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1 OVERVIEW

To make our paper self-contained, more information is
provided in these supplemental materials, including 3D
face dataset establishment (see Section 2), 3D facial texture
mapping (see Section 3.1), 3D facial wrinkle prediction (see
Section 3.2), detailed user study design (see Section 4), and
3D facial expression processing (see Section 5).

2 DATASET SUPPLEMENT

To collect the children’s head data, a human subjects ethics
review (for a period from 1 Jan 2020 to 1 Jan 2023) was
approved by The Hong Kong Polytechnic University (Ref.:
HSEARS20190222002) and an informed consent to partici-
pate in research was obtained from the parents/guardians of
each child involved in the experiment. In the informed con-
sent, it was informed that his/her participation in the project
was voluntary, the information obtained from this research
may be used in future research, published or commercial-
ized; however, his/her privacy will be retained, i.e., his/her
personal details will not be revealed. All child subjects are
Chinese aged 5-17 years, and their basic information was
also recorded, including age, gender, height, and weight.
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Fig. 1. Examples of head scans. (a) Head scan of one female participant.
(b) Head scan of one male participant.

In this experiment, the children’s heads were scanned us-
ing an Artec Eva 3D commercial scanner (3D accuracy and
resolution are up to 0.1mm and 0.2mm, respectively). Fol-
lowing previous approaches [1], [2], to mitigate the surface
distortions of hair, each participant was required to wear
a tight, custom-designed latex cap during scanning. Two
examples of head scans are shown in Fig. 1. To guarantee a
consistent head pose during scanning, each participant was
also required to sit on a chair to keep still with a neutral
expression and open eyes until the scanning was finished.

3 METHOD SUPPLEMENT

3.1 Texture Mapping

The 3D facial texture dataset (including children and adults)
is limited, which cannot provide enough training dataset
for our networks. Fortunately, both 2D face aging and 3D
face reconstruction are well researched and understood
problems. Hence, we integrated the existing state-of-the-
art methods of 2D face aging and 3D face reconstruction
to generate and acquire the 3D facial aging texture. SAM
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Fig. 2. Pipeline of the automatic 3D facial texture mapping. 1 3D facial mesh projection. 2 2D aging face generation using SAM [3]. 3 Dense
points-to-pixel correspondence using Deep3DFace [4]. 4 3D facial texture retrieval using bilinear interpolation.
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Fig. 3. Pipeline of the automatic 3D facial details generation. 1 Texture UV map generation. 2 Displacement UV map prediction via pix2pixHD [5],
[6]. 3 3D facial details generation.
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Fig. 4. Qualitative comparison of generated 3D facial meshes (age group: 50-70). (a)/(b) Without geometric details. (c)/(d) With geometric details
predicted by using DECA [7]. (e)/(f) With geometric details predicted by using pix2pixHD [5]. Note that it is clear that the synthesized facial detailed
geometries from facial texture can produce the facial wrinkles and ensure the mesh-and-texture matches to increase the feature difference of facial
meshes between age groups 30-49 and 50-70. Furthermore, the pix2pixHD can predict more realistic wrinkles than DECA.
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Fig. 5. Examples of identity preservation evaluation for aging facial
geometries without textures. (a) Age group: 5-8. (b) Age group: 50-70.
For each test, the participant was told that the facial meshes ( 1 , 2 ,
and 3 ) with two different views at the same age group were generated
from three different methods when the facial mesh 0 was the input, and
then asked which facial mesh ( 1 , 2 , or 3 ) mostly resembles the input
facial mesh 0 in a given age (see the bottom texts).

[3] can receive 2D face image and generate the high-
resolution (1024×1024 pixels) face image at any desired age.
Furthermore, previous survey [8] has demonstrated that
Deep3DFace [4] has the highest accuracy of facial shape
reconstruction. The Deep3DFace [4] regresses the coeffi-
cients αs of 3D morphable model (3DMM) of facial shapes
and parameters [R|t] of camera model with perspective
projection using an encoder, and then reconstructs the 3D
facial shape S̈ using the model coefficients αs, as:

S̈ = S + Psαs, (1)

where S is the average mesh shape, Ps is the facial shape
principal basis of 3DMM generated from many globally
aligned facial meshes using principal components analysis
(PCA). In Deep3DFace [4], the specific 3DMM is Basel Face
Model (BFM) [9]. Then, the points-to-pixel correspondence
is achieved using the camera model parameters [R|t], as:

p = K(RS̈ + t), (2)

where p = (u, v, 1)T , (u, v) is the pixel position in image
space, R is a rotation matrix R ∈ R3×3, t is a translation
vector t ∈ R3, and K is a matrix of the camera’s intrinsic
parameters.

