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Abstract

Diffusion transformers have shown exceptional perfor-

mance in visual generation but incur high computational

costs. Token reduction techniques that compress models by

sharing the denoising process among similar tokens have

been introduced. However, existing approaches neglect the

denoising priors of the diffusion models, leading to sub-

optimal acceleration and diminished image quality. This

study proposes a novel concept: attend to prune feature

redundancies in areas not attended by the diffusion pro-

cess. We analyze the location and degree of feature redun-

dancies based on the structure-then-detail denoising priors.

Subsequently, we introduce SDTM, a structure-then-detail

token merging approach that dynamically compresses fea-

ture redundancies. Specifically, we design dynamic visual

token merging, compression ratio adjusting, and prompt

reweighting for different stages. Served in a post-training

way, the proposed method can be integrated seamlessly into

any DiT architecture. Extensive experiments across various

backbones, schedulers, and datasets showcase the superior-

ity of our method, for example, it achieves 1.55× accelera-

tion with negligible impact on image quality. Project page:

https://github.com/ICTMCG/SDTM .

1. Introduction

Diffusion transformers (DiTs) [33] are flourishing in im-

age [6, 9, 11] and video [18, 30, 51] generation, and have

been adopted as the fundamental model of Sora [3]. How-

ever, heavy computational redundancies slow down infer-

ence and drive the need for acceleration techniques.

Several sampler-based methods aim to optimize denois-

ing steps through sampler optimization [27, 42] or distil-

lation [31, 39], and model-based studies focus on prun-

ing [4, 10], quantizing [12, 20], or caching [29, 45] architec-
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Figure 1. Illustration. Upper: Our SDTM represents a dynamic

multi-resolution generation process by reducing feature redundan-

cies in areas not unattended by the denoising process. Lower:

Compared to the baseline method, our approach achieves 1.55×

acceleration with negligible impact on generation quality.

tural redundancy. Due to the inflexibility of these methods

for diverse data and evolving requirements, various studies

introduced token reduction [2, 22, 32, 37] to reduce feature

redundancy. For instance, ToMeSD [1] and AT-EDM [44]

compress similar or unimportant tokens, where DyDiT [50]

and TokenCache [26] train a dynamic module to prune or

cache unnecessary computation. However, these feature-

based approaches often require additional fine-tuning or

overlook the denoising priors, resulting in suboptimal accel-

eration, diminished image quality, and limited applicability.

In this paper, we propose a novel view: attend to prune

feature redundancies in areas not attended by the diffusion

process. Initially, we observe the evolution of low and high

frequencies within DiT and confirm that diffusion trans-

formers still adhere to the structure-then-detail denoising

priors: they allocate less attention to less-structure tokens in



the early steps and to weak-detail tokens in the later steps.

Subsequently, we hypothesize that these unattended tokens

may be redundant, and we validate this hypothesis by track-

ing the location of feature redundancies. Furthermore, we

find that the degree of feature redundancy in the early diffu-

sion process is significantly greater than in the later stages.

Based on the above priors, we introduce SDTM, a novel

structural-then-detail token merging approach that dynam-

ically reduces token redundancies stepwise without requir-

ing additional fine-tuning. For visual token merging, we

develop a similarity-prioritized structural merging method,

an inattentive-prioritized detail merging method, supple-

mented by time-wise ratio adjusting to alter the compres-

sion degree at different stages. From the perspective of

prompt guidance, we design a time-wise prompt reweight-

ing to optimize the guidance direction at different steps. In

summary, the contributions of this paper are as follows:

• We analyze the location and degree of feature redundan-

cies and introduce SDTM, a dynamic token compression

approach that employs a structure-then-detail token merg-

ing strategy. It is finetuning-free and can be seamlessly

integrated into any text-to-image DiT architecture.

• We design similarity-prioritized structural merging and

inattentive-prioritized detail merging methods for differ-

ent stages, supplemented by time-wise ratio adjusting and

prompt reweighting to compress feature redundancies.

• Quantitative and qualitative experiments across multi-

ple backbones, schedulers, and datasets demonstrate our

method’s superiority. For example, SDTM achieves 1.55×
acceleration with negligible impact on generation quality.

2. Related Work

2.1. Diffusion Transformers

Diffusion models (DMs) [8, 15, 43] transform noise into

complex data distributions via reversible Markov processes.

