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MeshWGAN: Mesh-to-Mesh Wasserstein GAN With
Multi-Task Gradient Penalty for 3D Facial

Geometric Age Transformation
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Abstract— As the metaverse develops rapidly, 3D facial age
transformation is attracting increasing attention, which may bring
many potential benefits to a wide variety of users, e.g., 3D aging
figures creation, 3D facial data augmentation and editing. Com-
pared with 2D methods, 3D face aging is an underexplored prob-
lem. To fill this gap, we propose a new mesh-to-mesh Wasserstein
generative adversarial network (MeshWGAN) with a multi-task
gradient penalty to model a continuous bi-directional 3D facial
geometric aging process. To the best of our knowledge, this is the
first architecture to achieve 3D facial geometric age transformation
via real 3D scans. As previous image-to-image translation methods
cannot be directly applied to the 3D facial mesh, which is totally
different from 2D images, we built a mesh encoder, decoder, and
multi-task discriminator to facilitate mesh-to-mesh transforma-
tions. To mitigate the lack of 3D datasets containing children’s faces,
we collected scans from 765 subjects aged 5-17 in combination with
existing 3D face databases, which provided a large training dataset.
Experiments have shown that our architecture can predict 3D facial
aging geometries with better identity preservation and age close-
ness compared to 3D trivial baselines. We also demonstrated the
advantages of our approach via various 3D face-related graphics
applications.

Index Terms—Age transformation, 3D face geometry,
MeshWGAN, mesh generative adversarial networks, multi-task
gradient penalty.
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I. INTRODUCTION

3D AGE transformation is defined as the process of syn-
thesizing 3D meshes of a person’s face across different

ages while preserving their identity. Compared with 2D age
transformation which focuses on 2D face synthesis [1], [2], [3],
[4], [5], [6], the objective of our 3D age transformation is to
synthesize the facial shape and albedo with a normalized face
pose but no illumination information. This can be applied to
many new practical applications, including 3D aging figures cre-
ation in animation, film, virtual and augmented reality (VR/AR),
age-invariant 3D face recognition, 3D facial data augmentation,
and 3D facial attribute editing. With the rapid development
of depth cameras, particularly those in mobile phones, it is
becoming continually easier to capture 3D facial data, which
could make 3D aging transformations more accessible for users.
Additionally, the development of the metaverse could make such
applications more entertaining and popular.

However, creating lifelong transformations of 3D facial
meshes, i.e., synthesizing faces aged 5–70 for any given input
age, is a challenging task. The difficulty of capturing and collect-
ing 3D face datasets exacerbates this problem. While the precise
facial geometry can be captured using different commercial
scanners, the captured textures are usually ill-defined and may
include shading, shadowing, specularities, and light source color
variation [11]. In this paper, existing 2D facial aging [1] and 3D
face reconstruction [7] methods are combined to produce 3D
facial aging textures. We aim at creating natural and reliable
3D facial geometric age transformations for facial meshes aged
5-70 years.

Compared to 2D face age transformations, 3D face age trans-
formations have not been fully explored in the literature. Partly,
the lack of real 3D face datasets has impeded such studies [9],
[12]. While there are many large-scale 2D face images online
that can be used for 2D face age transformations [1], [2], [13],
[14], there are limited publicly available 3D face datasets [15],
[16], [17], and their subjects are mainly adults; child subjects
are scarce. Additionally, the structure of a 3D face is mesh
(consisting of vertices and triangles), which is entirely differ-
ent from a 2D image. Hence, although there are many ma-
ture 2D face age transformation methods, this difference could
potentially cause such methods to struggle with 3D face age
transformations.
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Fig. 1. Bi-directional lifelong age transformation of 3D facial geometries. Given a facial mesh (the red arrow marks the input age group), facial meshes in
different age groups are predicted using our MeshWGAN with a multi-task gradient penalty. Rows 1 and 2: 3D facial aging geometries and texture with a 30o-side
pose. To obtain the 3D facial textures, 2D face images at each age were produced from a projected 2D image using SAM [1] and the corresponding 3D facial
textures were retrieved using an accurate 3D face reconstruction method [7]. Our method can predict the 3D facial shape and size together, which is consistent with
previous anthropometric studies showing that human facial aging is mostly represented by facial growth in children, and by relatively minor shape changes (e.g.,
skin sagging) and significant texture changes in adults [8], [9], [10].

To solve the above problems, we first established a new dataset
of 3D children’s faces to expand the existing 3D face datasets. To
increase the number of child subjects in the training dataset, we
captured 765 children’s faces (ages 5-17 years) and combined
them with the publicly available 3D face datasets. We followed
previously established methods [2], [18], [19] to approximate
the continuous age transformation using a multi-domain age
transferring approach and predefine six age groups: three for
children (ages 5-8, 9-13, and 14-17), and three for adults (ages
18-29 30-49, and 50-70). After that, we developed a novel
mesh-to-mesh conditional Wasserstein generative adversarial
network (MeshWGAN) architecture with a multi-task gradient
penalty to achieve 3D facial geometric lifelong transformations,
as shown in Fig. 1. This method has the ability to represent
the desired 3D facial geometric changes across different ages
while faithfully preserving the 3D facial geometric identity.
Inspired by image-to-image translation architecture (LATS) [2],
we designed a novel mesh generator to achieve a mesh-to-mesh
transformation. The generator consists of an identity encoder
to extract identity features from a facial mesh input, two age
mapping networks to produce latent-and-style age spaces from
a target age, and a decoder to generate the target facial mesh from
the combined latent-and-style age codes and identity features.
This differs from that in LATS which only includes style age
code, but no latent age code. Additionally, compared with LATS,
we also proposed a novel mesh discriminator with different
adversarial losses.

