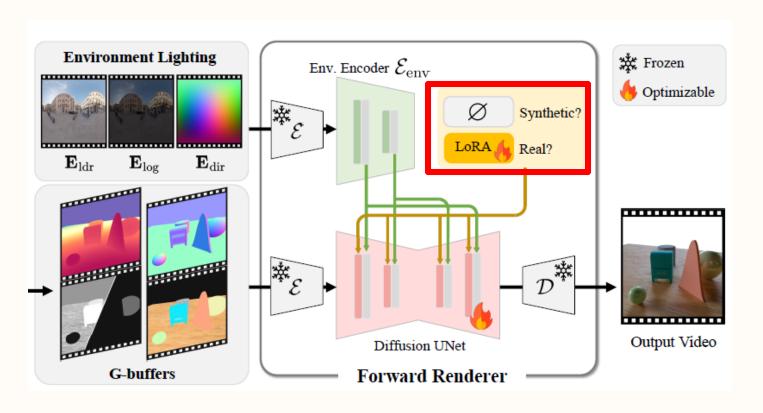
3. Training Dataset

- Synthetic dataset
 - Generated 150,000 videos using traditional 3D rendering engines
 - High-quality video data with paired ground-truth for material, geometry, and lighting information

- Auto-labeling real-world dataset
 - Use trained inverse rendering model to generate G-buffer labels
 - Use DiffusionLight to estimate environment map

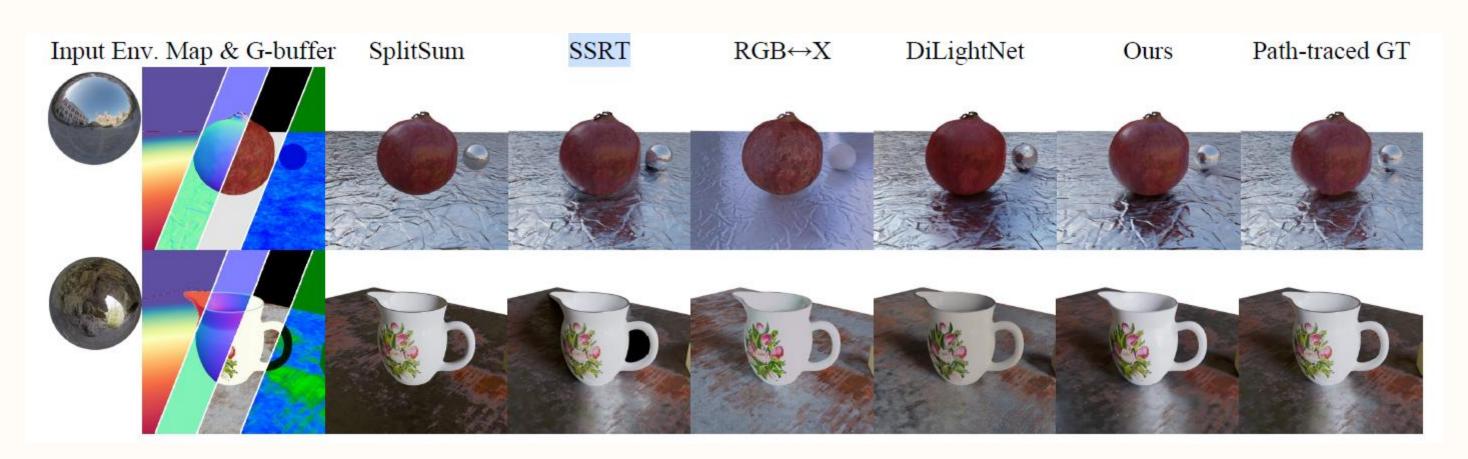
3. Training Pipeline

- Neural inverse renderer training
 - Using synthetic video dataset and public image intrinsic datasets
 - After training, the inverse renderer can be used for auto-labeling real-world videos
- Neural forward renderer training
 - Using synthetic video dataset and auto-labeling real-world videos
 - Integrating LoRA into the training pipeline