Early U-Net based DMs achieved remarkable results in im-

age [34, 38, 48] and video generation [5, 40, 52]. Currently,

diffusion transformers (DiTs) [33] are gaining prominence

due to their scalability. Building on DiTs, image generation

models such as PixArt-α [6], MMDiT [9], and FLUX [11]

have been introduced. Furthermore, DiTs have been recog-

nized as a fundamental component in the Sora [3], leading

to the development of video generation models [18, 30, 51].

However, significant computational redundancies of diffu-

sion sampling process limit its widespread application.

2.2. Efficient Diffusion Models

Numerous efforts have been proposed to compress the re-

dundancies in the denoising process via samplers, architec-

tures, and feature computation, it can be categorized as:

Sampler-based: Various approaches focus on optimizing

samplers; for instance, DDIM [42] offers a non-Markovian

variant of the diffusion process, DPMSolver [27] applies a

numerical solver to the differential equations and Rectified

Flow [25] optimizes distribution transport in ODE models.

Additionally, several progressive distillation techniques [17,

31, 39] attempt to distill the sampler into fewer steps.

Model-based: Some studies focus on reducing architec-

ture redundancy: methods like Diff-pruning [4, 10, 16, 21]

advocate pruning unimportant weights; quantization meth-

ods represented by Q-diffusion [12, 20, 41, 49] aim to quan-

tize redundant modules. Furthermore, some caching mech-

anisms [7, 19, 29, 45] enhance efficiency by caching and

reusing module outputs across adjacent denoising steps.

Feature-based: Given the dependency of sampler-based

and model-based methods on fixed strategies, they strug-

gle with varying data patterns and compression demands.

Therefore, some approaches explore feature compression

techniques. For instance, within the U-Net architecture,

ToMeSD [1] and AT-EDM [44] advocate for compressing

similar or unimportant tokens, whereas in DiT architec-

tures, DyDiT [50] and TokenCache [26] train a dynamic

token module to prune or cache unnecessary computation.

In contrast to other feature-based methods that utilize

relatively static reduction strategies or require fine-tuning,

our SDTM is specifically designed to perform dynamic post-

training token reduction. This approach is based on thor-

oughly analyzing the location and degree of feature redun-

dancies at different stages of diffusion process. Therefore,

SDTM is more efficient compared to the above frameworks.

3. Preliminary and Motivation

Our approach is driven by a straightforward idea: attend to

prune feature redundancies in areas not attended by the dif-

fusion process. We assume that tokens unattended by the

diffusion process might be redundant, and raise two follow-

ing questions. Experiments were conducted on MMDiT [9]

with 50-step RF schedule [25] based on 10k samples.

Which ones are not attended by denoising process? A

well-known prior of the denoising process is that it includes

a structure stage for planning visual semantics, followed by

a detail stage that enhances the visual fidelity [27, 35, 46].

From this perspective, we aim to verify whether this prior

still holds in DiT. Specifically, we analyzed the evolution of

low-frequency and high-frequency components of the es-

timated noise using DWT. As illustrated in Figs. 2 (a) and

(b), DiT’s architecture and scheduler have stabilized the fre-

quency evolution, which fluctuated significantly in DDPM

noted at [35]. The low-frequency bands show sharp changes

in the first 40% steps, with the high-frequency bands under-

going alterations in the subsequent 60%. This pattern con-

firms that DiT maintains the structure-then-detail denois-

ing process, highlighting that less-structure tokens in early

steps and weak-detail tokens in later steps are the unat-

tended ones which may be the redundant feature.
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Figure 2. Preliminaries. Left: Evolution of Denoising Process: The L2 norm of (a) LL, (b) LH, HL, and HH subbands of estimated noise

during the DiT denoising process. Right: Evolution of Feature Redundancies: (c) Location and (d) Degree evolution of token redundancies

across DiT different steps and layers. Experiments were conducted on MMDiT [9] with 50-step RF schedule [25] based on 10k samples.