Following previous studies [2], [18], [20], we designed a
multi-task mesh discriminator (with multiple outputs) to dis-
criminate between multiple age groups [18]. However, com-
pared to Wasserstein GAN (WGAN) without gradient penalty
(GP) [21] and WGAN-GP [22] specially designed for a sin-
gle task, we introduced a novel multi-task gradient penalty to

stabilize our multi-task WGAN training. To compute the multi-
task gradient penalty, it was assumed that the uniformly sampled
facial mesh from two facial meshes from the same age group
still belonged to this age group, as facial meshes from the same
age group have similar geometric features [16], [23]. Each-task
gradient penalty was calculated to ensure the generated face
quality in each corresponding age group. Furthermore, in the
mesh discriminator, we improved the facial transformation qual-
ity by merging the vertex positions and normals as the input,
rather than solely the vertex positions.

To the best of our knowledge, this is the first attempt at
mesh-to-mesh translation for facial age transformation. Our
experimental results demonstrated that our MeshWGAN can
predict the 3D facial shape and size together in different ages
well, which is consistent with prior anthropometric studies
showing that human facial aging is mostly represented by facial
growth in children, and by relatively minor shape changes (e.g.,
skin sagging) in adults [8], [9], [10]. The main contributions of
this work are summarized as:
� We propose a novel mesh-to-mesh conditional GAN ar-

chitecture for 3D facial geometric age transformation. Our
generator and discriminator, differing from those in the
image-to-image translation architecture (LATS) [2], can
produce 3D facial aging meshes with better identity preser-
vation and age closeness.

� We develop a multi-task gradient penalty calculation strat-
egy in the training scheme. It differs from the classic
(single-task) WGAN [21], [22], and can more effectively
stabilize the multi-task WGAN training.

� We establish a supplementary, available online, 3D dataset
of real children’s faces, effectively addressing the is-
sues of deficiency of child subjects in existing 3D face
datasets.
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II. RELATED WORK

A. 3D Face Datasets

The cost and difficulty of capturing 3D face scans are much
higher than those for capturing 3D images, resulting in a com-
paratively small number of 3D face datasets. However, there
are a few large-scale publicly available 3D head/face datasets:
HeadSpace (1519 subjects aged 1-89 years, predominantly
white) [16], FaceScape (938 subjects aged 16-70 years, mainly
Asian) [15], FaceWarehouse (150 subjects aged 7-80 years,
various ethnicities) [17], BU-3DFE (100 subjects aged 18-70
years, various ethnicities) [28], Florence (53 white subjects
aged 22-61 years) [29]. These datasets are deficient in child
subjects, making it challenging to develop methods for lifelong
transformations, because facial aging is mostly represented by
significant facial geometric growth in children and minor facial
geometric changes in adults [12]. To solve this problem, we
collected face scans from 765 child subjects aged 5-17 years
and combined them with the available face datasets to use for
training and validation of our MeshWGAN architecture.

B. Face Age Transformation

Previous studies have focused on 2D face age transforma-
tions, and many image-to-image translation methods have been
developed to translate a given image of a specific age into a new
image of a different target age while preserving the individual’s
identity. The successes of image-to-image translations between
two domains (e.g., Pix2Pix [30], CycleGAN [31]) or multiple
domains (e.g., StarGAN [19], [32], STGAN [33], FUNIT [18])
provide much inspirations for the task of 2D face aging. In some
methods (e.g., SAM [1], HRFAE [34], DAAE [5]), facial age
transformation is approached as a continuous-time regression
problem to predict the face image with a specific age. However,
these methods require large datasets of training subjects in
each age and an accurate pretrained age classifier, making them
difficult to apply to 3D face aging. In contrast, many methods
(e.g., Triple-GAN [35], LATS [2], SFA [20]) approximate this
continuous age transformation by representing age with multiple
predefined age groups and use a multi-domain image-to-image
translation to achieve face aging. One benefit of these methods
is reducing the quantity requirement for training datasets. A
comprehensive review of 2D face aging research was presented
in a recent survey [36]. However, compared to 2D face age trans-
formation, which is a well researched and understood problem,
3D face age transformation is still underexplored. Thus, we
propose a mesh-to-mesh transformation to achieve 3D facial
mesh aging.

C. Mesh Convolution Operators

A 3D facial mesh is composed of vertices and triangles, which
is different from 2D images only containing pixels. As a result,
image convolution operators cannot be applied directly to the
task of 3D face age transformation. Therefore, some studies [37],
[38], [39] have converted the 3D facial meshes into 2D domain
maps first and then applied standard 2D convolution operators to
process them. Many studies [26], [40] have attempted spectral

graph convolutions [41] on representations of 3D facial meshes.
To process 3D mesh efficiently, a refined spiral convolution
(Spiral++) [24], [42] has been developed for 3D facial mesh
generation and representation [43], [44]. This mesh convolution
operator sufficiently leverages the local geometric features of
the mesh surface, their superiority over previous state-of-the-art
methods has been demonstrated via experimental results [24],
[44]. Therefore, in this study, we adopted Spiral++ as the mesh
convolution operator and further enhance our network using
weight demodulation in the generator and a multi-task gradient
penalty in the discriminator to create 3D facial aging models.

III. APPROACH

A. Overview

Motivated by unpaired image-to-image GAN architec-
tures [2], [18], [19], [31], [32], we propose a multi-domain
mesh-to-mesh Wasserstein GAN architecture to achieve lifelong
3D facial geometric age transformations. Since there are no
existing large-scale face datasets, we follow previously estab-
lished methods [2], [18], [19] to approximate continuous age
transformation using a multi-domain age transferring approach
and predefine six age groups: three for children (ages 5-8, 9-13,
and 14-17), three for adults (ages 18-29, 30-49, and 50-70).
Furthermore, to achieve the continuous age transformation, an
age latent code interpolation is used in our mesh generator.
Instead of image convolution, we use a mesh convolution (spiral
convolution [24], [44]) as a basic building block to design a
novel generative adversarial network architecture consisting of
a single conditional mesh generator (see Fig. 2) and a single
multi-task discriminator (see Fig. 3). The conditional mesh
generator receives a source facial mesh and a target age group
and outputs a facial mesh of the desired age group, consisting
of three parts: a mesh identity encoder to produce a latent
identity code, two mapping networks to produce a latent/style
age code from an age vector, and a mesh decoder to produce new
meshes from the combination of the identity and age codes. In
the multi-task discriminator in Fig. 3, we combine the vertex
positions and normals as input, instead of solely the vertex
positions. Benefiting from WGAN [21] and WGAN-GP [22],
we introduced a multi-task gradient penalty to stabilize our
WGAN training. To compute the multi-task gradient penalty, we
uniformly sample a new facial mesh between two facial meshes
from the same age group.