Compared with LATS [10] and DLFS [11] (that generate
images with size 256×256 pixels), SAM can produce high-
resolution face aging images (size 1024×1024 pixels), which
can provide more details and higher quality in the retrieved
3D facial textures. Therefore, in our integrated methods as
shown in Fig. 2, the pretrained SAM [3] and Deep3DFace
[4] are used to generate the 2D aging image and retrieve
the 3D facial texture, respectively. The automatic pipeline
consists of four main steps: 1. 3D facial mesh projection, 2.
2D aging face generation using SAM [3], 3. dense points-to-
pixel correspondence using Deep3DFace [4], and 4. 3D facial
texture retrieval using bilinear interpolation.

In our studies, we rendered and projected the (original)
3D head scans into the 2D face images (512×512 pixels) and
fed the images into their pretrained models. Since SAM can
predict face images at a specific age, we applied SAM to the
rendered head image to produce images aged 7, 11, 15, 24,
40, and 60 years, which correspond to the median age of
each of our age groups. In the 3D facial texture retrieval, to
produce 3D high-quality facial texture, the facial mesh (5,000
vertices and 9,449 triangles) was upsampled to a new high-
resolution mesh (847,900 vertices and 1,693,440 triangles)
firstly [12]. Such high resolution of 3D facial mesh can also
help show the geometric details, especially wrinkles [6].

3.2 Wrinkle Prediction
Because of the scanning accuracy of commercial scanners,
most 3D raw scans tend to miss high-frequency facial de-
tails. Furthermore, the NICP algorithm adopted for 3D face
registration also has limitations in capturing high-frequency
details of 3D raw scans due to its regularization and smooth-
ness constraints [13]. Since the elders’ faces (e.g., age group
50-70) usually have wrinkles, and our MeshWGAN can
only generate the 3D aging facial shape without details,
there are easily mesh-and-texture mismatches in the elders’
facial meshes. To mitigate these issues, we leverage and
predict displacement UV map [6], [7], [14], [15], [16] from
2D face images to express and produce 3D facial geometric
details. Fortunately, when receiving a texture UV map, the
pix2pixHD [5] was trained as a backbone to predict the high-
resolution displacement UV map for describing expression-
specific dynamic detailed geometry in previous studies [6],
[15]. Thus, to improve the mesh-and-texture matches, we
used pix2pixHD [5], [6] to predict the 3D facial details and
produce the wrinkles from the facial textures aged 30-70.

The pipeline of automatic 3D facial details generation
is shown in Fig. 3. The retrieved facial textures are used
to produce texture UV map (size 1024×1024 pixels) based
on the predefined points-to-UV coordinates transformation,
and then the pretrained pix2pixHD [5], [6] is adopted to
predict the displacement UV map d (size: 1024×1024 pixels),
finally the 3D facial geometry Stra is updated based on
facial normals n̂ as:

S̈k
tra = Sk

tra + dk→(i,j)n̂
k, (3)

where i and j is the kth vertex’s corresponding UV coordi-
nates, k=1,2,...,N and N is number of vertices. Fig. 4 shows
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qualitative comparison of 3D facial meshes (age group: 50-
70), including Fig. 4(a)/(b) without geometric details, Fig.
4(c)/(d) with geometric details predicted by using DECA
[7], and Fig. 4(e)/(f) with geometric details predicted by
using pix2pixHD [5]. It is clear that the synthesized facial
detailed geometries from facial texture in Fig. 4(e)/(f) can
produce the facial wrinkles, especially on the corner of the
eyes and forehead, which can ensure the mesh-and-texture
matches and increase the feature difference of facial meshes
between age groups 30-49 and 50-70. Moreover, since DECA
can also predict the displacement UV map from 2D face
image, we also applied it to update our generated facial
normals. Compared to DECA, the pix2pixHD can predict
more realistic wrinkles, it could be because the resolution
(256×256 pixels) of displacement UV map for DECA is
much less than that for pix2pixHD (1024×1024 pixels).