How to find these unattended ones? Firstly, we locate these

unattended tokens and assess their redundancy. Specifi-

cally, we calculated the mean L2 distance and cosine simi-

larity between the most similar pairs. Higher similarity in-

dicates that they can substitute for each other which repre-

sents more redundancies [1], while the distance pinpoints

their location. As illustrated in Fig. 2 (c), the distance

decreases slightly and then increases progressively. Since

higher similarity at lower distances implies less local struc-

ture, this identifies the initial locations of unattended to-

kens. Meanwhile, decreasing similarity indicates increasing

detail diversity, with unattended tokens distributed among

less-detail global areas. Therefore, the unattended tokens,

which represent feature redundancies, initially cluster lo-

cally and gradually spread globally. Secondly, we analyzed

the degree evolution of cosine similarity in Fig. 2 (d). Be-

sides the initial low similarity among tokens immediately

after the noise initialization, which quickly escalates after

one step, the token similarity progressively decreases as

timesteps, implying that token redundancy diminishes over

time. Therefore, there are more unattended, redundant to-

kens in the early steps and fewer in the later steps.

4. Methodology

As shown in Fig. 3, we introduce the SDTM framework, a

structure-then-detail token merging approach that facilitates

dynamic token compression to reduce feature redundancy.

Based on the analysis in Sec. 3, we perform DiT accelera-

tion across two stages. At different stages, we adopt various

visual token merging (shown in Fig. 4) and prompt token

reweighting methods, detailed in Sec. 4.1 and Sec. 4.2.

4.1. Visual Token Merging

To address feature redundancies vary in form and loca-

tion, we design a similarity-prioritized structure merging

(SSM) to address local redundancies in structure stage and

an inattentive-prioritized detail merging (IDM) to reduce

global redundancies in detail stage. Furthermore, consider-

ing the higher redundancies in early steps and lower in later

steps, we develop compression ratio adjusting (CRA) that

dynamically optimizes ratios or thresholds across timesteps.

4.1.1. Similarity­prioritized Structure Merging

Based on the insights derived from Sec. 3, we reduce the

weak-structure feature redundancy in local areas during the

early stage. We developed similarity-prioritized structure

merging and integrated them before the MHSA and MLP

blocks. The SSM involves two processes: identifying high-

redundancy tokens and merging them dynamically.

Identifying. In the initial stage, tokens with less structure

are identified within local areas. The feature embedding is

represented by X ∈ R
N×d, where N = H ×W and H,W

denote the height and width. Inspired by ALGM [32], we

reshape X into a grid X ∈ R
m×H

m
×m×W

m
×d, with m ×m

indicates the window size. By grouping the tokens of each

window, we define X = {w1, . . . wk, . . .}. Subsequently,

we compute the average cosine similarity within each win-

dow w as the similarity priority score Psim
w :

Psim
w =

∑i ̸=j
xi,xj∈w cos(xi, xj)

m2 · (m2 − 1)
. (1)

Additionally, we observed that error accumulation tends to

escalate when a token is continuously merged. To mitigate
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Figure 3. Overview. Grey: Our SDTM compresses weak-structure redundancies in the early stage and weak-detail redundancies in the later

stage. Blue: Compression ratio adjusting (CRA) dynamically adjusts the ratio or threshold to control the pruning degree. Yellow: Prompt

token reweighting (PTR) categorizes each prompt token into structure or detail groups, optimizing the denoising direction by reweighting
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Figure 4. Visual Token Merging. By measuring structure similar-

ity, unmerged frequency, and detail inattentiveness, SSM and IDM

target different types of feature redundancies for reduction.

this, we prioritize tokens unmerged recently over those in-

volved in continuous merging events. We monitor the time

since each token’s last independent operation, represented

as Tx, and calculate Pfre
x = Tx

µ(T ) for each token. We cal-

culate frequency priority score Pfre
w for window w:

Pfre
w =

∑
xi∈w P

fre
xi

m2
. (2)

Finally, we compute the total priority score Pw = Psim
w +

αsP
fre
w , where αs is a scaling factor. We sort the windows

in descending order to prioritize the redundancies.

Merging. Our merging strategy can be controlled using ei-

ther a ratio ρ or a threshold θ. We select either the top ρ

redundant windows or windows where Pw > θ for merg-

ing. Both ρ and θ are dynamically adjusted throughout the

timesteps, as detailed in Sec. 4.1.3. Subsequently, we aver-

age the tokens within each selected window and retain the

tokens from unselected windows to construct a new feature

embedding X ′ ∈ R
N ′×d. In this process, N ′ is reduced

compared to N , thereby decreasing the computational cost

on the subsequent MHSA and MLP blocks.