B. Foundations

In our architecture, the spiral convolution is used as a core
building block, which sufficiently leverages the local geometric
features of the mesh surface. The spiral convolution operator for
the ith vertex vi based on its featuresxi is defined as follows [24]:

x
(t)
i =

∐(t)

⎛
⎝ ⊎

j∈S(i,l)

x
(t−1)
j

⎞
⎠ , (1)

where
∐(t) and

⊎
donate multi-layer perceptrons and con-

catenation operation, respectively, and S(i, l) is a dataset in
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Fig. 2. Model architecture. SpiralConv.: spiral convolution [24] as the mesh convolution. FC: full connection. Weight Demodulation proposed in StyleGAN2 [25]
is used in the modulated spiral convolution layers. In the downsampling (upsampling) stages, the new vertices are contracted (recovered) using the predefined
barycenteric coordinates of the closest triangle in the decimated mesh [26], where the decimated meshes are generated from the original facial mesh using a surface
simplification method based on quadric error metrics [27]. The network receives a source facial mesh and a target age group and outputs a facial mesh of the desired
age group. Instead of using image convolution operators, we use the mesh convolution operator as the basic building block to design a novel conditional mesh
generator, consisting of three parts, a mesh identity encoder that produces a latent identity code, two mapping networks that produces latent and style age codes
from an age vector, and a mesh decoder with modulated convolution layers that produces new meshes from the combination of latent identity and age codes.

Fig. 3. Training scheme. Two facial meshes x̂s and x̂t are sampled from a source age group s and a target age group t (t �= s), respectively. Note that a multi-task
gradient penalty was developed to stabilize the Wasserstein GAN training.

Fig. 4. Example of Spiral++ [42] on a facial mesh. There is one parameter
(spiral length) to determine the number of vertices in ordered set.

a predefined spiral sequence consisting of l vertices from a
concatenation of k-rings. An example of Spiral++ on a facial
mesh is shown in Fig. 4. Before training model with Spiral++, the
spiral length needs to be determined first and then the ordered set
of each vertex is confirmed using spiral pattern-based encoding
approach [42].

C. Architecture

Our model architecture of inference is shown in Fig. 2 and the
age encoder and multi-task discriminator are shown in Fig. 3.

The conditional generator receives an input facial mesh and a
target age group and outputs a facial mesh of the desired age
group. In our pre-processing steps, the input facial meshes x̂ are
parameterized and aligned to a facial mesh template m̄.

Conditional Generator: We use a predefined vector trans-
former (proposed in LATS [2]) to convert the input target age
group i into a vector αi with l × n elements: αi = νi + s,
s ∼ N (0, 0.22· I), where n is the number of age groups, νi
is an l × n element vector that contains ones from l × i to
l × (i+ 1)− 1 and zeros elsewhere, and I is the identity matrix.
Then, two mapping networks Mz and Mt with an eight-layers
MLP network embed an age vector α into a latent code zage and
a style code tage with unified Ne elements: zage = Mz(α) and
tage = Mt(α), respectively.

The identity encoder Eide contains four downsampling layers
followed by one fully connected layer. It takes the mesh differ-
ence x between an input facial mesh x̂ and the facial template
m̄ : x = x̂− m̄, and extracts its geometric structure features
with Ne elements as a latent identity code: zide = Eide(x).
The benefit of inputting vertex positions differences rather than
vertex positions is a reduction in the network learning dif-
ficulty, because the facial template has already provided the
basic facial structure information in the network. The decoder
F contains one fully connected layer and four upsampling
layers. To control the facial geometric detail changes, we apply
a weight demodulation with the style code tage (proposed in
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StyleGAN2 [25]) in the modulated spiral convolution layers as
shown in Fig. 2. It receives the combination code z with Ne × 2
elements (concatenated from the latent age zage and identity
zide code), and outputs a new mesh difference y at the original
size: y = F (z) = F ([zide, zage], tage). The new facial mesh ŷ
can be calculated using the mesh difference y and the facial
template m̄: ŷ = y + m̄. The output mesh difference y of our
overall generator G from an input facial mesh difference x and
an input target age vector α is

y = G(x, α) = F ([Eide(x),Mz(α)],Mt(α)) . (2)

Multi-Task Discriminator: To distinguish between real and
fake meshes from multiple age groups, we develop a multi-task
mesh discriminator (see Fig. 3). For a real or fake facial mesh
from age group i, we penalize only the ith output. The dis-
criminator D contains eight downsampling layers and four fully
connected layers with a minibatch standard deviation to output
n values. In each downsampling stage, the number of vertices
is reduced by half. In the discriminator, we merge the mesh
difference x and normals n̂ as the input [x, n̂], rather than solely
using the vertex positions. Combined with vertex positions, the
vertex normals, as another critical 3D facial features, are used
to enhancing the discriminator’s distinguishing ability, thereby
improving facial transformation quality.

Age Encoder: An age encoder of the facial mesh is not used
for inference, but only in training (see Fig. 3). The age encoder
Eage enforces a mapping of the input facial mesh difference
x into its corresponding age vector α: α = Eage(x). The age
encoder contains four downsampling layers (the same ones as
that of the identity encoder) and four fully connected layers
to output a vector with l × n elements. In the generator, dis-
criminator and age encoder, the spiral convolution [24] is used
as a basic building block. In the downsampling (upsampling)
stage of Fig. 2, the new vertices are contracted (recovered) using
predefined barycenteric coordinates of the closest triangle in the
decimated mesh [26] and the number of vertices is decreased
(increased) fourfold.