4 USER STUDY

In human evaluation, two indexes related to face aging were
measured, including identity preservation and age close-
ness. Thirty respondents aged 18-35 years with experience
in 3D graphics/animation design were recruited, and ten
facial meshes aged 5-70 years with textures were selected
randomly from our testing dataset to produce stimulus. The
facial meshes for each of our six age groups were gener-
ated using our MeshWGAN, and combined Deep3DFace
[4] and LATS [10] / SAM [3]. To evaluate the quality of
facial aging geometries without textures, every facial mesh
was rendered (with solid blue colors using the same direct
lighting environment) into two face images (512×512 pixels)
showing front and 30o-side views, respectively.

To measure identity preservation, one original and three
facial meshes were shown as one column on four rows
(see Fig. 5). In each test, the participant was told that the
facial meshes ( 1 , 2 , and 3 ) with two different views at
the same age group were generated from three different
methods when the facial mesh 0 was the input, and then
asked which facial mesh ( 1 , 2 , or 3 ) mostly resembles the
input facial mesh 0 in a given age (see the bottom texts);
It must be noted that these methods change the apparent
age but retain the varying degrees of identity information.
In total, there were 60 (10×6) tests. The displaying sequence
of all tests was random, and the location sequence of three
generated face images was also random, when the original
face images were always placed on the first row. The eval-
uated metric was defined as the percentage of respondents
who preferred each method.

To measure age closeness of each method, six facial
meshes in different age groups were randomly placed on
one column on six rows (see Fig. 6). For each test, the par-
ticipant was told that the facial meshes with two different
views are the same identity at the different age group, and
then required to use lines to connect the facial meshes (left)
to the corresponding age groups (right). In total, there were
30 (10×3) tests. The displaying sequence of all tests was ran-
dom. The evaluated metric was defined as the percentage of
images correctly assigned by respondents.

To evaluate the quality facial aging geometries with
textures, the facial meshes from our MeshWGAN and SAM
[3], were rendered (with retrieved textures using the same
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Fig. 6. Examples of age closeness evaluation of facial geometries with-
out textures (using our MeshWGAN). For each test, the participant was
told that the facial meshes with two different views are the same identity
at the different age group, and then required to use lines to connect the
facial meshes (left) to the corresponding age groups (right).

direct lighting environment) into two color images. In iden-
tity preservation measurement, one original and two facial
meshes were shown as one column on three rows and the
total testes were 60 (10×6). In age closeness measurement,
the total testes were 20 (10×2).

5 EXPRESSION PROCESSING

In this study, our main objective is to create 3D aging figures
and their expressions are usually neutral. To produce 3D
face Snew with various expressions, the parameterized 3D
facial aging meshes Side with 3DMMs of facial expressions
(e.g., FaceWarehouse [17]) can be used by

Snew = Side +
m∑
i=1

αexp,iPexp,i = Side + Pexpαexp, (4)
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Fig. 7. Examples of 3D facial aging meshes with different expressions.

where, Pexp is the facial expression principal basis, m is the
number of the facial expression principal components and
αexp is the facial expression representation coefficient. For
the input 3D facial meshes Snew with various expressions,
with the 3DMMs of facial shapes (e.g., 3DCMM [18]), it is
only needed to separate the identity Side and expression
Sexp shapes by estimating their corresponding model coef-
ficients [19] as:

Snew = Side + Sexp = S̄ + Pideαide + Pexpαexp, (5)

where S̄ is the average face, Pide is the facial identity
principal basis with n principal components, and αide is the
facial identity representation coefficient. Then, the neutral
facial shape Side (Side = S̄ + Pideαide) was input to our
generator to generate 3D facial aging meshes Si

tra, and they
with the separate expression shape Sexp were combined to
produce the new faces Si

new with the original expression:
Si
new = Si

tra + Sexp, where i indicates the index of the
age group and i=1, 2, ..., 6. Fig. 7 shows some examples
of 3D facial aging meshes with different expressions. It can
be seen that the facial expressions are consistent in different
age groups. This is also the advantage of the parameterized
3D facial meshes that they can be easily manipulated.
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