4.1.2. Inattentive­prioritized Detail Merging

Following the analyses in Sec. 3, we reduce weak-detail

feature redundancy in later stages of the denoising process.

We developed inattentive-prioritized detail merging and in-

corporated them before the MLP blocks. We have ceased

accelerating the MHSA module, as its role in facilitating

global information interactions is crucial, and its computa-

tional demand is significantly lower than that of MLP. Sim-

ilarly, the IDM includes identifying and merging processes.

Identifying. We assume that tokens with minimal impact

on others are information-sparse and thus weak-detail. Uti-

lizing the attention map, which effectively quantifies the re-

lationships between tokens, we identify the inattentive to-

kens. For attention map A ∈ R
N×N , A(xi, xj) quantifies

the influence of the j-th token on the i-th token, a notion

widely recognized in [23, 37]. We then compute the inat-

tentive priority score Pina
x for each token as follows:

Pina
x = −

∑
j∈1...N A(x, xj)

N
. (3)

Subsequently, we calculate Pfre
x for each token and its

overall priority score Px = Pina
x + αdP

fre
x , where αd is



a scaling factor. We then sort the tokens in descending or-

der to effectively prioritize the feature redundancies.

Merging. Based on the priority score, we categorize tokens

into inattentive and attentive groups, as shown in Fig. 4.

We calculate the cosine similarity between these groups and

identify the maximum cosine similarity Si for each token

in inattentive group. Depending on the merging ratio ρ or

threshold θ, we select either the top ρ redundant tokens or

those which Si > θ for merging. It is essential that P de-

termines the merging priority, whereas the merging process

relies on S . Considering xi and xa as an example, given the

differing information content between inattentive and atten-

tive groups, the merged x′
a can be formulated as:

x′
a = softmax([1− Pina

xi
, 1− Pina

xa
]) · [xi, xa]. (4)

4.1.3. Compression Ratio Adjusting

The variability in the degree of feature redundancies across

timesteps is evident, as shown in Fig. 2. With increasing

timesteps, there is a general decline in the degree of fea-

ture redundancies. In addition, specific steps (the first) and

specific layers (the first four) deviate from this trend. In

practical scenarios, users often have specific compression

requirements, which typically include a basic ratio ρ and a

maximum deviation d. To meet these demands, we propose

two strategies: dynamically adjusting the compression ratio

and adaptively adjusting the compression threshold.

Dynamic Ratio. This method offers a straightforward ap-

proach for dynamically adjusting the merging ratio. It mod-

ifies the ratio to follow a cosine decay of [0, π
2 ] from ρ + d

to ρ− d across various steps, in alignment with the cosine-

shaped curve of feature redundancies illustrated in Fig. 2.

For specific steps and layers, the ratio is set directly to the

minimum ρ−d. We adopt this strategy in our baseline SDTM

model because it provides a close approximation of the op-

timal ratio without the need for complex computations.

Adaptive Threshold. Due to the varying complexity of

generating different images, employing a constant merging

ratio may result in suboptimal acceleration for simpler im-

ages and compromised quality for more complex ones. To

address this issue, we design an adaptive method to auto-

matically adjust the threshold. We initially sampled a small

image batch to assess the similarity across steps and layers

to create a distribution S. Then, we constructed a ratio-

threshold mapping table M by documenting the average

threshold at 1% intervals of the merging ratio. The compre-

hensive process is outlined in Algorithm 1. This approach

has been integrated into our enhanced SDTM*, better suited

for industrial-scale inference scenarios where neither sub-

optimal acceleration nor quality degradation is acceptable.