D. Training

To calculate the multi-task gradient penalty and mitigate the
imbalance influences between age groups, two facial meshes
(x̂s and x̂t) are sampled from a source age group s and a target
age group t (t �= s), respectively, in each training iteration. Fig. 3
shows an overview of our training scheme. Then, three new facial
mesh differences are produced from the conditional generator,
using

yrec = G(xs, αs), ytra = G(xs, αt), ycyc = G(ytra, αs),
(3)

where, yrec is the self-reconstructed mesh difference at source
age group s, ytra is the transformed mesh difference at target
age group t and ycyc is the cyclic transformed mesh difference
at source age group s from the mesh difference ytra. The
corresponding facial meshes are retrieved based on the facial
mesh template m̄, via

ŷres = yrec + m̄, ŷtra = ytra + m̄, ŷcyc = ycyc + m̄. (4)

These reconstructed meshes are used to compute their vertices
normals n̂res, n̂tra and n̂cyc. For each output in multi-task dis-
criminator, the critic losses for real and fake facial meshes, and
their gradient penalties are calculated. Particularly, to calculate
their gradient penalties, the real and fake facial meshes should
come from the same age group, and their uniformly sampled
facial mesh is also needed. Hence, a new facial mesh difference
xu is uniformly sampled along straight lines between the target
xt and transformed ytra mesh difference as

xu = ε× ytra + (1− ε)× xt, (5)

where ε is a random number: ε ∼ U [0, 1] and the correspond-
ing facial normals are n̂u. These inputs and outputs are used
to calculate the objective functions of the model: adversarial
loss, self-reconstruction loss, cycle consistency loss, identity
preservation loss, and age consistency loss.

Adversarial Loss: An adversarial loss Ladv(G,D) of WGAN
is used to criticize the fake ytra and real xt facial meshes’
differences from the same age group t, and enforce the Lipschitz
constraint by calculating a gradient penalty for the random
samples xu, as shown in Fig. 3

Ladv(G,D) = Ext,t[D([xt, n̂t])]− Eytra,t[D([ytra, n̂tra])]

+ λExu,t[(‖ �[xu,n̂u] D([xu, n̂u])‖2 − 1)2],
(6)

where λ is usually set as 10 [22]. For a real, fake or sampled
facial mesh from age group i, only the ith element in the output
vector of discriminator D is used as the final discriminating
result. Unlike WGAN-GP [22] for single-task discriminator,
our gradient penalty calculation strategy is especially designed
for multi-task discriminator. Additionally, The objective of con-
sidering the combination of vertex positions and normals is to
improve the discriminator distinguish ability.

Self-Reconstruction Loss: A self-reconstruction loss
Lrec(G), consisting of facial vertex-wise positions’ and
normals’ consistency losses between xs and yrec, is employed
to force the conditional generator to learn the facial mesh
identity translation as

Lrec(G) =
1

N

∑
‖xs − yrec‖22 +

1

N

∑
(1− cos(n̂s, n̂rec)),

(7)
where, N is the number of vertices in the facial mesh. The
normals’ consistency loss is calculated by measuring the cosine
similarity cos(·) of each per-vertex normal to guarantee the mesh
surface smoothness.

Cycle Consistency Loss. A cycle consistency loss Lcyc(G)
[31] is enforced to help maintain the facial mesh identity, which
also consists of facial vertex-wise positions’ and normals’ con-
sistency losses between xs and ycyc as

Lcyc(G) =
1

N

∑
‖xs − ycyc‖22 +

1

N

∑
(1− cos(n̂s, n̂cyc)).

(8)
Identity Preservation Loss: An identity preservation loss

Lide(G) is used to enforce the generator to maintain the input
facial mesh identity by minimizing the L1 distance between the
latent identity code of the input xs and transformed ytra facial
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Fig. 5. Examples of our child face scans (on the left arrow) and the resulting
parameterized faces (to the right of each arrow) created using the NICP algo-
rithm. We captured and registered the faces of 765 children ages 5-17 years,
around 30 female and 30 male children of each age, to compensate for the lack
of child subjects in the existing datasets.

meshes as

Lide(G) = ‖Eide(xs)− Eide(ytra)‖1. (9)

Age Consistency Loss: An age preservation loss Lage(G) is
used to enforce the generator to represent the facial geometric
features in the target age group by minimizing the theL1 distance
between the input αs, αt and output age vector from the age
encoder Eage as

Lage(G) = ‖Eage(xs)− αs‖1 + ‖Eage(ytra)− αt‖1. (10)

According to the above, G and D are trained to minimize the
following optimization loss functions as

min
G

max
D

Ladv(G,D) + ωrecLrec(G) + ωcycLcyc(G)

+ ωideLide(G) + ωageLage(G), (11)

where ωrec, ωcyc, ωide, and ωage are the hyper-parameters for
the respective loss terms.

IV. EXPERIMENTS

A. 3D Face Datasets

To establish a large 3D face dataset with sufficient age infor-
mation, we collected existing 3D head/face datasets, including
HeadSpace [16], FaceScape [15], FaceWarehouse [17], BU-
3DFE [28], Florence [29], and Adult-Heads [45]. To compensate
for this lack of children subjects, we captured 765 children faces
ages 5-17 years, as shown in Fig. 5. More information about
our children’s head dataset is provided in our supplementary
file, available online. All facial scans were parameterized using
an optimal step nonrigid iterative closest point (NICP) algo-
rithm [46] and aligned to a facial template using procrustes anal-
ysis (PA) [47]. All facial meshes have 5,000 vertices and 9,449
triangles. Finally, these datasets - Adult-Heads, HeadSpace,
FaceScape, FaceWarehouse, BU-3DFE and Florence, our newly
created Children-Faces - provide 1,763, 1,242, 823, 150, 96, 51,
and 765 faces, respectively, for a total of 4,890 subjects aged
2-90 years.