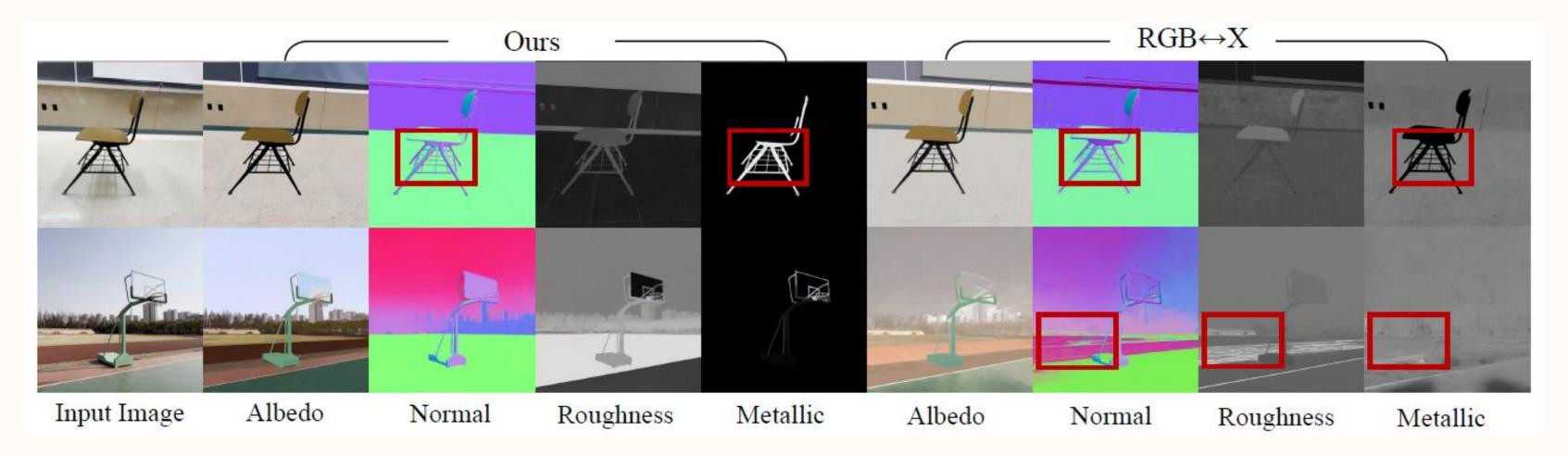
• Evaluation of neural rendering

		theticObj SSIM↑	jects LPIPS↓		theticSce SSIM↑	
SSRT SplitSum [32]	29.4 28.7	$0.951 \\ 0.951$	0.037 0.038	24.8 23.1	0.899 0.883	0.113 0.116
RGB↔X [83] DiLightNet [82] Ours	25.2 26.6 28.3	0.896 0.914 0.935	0.077 0.067 0.048	18.5 20.7 26.0	0.645 0.630 0.780	0.302 0.300 0.201



Evaluation of inverse rendering

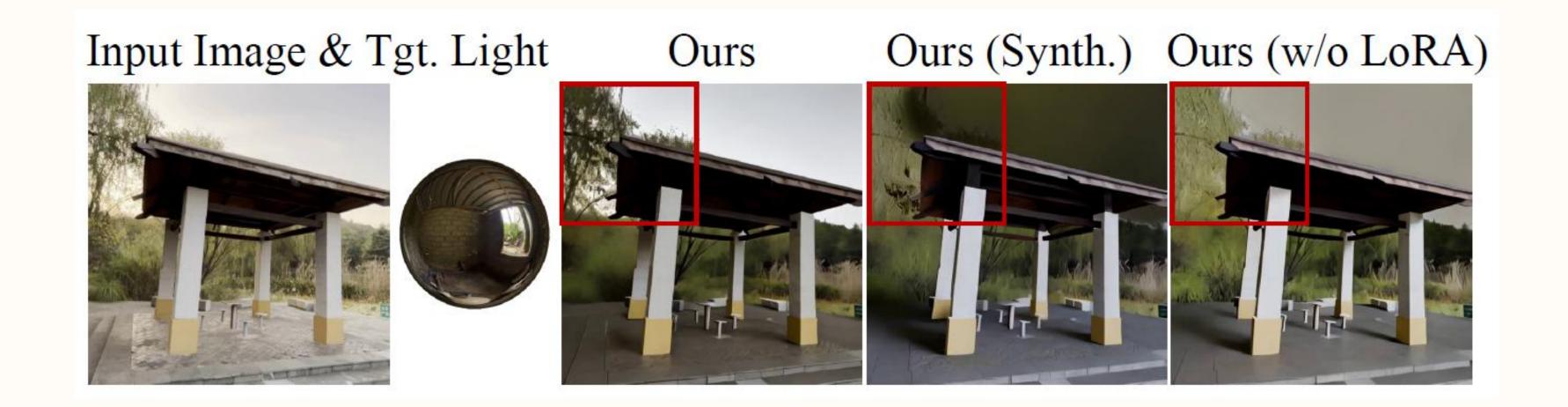
	PSNR ↑	Albedo PSNR↑ LPIPS↓ si-PSNR↑ si-LPIPS↓				Roughness RMSE↓	
RGB↔X [83] Ours	$\frac{14.3}{25.0}$	0.323 0.205	$19.6 \\ 26.7$	$0.286 \\ 0.204$	0.441 <u>0.039</u>	$0.321 \\ 0.078$	23.80° <u>5.97</u> °



Evaluation of relighting

	Synt	theticObj	iects	SyntheticScenes			
	PSNR ↑	$SSIM \uparrow$	LPIPS ↓	PSNR ↑	$SSIM \uparrow$	LPIPS ↓	
DiLightNet [82]	23.79	0.872	0.087	18.88	0.576	0.344	
Neural Gaffer [30]	26.39	0.903	0.086	20.75	0.633	0.343	
Ours	27.50	0.918	0.067	24.63	0.756	0.257	

Ablation of relighting



- Applications
 - ① Material editing
 - **Object insertion**

5. Conclusion

① DIFFUSIONRENDERER provides a scalable, data-driven framework that successfully addresses the dual tasks of high-quality G-buffer estimation (inverse rendering) and photorealistic image generation (forward rendering).

② The system achieves these results without the need for traditional constraints like explicit path tracing or precise 3D geometry, relying instead on the power of video diffusion models.

5. Limitation

① Inference Speed: The system is currently slow (offline) due to relying on SVD, requiring distillation techniques to improve speed.

© Content Consistency: Editing may cause slight color/texture variations, suggesting a need for neural intrinsic features to enhance visual consistency.

3 Auto-Labeling Accuracy: The reliance on an off-the-shelf lighting model for real-world auto-labeling needs improvement in accuracy and robustness.

Thanks for Listening!