4.1.4. Token Unmerging

Image generation is a feature-intensive task that necessitates

the complete feature map. Using the example of xi and

Algorithm 1 Adaptive Threshold Adjusting

Require: similarity distribution S, basic ratio r, max devi-

ation d, ratio-threshold map M

Input: timestep & layer sequence {(1, 1), ..., (t, l)}
Output: adaptive threshold θ = {θ(1,1), ..., θ(t,l)}

1: Scale similarity distribution S to range [−1, 1].
2: for each t do

3: for each l do

4: Compute St,l for current t and l

5: ρ(t,l) ← r + d · S(t,l)

6: θ(t,l) ←M(t, l, ρ(t,l))
7: end for

8: end for

xa, we need to use x′
a to obtain new x′′

i and x′′
a . In related

work such as ToMeSD [1] and AT-EDM [44], the strategy

of similarity-based token reuse has been utilized, directly

substituting x′
a for x′′

i and x′′
a . However, this substitution

can introduce replacement errors, particularly when em-

ploying a higher pruning ratio. Therefore, we initially em-

ploy similarity-based token reuse to restore x′′(t) at the cur-

rent timestep, followed by a weighted combination with the

previous timestep’s x′′(t−1). In this method, x′′(t−1) pre-

serves the independence of individual token features, while

x′′(t) integrates the new timestep’s denoising features.

4.2. Prompt Token Reweighting

The image generation process evolves from capturing the

overall structure to refining intricate details, emphasizing

the importance of the influence of prompt tokens at various

stages [13]. Moreover, as visual tokens become substan-

tially compressed, the direction of prompt guidance grows

increasingly vital. We developed prompt token reweight-

ing to optimize the guiding direction across timesteps. We

define the “prompt” as the image description, whereas “in-

struction” is the query to ChatGPT. As shown in Fig. 3,

given a prompt P, we guide ChatGPT using the following

interaction to categorize each prompt token Pk.

Instruction: Categorize Prompt Token

System Instruction: Suppose you are a data scientist. You

will be provided with an [prompt]. You should categorize

each prompt token into five categories: Strong Structure, Weak

Structure, Neutral, Weak Detail, and Strong Detail. If a token

contains both structure and detail, weight them for decision.

Context Instruction: [prompt P]

We multiply the attention values by an optimized range

[αp,
1
αp

]. Take examples from Fig. 3, the adjustment for

weakly structured prompt token “dog” is [
αp

2 , 2
αp

], while for

strongly detailed prompt token “black” is [ 1
αp

, αp].



Method Finetune MACs(T) ↓ Latency(s) ↓ Speed ↑
COCO2017 PartiPrompts

FID ↓ CLIP ↑ CLIP ↑

SD3 Medium [9] 6.01 10.67 1.00× 29.02 0.3267 0.3279

ToMeSD - a 4.27 8.08 1.32× 45.28 0.3102 0.3108

AT-EDM - a 4.23 8.14 1.31× 34.72 0.3195 0.3219

Ours-SDTM - a 4.20 8.20 1.30× 28.73 0.3235 0.3248

Ours-SDTM* - a 4.13 8.02 1.33× 28.57 0.3249 0.3261

ToMeSD - b 3.81 7.11 1.50× 75.44 0.2780 0.2816

AT-EDM - b 3.78 7.02 1.52× 43.92 0.3089 0.3125

TokenCache - b ✓ 3.72 6.97 1.53× 28.83 0.3208 0.3226

DyDiT - b ✓ 3.74 6.87 1.55× 28.47 0.3213 0.3227

Ours-SDTM - b 3.66 7.07 1.51× 29.60 0.3224 0.3231

Ours-SDTM* - b 3.62 6.90 1.55× 28.97 0.3237 0.3252

Table 1. Quantitative comparison on MS-COCO2017 and PartiPrompts with Stable Diffusion 3 medium and 50 steps rectified flow by

default. For configurations a and b, we adjust the compression ratios of various methods to reach approximate speeds of 1.3× and 1.5×.

Easy prompt: “A bike is leaning against the railing by the window.”

Medium Prompt:  "two teddy bears that are large sitting in a small garden."

Hard Prompt:  “An Asian family getting together for an enjoyable Chinese dinner.”

SD3 Medium ToMeSD AT-EDM TokenCache DyDiT SDTM SDTM*

Figure 5. Qualitative comparison on COCO2017 and PartiPrompts under varying data complexities. For ToMeSD and AT-EDM, we use

versions with approximately 1.3× acceleration, while others use approximately 1.5× versions. Best viewed when zoomed in.