These faces were classified into six age groups: three for
children (ages 5-8, 9-13, and 14-17) and three for adults (ages
18-29, 30-49, and 50-70). The statistical information of all
subjects is shown in Fig. 6. There are around 70.1% Chinese
and 29.9% Caucasian. In each group, there are 285, 364, 253,
1,771, 1,165 and 950 identities in sequence, respectively. In total,
there are 4,788 identities (2,393 female and 2,395 male), where
75/75 subjects from various age groups of HeadSpace dataset

Fig. 6. Age and sex information of subjects in all collected face datasets.
Our newly created child dataset includes 765 subjects ages 5-17 years, which
accounts for 85% of the total children subjects in training dataset.

were used as the validation/testing data and the remaining 4,628
as the training data.

B. Implementation and Training Details

To train our networks, the Adam optimizer [48] was used
with an initial learning rate of 10−3, total iterations of roughly
200 k, and a batch size of 16. The learning rate was decayed by
0.5 after 150, 300, and 450 epochs, and the learning rate of the
mapping network was decreased by a scale of 0.1. Our model
was implemented via Pytorch [49] and PyTorch Geometric [50].
All hyper-parameters - ωrec, ωcyc, ωide, and ωage - were set
as 1. In the generator, the length l × n in the age vector was
set as 50×6 and the lengths Ne of latent age/identity code
and style age code were set as 256. Since the facial mesh
parameterization is a well-researched and -understood prob-
lem, the input facial mesh is produced from face/head scans
using the NICP algorithm [46] and aligned to a facial template
using the PA method [47]. The output facial meshes are up-
sampled to a new high-resolution mesh (847,900 vertices and
1,693,440 triangles) for generating high-resolution texture and
high-detail geometry (see our supplementary file, available on-
line).

C. Ablation Study

We performed four qualitative and quantitative ablation stud-
ies in order to prove our main claims, including the combination
of latent and style age codes in the generator, the adversarial loss
with a multi-task gradient penalty in the discriminator, the input
combination of vertex positions and normals in the adversarial
loss, and cycle consistency loss.

1) Qualitative Analysis: In the first study, we compared the
single and combination usages of latent and style age codes
to demonstrate the superiority of our generator architecture,
as shown in Fig. 7. In Fig. 7(a), the generator with a single
latent age code is almost identical to Neural3DMM [44] also
based on Spiral++ (their main difference is that the input of
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Fig. 7. Qualitative results of ablation study for input age codes in generator
(the red arrow marks input age group). (a) With a single latent age code. (b) With
a single style age code. (c) With a combination of latent and style age codes. Note
that generator (c) has the advantages of both generators (a) and (b), and achieve
facial geometric aging while maintaining consistent identity features. Generator
(a) is almost identical to Neural3DMM [44], and generator (b) is similar to that
of LATS [2] which applies weight demodulation [25] to all layers of the decoder.

generator in Fig. 7(a) is facial mesh with 5,000 points, while
that of Neural3DMM is head mesh with 5,023 points). The
generator in Fig. 7(b) is similar to LATS [2], which applies
the weight demodulation [25] with a single style age code to
all layers of the decoder, including the full connection and the
spiral convolution layers. For the generator in Fig. 7(a), the facial
geometries have consistent identity features, but nearly remain
unchanged in the three adult groups (indicated by the red rect-
angles). Particularly, the chin regions of the elderly (50-70) are
nearly same as those of the young (18-29), which are inconsistent
with the actual situation where the elderly have loose and sagging
skin on the chin. In comparison, for the generator in Fig. 7(b),
the facial geometries have distinct aging features for children
and adult groups, but inconsistent identity features. Specifically,
compared to the input face, the child face (5-8, indicated by
the red rectangles) has a long and pointed chin. Fortunately,
our generator in Fig. 7(c) using both latent and style age codes,
can overcome the limitations of both generators and obtain their
respective advantages to achieve facial geometric aging with
consistent identity features, which proves the superiority of our
combination usage of latent and style age codes.

In the second study, we compared our adversarial loss with
a multi-task gradient penalty to a classic multi-task adver-
sarial loss (which has been widely used in previous studies,
e.g., FUNIT [18], SAF [20] and LATS [2]). This classic loss
was also fed by vertex positions and normals of facial mesh
in this study, using Ladv(G,D) = Ext,t[logD([xt, n̂t])] +
Eytra,t[log(1−D([ytra, n̂tra]))]. Here, a non-saturating ad-
versarial loss with R1 regularization, proposed in LATS [2],
was used to replace our adversarial loss to train our network.
Their comparison results are illustrated in Fig. 8(a) and (c),
clearly showing that a generator using classic adversarial loss
in Fig. 8(a) can easily lead to distorted facial geometries (in-
dicated by the red rectangles), including eye and ear regions.
In comparison, with our adversarial loss in Fig. 8(c), our gen-
erator can produce high-quality natural facial geometries. To
further demonstrate the ability of our adversarial loss to stabilize

Fig. 8. Qualitative results of ablation study for adversarial loss and input vertex
information in multi-task discriminator (the red arrow marks input age group).
(a) Using classic multi-task adversarial loss in LATS [2]. (b) Inputting a single
vertex position. (c) Using our adversarial loss with multi-task gradient penalty
and inputting combination of vertex positions and normals. Note that compared
with discriminator (a), our discriminator (c) has better discriminating ability,
thereby making the generator produce better facial aging geometries; compared
with discriminator (b), our discriminator (c) also has better distinguishing ability,
thereby making the generator produce more natural facial aging geometries.

Fig. 9. Trends of generator’s combined loss for using two different adversarial
losses in multi-task discriminator. While classic GAN suffers from overfitting,
ours shows consistent stability in training GAN.

training, we compared the training loss Lcom(G) curves with
and without our gradient penalty in multi-task discriminator
(see Fig. 9), whereLcom(G) = ωrecLrec(G) + ωcycLcyc(G) +
ωideLide(G) + ωageLage(G). While classic GAN suffers from
overfitting, our proposed approach shows consistent stability in
training GAN. It further demonstrates the advantage of using
our adversarial loss with a multi-task gradient penalty.