5. Experiment

5.1. Experiments Settings

Implementation details. Our method can be seamlessly

integrated into any text-to-image DiT architecture to fa-

cilitate post-training acceleration. It is available in two

versions: SDTM is a straightforward implementation, and

SDTM∗ adaptively adjusts the compression threshold based

on the image’s complexity. Unless specified otherwise, we

set the initial T−0.6T as the structure stage and the remain-

ing 0.6T − 0 as the detail stage, using the hyperparameters

basic ratio ρ and maximum deviation d to 0.5 and 0.2.

Evaluations. We conduct extensive quantitative and qual-

itative experiments on various model configurations, in-

cluding SD3 Medium, SD3.5 Large and SD3.5 Large

Turbo [9], utilizing different schedulers such as Restricted

Flow [37], DPM-Solver++ [28] across varying denoising

steps (e.g. 50, 28, 20, 15). Following the protocol in AT-

EDM [44], our experiments were executed primarily on the

COCO2017 validation set [24] and PartiPrompt [47] at an

image resolution of 1024×1024. We evaluated performance

using MACs and Latency, alongside FID [14] and CLIP

scores [36] for image quality assessment. Latency was cal-

culated by the average time required to generate 5000 im-

ages on COCO2017 validation. All experiments were per-

formed using 4 NVIDIA A100 40G GPUs.



Figure 6. The trade-off of Latency vs. FID and CLIP. We obtain

SDTM and SDTM* with different latency by adjusting the ratio.

5.2. Comparisons with SOTAs

Table 1 compares our method with existing token-wise fea-

ture redundancy compression techniques. In configuration

a, ToMeSD and AT-EDM show noticeable quality degrada-

tion, whereas our SDTM and SDTM* slightly improve image

quality with reductions in FID by 0.29 and 0.45. In con-

figuration b, as ToMeSD and AT-EDM exhibit significant

quality declines, we introduce comparisons with finetuning-

based TokenCache and DyDiT. Our approach achieves com-

parable image quality without the need for fine-tuning, ben-

efiting from our detailed analysis and targeted reduction of

feature redundancy at various stages. Our method achieves

optimal CLIP, leveraging the prompt reweighting strategy

that maintains directional guidance with fewer compressed

tokens, which are detailed in ablation. Qualitative com-

parisons in Fig. 5 further support our findings. Moreover,

SDTM* adaptively adjusts the merging threshold for sam-

ples of varying difficulty, allocating limited computational

resources more effectively and surpassing other methods in

image quality and alignment with the original images.

5.3. Comparisons with baselines

We further integrate SDTM and SDTM* into more baselines

to evaluate their compatibility. As indicated in Fig. 6 and

Fig. 7, we evaluate the SD3 Medium integrated with our

method across a range of basic ratios ρ with the optimal de-

viation d set at 0.2. Results show that image quality remains

stable with 1.55× acceleration (config b). However, further

increasing the acceleration ratio progressively degrades im-

age quality, confirming that config b is the most advanta-

geous balance. This phenomenon is attributed to the distri-

bution of redundancy in the images: compression ratios that

are too low fail to harness token merging techniques fully.

In contrast, excessively high ratios cause a rapid accumula-

tion of merging errors. Additionally, as shown in Table 2,

we extend SDTM and SDTM* to SD3 Medium and SD3.5

Large to explore the impact of different denoising steps (28,

20, and 15) and various schedulers (RF, DPM-Solver++).

0.0 0.2 0.35 0.5 0.6 0.7

Figure 7. Visualization of results for graduated basic ratios.

Method Scheduler W-MACs(T) ↓ Latency(s) ↓ FID ↓

SD3 Medium 28-RF 168.4 6.29 28.74

+SDTM 28-RF 103.3 4.22 28.95

+SDTM* 28-RF 101.5 4.11 28.67

SD3 Medium 20-RF 120.3 4.68 28.86

+SDTM 20-RF 74.4 3.15 29.10

+SDTM* 20-RF 72.5 3.08 28.74

SD3 Medium 20-DPM 120.3 4.68 29.04

+SDTM 20-DPM 74.4 3.16 29.31

+SDTM* 20-DPM 72.9 3.12 29.08

SD3 Medium 15-RF 90.2 3.61 29.36

+SDTM 15-RF 56.3 2.45 29.82

+SDTM* 15-RF 54.4 2.43 29.51

SD3.5 Large 28-RF 668.4 18.54 25.91

+ SDTM 28-RF 411.2 12.10 25.85

+ SDTM* 28-RF 402.6 11.94 25.72

Table 2. Comparison of our SDTM and SDTM approaches with

SD3 Medium and SD3 Large across different schedulers. Here,

“W-MACs” represent the total computation across all steps.*

Our method shows high adaptability across diverse base-

lines and schedulers. More comparisons are available in

the supplementary material.

5.4. Ablation studies

We conduct ablation studies on the primary components of

our method as outlined below. More detailed experiments

and analyses are available in the supplementary material.

Effect of token merging strategies. To validate the effec-

tiveness of our proposed structure-then-detail token merg-

ing strategies, we performed ablation studies using different

combinations of merging strategies, as illustrated in Fig. 8.

The results indicate that employing SSM in the early stages

and IDM in the later stages yields optimal performance, ev-

idenced by an FID score of 29.60. In contrast, the IDM-

then-SSM sequence recorded the poorest results, with an

FID score of 34.52. These results align with our previous

analysis in Sec. 3, which posits that feature redundancy pre-
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Figure 8. Ablation study of different token merging combinations

at various stages. SSM in early stages and IDM in later stages

performs the best, while the reverse config performs the worst.

Method deviation decline FID CLIP

SDTM

0.1 cosine 30.53 0.3216

0.2 linear 31.64 0.3202

0.2 cosine 29.60 0.3224

0.3 cosine 31.81 0.3198

0.4 cosine 36.03 0.3187

Table 3. Ablation of deviation values and ratio decline strategies.

When the deviation of 0.2 and decline of cosine, the best results

are achieved. We mark the optimal trade-off setting by †.

dominantly occurs among locally less-structure tokens in

early stages and globally less-detail tokens in later stages.

Effect of compression ratio adjusting. Due to varying

degrees of feature redundancy across denoising stages, we

developed dynamic ratio adjusting and adaptive threshold

adjusting strategies. Notably, the adaptive threshold ad-

justment mechanism distinguishes SDTM* from SDTM, as

demonstrated by its ability to dynamically optimize merg-

ing ratios for samples with diverse complexities (as shown

in Fig. 6 and Table 2). We conducted ablation on the devia-

tion value d and ratio decline strategies within the dynamic

ratio adjusting framework in Table 3. Our results indicate

that a deviation of d = 0.2 achieves the optimal trade-off,

while cosine decay yields superior performance compared

to linear decay. Furthermore, Fig. 9 illustrates the progres-

sive merging process within SSM and IDM merging strate-

gies throughout the generation process.

Effect of prompt token reweighting. PTR optimizes the

guidance direction at various stages. Fig. 10 shows that

employing PTR slightly enhances the FID and significantly

improves CLIP. We address a prevalent issue identified

in ToMeSD and AT-EDM: token compression undermines

CLIP. We attribute this to reduced attention to images due to

the fewer tokens caused by compression. Fig. 10 also shows

that the absence of PTR leads to color, structural errors, and

semantic misunderstandings. Therefore, while PTR does

not directly reduce computation costs, it is crucial to main-

tain alignment with prompts.

Figure 9. Visualization of merged tokens selected. White masks

represent independent sampling, while gray masks represent merg-

ing. In the later stage, only inattentive merged tokens are grayed.

baseline: FID-29.02, CLIP-0.3267 

w/. PTR: FID-29.60, CLIP-0.3224 

w/o. PTR: FID-29.94, CLIP-0.3186 

Figure 10. Ablation of prompt token reweighting (PTR). From left

to right, the absence of PTR leads to minor color, structural errors,

and severe semantic misunderstandings.

6. Conclusion

In this paper, we conduct a detailed analysis of the loca-

tion and degree of feature redundancies and design a novel

approach to accelerate DiTs by targeting redundancies in

areas overlooked by the denoising process. Our innova-

tive SDTM method dynamically addresses less-structure and

less-detail redundancy throughout the generation process. It

can be integrated seamlessly into any existing DiT architec-

ture, accelerating generation without additional fine-tuning.

We conducted extensive quantitative and qualitative experi-

ments to demonstrate the effectiveness of our method across

various architectures and schedulers. Limitation: Due to

the inherent trade-offs of compression ratios in token merg-

ing, greater compression demands necessitate the integra-

tion of other acceleration techniques, such as distillation.
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