In the third study, we showed the importance of using com-
bined vertex positions and normals in the adversarial loss to
improve facial transformation quality. Fig. 8(b) and (c) show two
sets of facial geometries using a discriminator with combined
vertex positions and normals. For the discriminator in Fig. 8(b),
that received only a single vertex position, it is evident that the
facial geometries of the children’s age groups do not resemble
the input facial mesh, especially the age groups 5-8 and 14-17.
As indicated by the red rectangles (teenager, 14-17), the shapes
of cheek, eye, and mouth regions clearly do not look like those
of input face; and the overall size is also nearly same as that of
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Fig. 10. Qualitative results of ablation study for cycle consistency loss in
the training scheme (red arrow marks the input age group). (a) Without cycle
consistency loss. (b) With cycle consistency loss. Note that our training scheme
(b) can produce more natural facial aging geometries.

the adult (18-29). However, in reality, the teenager’s face size
should be less than that of the adult. This could be because
the single facial vertex position limit the discriminator’s distin-
guishing ability. In comparison, our discriminator in Fig. 8(c)
with the combination of vertex positions and normals was able to
make our generator produce facial aging geometries with better
identity preservation for the Caucasian, even when most of the
child subjects in the training dataset are East Asian.

In the fourth study, we demonstrated the importance of using
cycle consistency loss to learn age codes in the 3D facial age
transformations. Fig. 10 shows two sets of facial geometries
using a training scheme without/with cycle consistency loss. For
the training scheme without cycle consistency loss in Fig. 10(a),
it can be found that the facial geometries of the younger age
groups (5-8 and 9-13) (indicated by the red rectangles) have
many folds and there are minor but not noticeable changes in
shape between the 14-17 and 18-29 groups (indicated by the red
rectangles), which is inconsistent with previous anthropometric
studies showing that the 3D facial shape grows from adolescence
to adulthood [10]. By contrast, our training scheme in Fig. 10(b),
which includes cycle consistency loss, can produce more natural
aging of facial geometries, which indicates that cycle consis-
tency loss should be included in the training scheme to produce
high-quality facial aging.

2) Quantitative Analysis: To further support our main
claims, in addition to the qualitative analysis, quantitative analy-
sis of the ablation study was also conducted as shown in Fig. 11,
including Fig. 11(a) identity preservation, and Fig. 11(b) age
closeness. To compare their abilities of identity preservation,
the cosine similarity of latent identity codes between aging
and original 3D facial meshes was computed. To compare
their abilities of age closeness, the euclidean distance of age
vectors for each aging 3D facial mesh was also calculated. The
quantitative results (using the paired-samples t-test) in Fig. 11
show our MeshWGAN has the best global performance, our
proposed adversarial loss with multi-task gradient penalty in
discriminator can most significantly improve the quality of
identity preservation, and our proposed combination of latent
and style age codes in generator can most significantly increase
the accuracy of age closeness. In particular, there are two major
differences between MeshWGAN and LATS [2]: the generator
and discriminator. In the first ablation study, the qualitative and
quantitative comparison of our generator in Fig. 7(c) and LATS’s

Fig. 11. Quantitative results of ablation study (using the paired-samples t-
test). (a) Identity preservation between aging and original 3D facial meshes:
average (± standard deviation) cosine similarity of latent identity codes. (b) Age
closeness of aging 3D facial meshes: average (± standard deviation) euclidean
distance of age vectors. ns (no significance) =p>0.05; ∗ ∗ ∗=p ≤ 0.001; ∗ ∗ ∗∗
=p ≤0.0001.

generator [2] in Fig. 7(b) demonstrated that the architecture
of our generator is more reasonable and competitive, as our
generator can produce the facial meshes with more consistent
identity and more accurate age. In the second ablation study,
the qualitative and quantitative comparison of adversarial loss
in our discriminator in Fig. 8(c) and LATS’s discriminator [2]
in Fig. 8(a) further demonstrated that our adversarial loss can
stabilize training and produce much better results.

D. Method Evaluations

Since there are no objective metrics to evaluate the quality
of 3D facial age transformation, qualitative comparisons and
evaluations were performed to demonstrate our superiority.

1) Comparisons With 3D Trivial Baselines: To demonstrate
the superiority of our method, we compared ours with two
3D trivial baselines: 1. 3D aging faces without geometric
transformation, and 2. 3D aging faces with same geometric
transformation among age groups. 3D facial textures of SAM
were retrieved using a Deep3DFace-based [7] 3D facial texture
mapping method (its details are provided in our supplementary
file, available online) and applied into all facial aging meshes,
as shown in Fig. 12.

In the first baseline without geometric transformation of
Fig. 12(a), the unmatching of the textures and geometries is
noticeable. Particularly, the faces of the kids aged 5-8 years still
resemble the elder, even though it has the rejuvenated textures.
This is because that the original facial geometry of the elderly has
sagging skins. In comparison, our facial shapes of the younger
with unified geometric sizes in Fig. 12(c) are more natural and
harmonious when the smooth facial geometries and rejuvenated
textures are integrated. Especially, our kid’s facial geometries
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Fig. 12. Qualitative comparisons with 3D trivial baselines using the same texture transformation from SAM [1]. (a) Baseline 1 without geometric transformation.
(b) Baseline 2 with the same geometric transformation among age groups. (c) MeshWGAN with unified geometric sizes. (d) MeshWGAN. Note that the unmatching
of the textures and geometries in trivial baselines (a) and (b) is noticeable, where the kid’s and elder’s faces resemble similar even though with different textures;
in comparison, our geometric changes between different age groups in our MeshWGAN (c) and (d) are significant (including facial sizes and shapes), especially
our kid’s facial geometries have fatter cheek and receding chin, which is more consistent with the objective anthropometric features.

Fig. 13. Visualization of average facial mesh and their differences. (a) Average
facial meshes in each age group. (b) Per-vertex distance of combined shape and
size (lower left) and shape with unified size (upper right) between two age
groups. In the (i, j) per-vertex distance map, the red/blue(green) indicate that
the vertex in the ith face mesh is more outwards/inwards on the jth face mesh
surface, where i/j is the location of row/column, i/j=1,2,...,6.

has fatter cheek and receding chin, which is more consistent
with the objective anthropometric features.

In the second baseline, average facial meshes m̄i in each age
group were calculated (see Fig. 13(a)) and their mesh difference
di,j of two age groups were computed (di,j = m̄i − m̄j , see
the lower left of Fig. 13(b)) and applied into the input facial

mesh x̂j (in jth age group) to produce the facial aging meshes:
x̂i = x̂j + di,j , as shown in Fig. 12(b). It can be clearly found
that facial meshes of the younger still remain the facial features
of the elderly. By contrast, our rejuvenated facial meshes in
Fig. 12(d) have more smooth surfaces, which totally differs from
these in Fig. 12(b). This comparison also shows such single facial
size changes cannot achieve the 3D facial geometric aging.

To further demonstrate the necessity of facial geometric
changes for 3D facial aging, we calculated the per-vertex shape
or size distance of pairwise average facial meshes in different age
group, as shown Fig. 13(b). The results show that the pairwise
facial shapes and dimensions are significantly different and the
faces change with the increasing age, which is consistent with
previous anthropometric studies [8], [9], [10]. It indicates that
the objective facial geometric changes should be achieved for
3D facial aging, including facial shapes and sizes.

2) Comparisons With 2D Aging Methods: Compared to 2D
face aging, 3D facial geometric age transformation is still an
underexplored problem. Therefore, we compared our facial ge-
ometric aging results with the 3D facial shapes reconstructed
from 2D facial aging results produced by three state-of-the-art
methods (LATS [2], DLFS [51] and SAM [1]). Both LATS and
DLFS are multi-domain translation methods using different age
groups, but we were able to leverage its age latent space to pro-
duce face images in our age groups. Based on the generated face
images, 3D facial shapes were reconstructed using a state-of-the-
art 3D face reconstruction method (Deep3DFace) [7]. For our
MeshWGAN, because of our 3D facial geometric aging without
texture changes, the 3D aging face meshes were rendered and
projected using the reconstructed textures from SAM [1] for
better visual perception and comparison. Particularly, to reduce
the mesh-and-texture mismatches in the elders’ facial meshes,
we leveraged a pix2pixHD [52] to predict displacement UV map
to express and produce 3D facial detailed geometry. Its details
are provided in our supplementary file, available online.
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Fig. 14. Qualitative comparisons with state-of-the-art facial aging methods (the red arrow marks input age group). (a) LATS [2] with Deep3DFace [7].
(b) DLFS [51] with Deep3DFace [7]. (c) SAM [1] with Deep3DFace [7]. (d) Our MeshWGAN with 3D facial textures reconstructed using 2D aging images
from SAM [1].

The qualitative comparisons of different age transformation
methods are shown in Fig. 14. The facial shapes reconstructed
using SAM do not contain size information and are nearly
unchanged with increasing age. The facial shapes created using
LATS/DLFS change with age for children ages 5-17, but they
are similar for adults ages 18-70. Furthermore, the reconstructed
facial shapes do not visually resemble the input facial mesh.
In comparison, the aging pattern of our facial geometries is
consistent with previous anthropometric studies showing that
the human facial aging is mostly represented by facial growth in
children, and by relatively large texture changes and minor shape
changes in adults [8], [9], [10]. In particular, our elderly facial
geometries have marked skin sagging on the cheek and chin
regions, and wrinkles on the forehead and the corners of eyes.
In addition, our facial geometries visually resemble the input
facial mesh, which indicates that they have consistent identity
features. Thereby, it is clear that our facial geometries are an
improvement over the visual quality of 3D aging via SAM when
the reconstructed 3D facial textures from SAM are used.

3) Human Evaluations: To demonstrate the superiority of
our MeshWGAN further, we conducted a user perceptual study
to evaluate our results and those created using LATS [2] and

SAM [1]. We recruited thirty respondents with experience in
3D graphics/animation design. They were asked to evaluated
each generated facial mesh in terms of identity preservation
and age closeness. In the experiment, ten facial meshes were
input into each method, and the corresponding facial meshes for
each of our six age groups are rendered with solid colors using
the same direct lighting environment, as well as projected into
two color images (512×512 pixels) showing front and 30o-side
views respectively.

For measuring identity preservation, we mixed and showed
the rendered images (with the same identity and age group) gen-
erated from three methods side-by-side, and asked participants to
select which image best portrayed an individual with a consistent
identity. The evaluated metric was defined as the percentage
of respondents who preferred each method. To measure age
closeness for each method, we adopted another approach in
which the participants were asked to assign the mixed rendered
images of the same identity in each of our six age groups to the
estimated age group. The evaluated metric was defined as the
percentage of images correctly assigned by respondents. Their
evaluation results are shown in Table I and overall evaluation
comparisons are shown in Fig. 15(a) and (b). The paired-samples
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Fig. 15. Overall human evaluation results from 30 respondents. (a) Identity
preservation evaluation of facial geometries without textures. (b) Age close-
ness evaluation of facial geometries without textures. (c) Identity preservation
evaluation of facial geometries with the same textures from SAM [1]. (d) Age
closeness evaluation of facial geometries with the same textures from SAM [1].
∗=p ≤ 0.05; ∗∗=p ≤ 0.01; ∗ ∗ ∗∗=p ≤0.0001. Note that the paired-samples
t-test results show that the p-value between our MeshWGAN and LATS/SAM
in each subfigure is less than 0.05, which indicates that our method is more
competitive.

Fig. 16. Continuous age transformations using interpolation of latent and style
age codes (the red arrow marks input age group).

Fig. 17. Head completion (second row) and avatar creation (third row) from
3D aging faces (first row). With our faces, full heads can be predicted using a
face-to-head model regression method [54]. In the third row, changes of hair and
hairstyle are not represented.

TABLE I
QUALITY EVALUATION OF FACIAL GEOMETRIES WITHOUT TEXTURES,
INCLUDING IDENTITY PRESERVATION (IP) AND AGE CLOSENESS (AC)

TABLE II
QUALITY EVALUATION OF FACIAL GEOMETRIES WITH TEXTURES, INCLUDING

IDENTITY PRESERVATION (IP), AND AGE CLOSENESS (AC)

t-test results show the p-values between our MeshWGAN and
LATS/SAM in terms of identity preservation and age closeness
are less than 0.05, which indicates that our method can produce
aging facial geometries with more consistent identity and age
features.

To further demonstrate that our facial geometries can improve
the visual quality of 3D aging in images rendered using SAM,
we used the same method to measure identity preservation and
age closeness of images generated via two methods - our Mesh-
WGAN aging facial geometries with SAM textures, and SAM
aging facial geometries with SAM textures - as shown in Table II,
Fig. 15(c) and (d). The paired-samples t-test result had a p-value
of less than 0.05, which indicates our aging facial geometries
can significantly improve the original visual quality of facial
aging images generated by SAM. This also demonstrates the
superiority to achieve 3D facial texture and geometry aging
together.

4) Age Interpolation: Although we only used facial meshes
from different age groups to train our model, there is one
approach to achieve continuous age transformations using age
code interpolation, as shown in Fig. 16. Our model possesses
the ability to generate continuous age transformations by inter-
polating a new latent age code z̈age between two other latent
age codes ziage and zi+1

age generated from two neighboring age
groups i and i+ 1: z̈age = ε× ziage + (1− ε)× zi+1

age , as well
as inserting a new style age code ẗage between the two other
style age codes tiage and ti+1

age generated from two neighboring
age groups i and i+ 1: ẗage = ε× tiage + (1− ε)× ti+1

age where
ε is an interpolation parameter within [0, 1]. Then, a new facial
mesh ÿ is produced using the decoder F from a concatenation of
the input latent identity code zide, the new latent age code z̈age
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Fig. 18. Generalization ability comparison of two 3DMM. (a) Original 3DMM. (b) Augmented 3DMM, with average shape (shown in center) and first four
principal components (PCs) with a weight of 3σi (white circle labels) and -3σi (black circle labels), where σi is the standard deviation of the corresponding
PC. (c) Cumulative explained variations. Respectively, 44 PCs in original/augmented 3DMM explain 99.50%/97.94% of their training dataset variance. (d) Mean
reconstructed mesh errors.

and the new style age code ẗage: ÿ = F ([zide, z̈age], ẗage). From
Fig. 16, it can be seen that there is obvious continuous facial
geometric growth with preserved identity, which indicates our
method successfully achieved continuous age transformations
using the interpolation of latent and style age codes.

5) Runtime Analysis: Runtime performance was tested on a
computer with an NVIDIA GeForce RTX 3,090 GPU (24 GB
of memory). After a face scan is received, there are only two
main steps: facial mesh parameterization and aging face genera-
tion. Mesh parameterization from a face scan using AMSGrad-
based [53] NICP algorithm, as an optimization method, takes
around 77.5 seconds. Then, the generation of facial meshes
in our six age groups using our MeshWGAN took around
2.4 seconds.

E. Application Scenarios

Our proposed 3D face age transformation method can be
applied to many face-related 3D graphics applications, e.g., 3D
aging figures/avatar creation, 3D age-invariant face recognition,
3D facial data augmentation, 3D facial attribute editing. In this
section, we show two typical applications.

1) 3D Aging Avatar Creation: Creating realistic digital hu-
mans is an increasingly important task in various immersive
applications [55] and 3D aging avatar design can bring much
fun to this task, especially in the metaverse. Furthermore, 3D
aging figures in animation are still created manually by profes-
sional designers, a manual workload that can be significantly
reduced with the assistance of our proposed method. Fig. 17
shows examples of head completed and avatar created from our
3D aging faces. A face scan can be easily captured using 3D
scanners, e.g., Artec Eva3D scanner, smartphone 3D scanner,
and then parameterized and aligned with a facial template using
using the NICP algorithm [46] and PA method [47]. With aging
faces derived from the parameterized face, the full heads can be
predicted using a face-to-head model regression method [54],
[56] and then transferred to the avatar, with face preservation
based on a digital human face template with hair and other
accessories.

Fig. 19. Limitation of the proposed method. For example, facial hair (e.g.,
long beards) may lead to inaccurate generation of the chin region.

2) 3D Face Data Augmentation: 3D face datasets are criti-
cally important for achieving the 3D age-invariant face recogni-
tion and building a powerful 3D morphable model (3DMM). The
3DMM is widely used in the task of 3D face reconstructions from
2D images and 3D scans [57]. With our 3D face aging method,
one input face can generate five faces of different ages, which
can augment the original dataset effectively. To demonstrate
this, we used original 50 faces and their augmented 300+50
faces to establish two 3DMMs using a principal components
analysis (PCA)-based method [23] with unifying their face sizes
using general procrustes analysis (GPA) [47] and comparing
their generalization ability with an additional 300 subjects, as
shown in Fig. 18. For a fair comparison, we selected the same
number (44) of principal components (PCs) that can explain
99.50%/97.94% in original/augmented 3DMM of the training
dataset variance. The average (± standard deviation) distance
between the reconstructed and original facial meshes are 1.83 (±
0.31) mm and 1.65 (± 0.27) mm for the original and augmented
3DMMs, respectively, and their p-value is less than 0.005 using
a paired-samples t-test. This demonstrates that our method can
significantly augment the generalization ability of a 3DMM.

V. CONCLUSION AND FUTURE WORK

We devised a new MeshWGAN architecture with a multi-task
gradient penalty to model a continuous bi-directional 3D facial
geometric aging. Various experiments showed that our method
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can predict better facial geometry across different age groups
and produce facial geometries more consistent with the input
face in the same age group, and the geometric aging process of
our method is consistent with previous anthropometric studies.
Our model successfully achieved continuous age transforma-
tions via age codes’ interpolation. However, our method has its
limitation. One is that the facial aging geometries are affected
by facial hair (e.g., long beards, see Fig. 19), which may result
in inaccurate generation of facial regions. This is because the
training dataset contains few such uncommon subjects. Besides,
to ensure enough training data in each age group, the age ranges
within these defined groups (especially 30-49) may be broad.
Developing a way to solve these limitations and extending our
work to broad 3D face-related translations are directions well
worth exploring in future studies.
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