
Attend to Not Attended:
Structure-then-Detail Token Merging for Post-training DiT Acceleration

Supplementary Material

We organize our supplementary material as follows.

Implementation Details:
• Sec. A.1: Details of preliminary experiments.
• Sec. A.2: Details of the implementation of backbones,

our methodologies, and SoTA methods.
Additional Analyses:
• Sec. B.1: Analysis of reduced MACs across timesteps.
• Sec. B.2: Analysis of computation overhead of SSM and

IDM merging mechanisms.
Additional Experiments:
• Sec. C.1: Extended comparisons with baseline models.
• Sec. C.2: Ablation study on image size effects.
• Sec. C.3: More visualizations of generated images.

A. Implementation Details

A.1. Details of Preliminaries
In Sec. 3, we examine the evolution of the LL, HL, LH, and
HH subbands in the denoising process, along with the loca-
tion and degree evolution of feature redundancies. Below,
we detail the preliminary experiments.

Feature Collection. Utilizing the baseline model of Sta-
ble Diffusion 3 Medium and a 50-step Rectified Flow sched-
uler, we investigated the estimated noise x(t,l)

k generated by
each transformer block at every step across 10,000 samples.
Here, t represents the step, l denotes the block index, and k
indicates the sample index. These samples included 5,000
prompts each from the MS-COCO 2014 validation split and
MS-COCO 2017 validation split.

Evolution of Denoising Process. Based on multi-wavelet
functions, the discrete wavelet transform (DWT) de-
composes an input into four wavelet coefficients: LL,
LH, HL, and HH. The LL coefficient captures the low-
frequency component, reflecting structural features, while
LH, HL, and HH coefficients detect high-frequency com-
ponents associated with detail features. Initially, we ap-
ply DWT to each x

(t,l)
k for decomposition into x

(t,l)
k =

{(x(t,l)
k,LL, x

(t,l)
k,LH , x

(t,l)
k,HL, x

(t,l)
k,HH)}. Subsequently, we com-

pute the L2 normalization for each subband of x
(t,l)
k . Fi-

nally, we calculate the maximum, minimum, and average
values across batch and layer dimensions to derive ∥x(t)∥2,
which are used to generate the Figs. 2 (a) and (b).

Evolution of Feature Redundancies. Initially, we com-
pute the cosine similarity for each token pair in x

(t,l)
k . Using

Figure S1. MACs of main components in different image sizes.

the output similarity matrix, we identify the most similar to-
ken x

(t,l)
k,(i′,j′) for every token x

(t,l)
k,(i,j), where (i, j) and (i′, j′)

are coordinates of a token and its most similar counterpart.
We assess the location and degree of token redundancies
by calculating the mean L2 distance and the cosine similar-
ity among the closest pairs. In Fig. 2 (c), we calculate the
L2 distance for each token pair (i, j) and (i′, j′), averag-
ing these distances across pairs and batches to compute the
mean L2 distance for each layer and step. We then average
these results across the layer dimension to track the evolu-
tion across timesteps. Similarly, in Fig. 2 (d), we compute
the cosine similarity for each token pair, averaging these
values across pairs and batches to derive the mean similar-
ity for each layer and step and averaging across the layer
dimension to track the evolution along timesteps.

A.2. Details of Backbones, Ours, and SoTAs

We implement our methods and other SoTA techniques, in-
cluding ToMeSD, AT-EDM, TokenCache, and DyDiT, on
the SD3 Medium model for evaluation.

The SD3 Medium Backbone. The SD3 Medium em-
ploys an advanced transformer architecture, the multimodal
diffusion transformer (MMDiT). Distinct from diffusion
models that rely on U-Net architectures, it incorporates 24
JointTransformerBlocks at uniform feature levels, enabling
joint attention interactions between prompt and image to-
kens. The SD3 model employs the Rectified Flow sched-
uler with a default CFG of 7.0 and 50 / 28 denoising steps.
Fig. S1 illustrates the MACs of each computational com-
ponent within the JointTransformerBlocks. It is observed
that the FeedForward accounts for approximately 2/3 of the
MACs, while the Attention mechanism occupies about 1/3.
In the following, we implemented the SoTAs token reduc-
tion methods for DiT to reduce the computation.



Ours. We implement our method in the SD3 Medium us-
ing a two-stage approach. In the early stage, we execute
similarity-prioritized structure merging before the MHSA
and MLP blocks. In the later stage, we perform inattentive-
prioritized detail merging prior to the MLP blocks. Addi-
tionally, we dynamically adjust the compression ratio and
prompt weights at each denoising step using compression
ratio adjusting and prompt token reweighting. Depending
on the settings of CRA, we differentia between dynamic ra-
tio and adaptive threshold, resulting in two variants: SDTM
and SDTM∗. During the batch inferences of SDTM∗, if the
batch size exceeds one, inconsistencies in token numbers
across the batch may occur due to adaptive threshold filter-
ing. To mitigate this, we balance the difficulty of prompts
within each batch using GPT scores and select the minimum
number of tokens for pruning.

ToMeSD. ToMeSD employs a uniform merging strategy
across all sampling steps, utilizing a 2D stride-based strat-
egy to merge tokens. This strategy is applied on blocks
at the highest-resolution feature level. Since all blocks in
the MMDiT architecture share the same feature level, we
initially experimented with applying ToMeSD across all
Transformer blocks. However, this led to significant degra-
dation in generation quality. Given that ToMeSD was origi-
nally designed for UNet-based DMs, where convolution and
transformer modules alternate (and thus not all modules in-
corporate token merging), indiscriminate application of to-
ken merging to all Transformer modules in MMDiT proved
suboptimal. To address this, we adapted the application of
ToMeSD for MMDiT by implementing a staggered com-
pression pattern: for every four consecutive Transformer
blocks, we apply no compression, standard compression,
reduced compression, and standard compression rates, re-
spectively. This configuration achieve better generation
quality in equivalent overall cost. Furthermore, we imple-
mented ToMeSD’s linearly interpolating of the ratio.

AT-EDM. AT-EDM adopts a two-stage token pruning
strategy, where T − 0.7T serves as the early stage and
0.7T − 0 as the later stage. This method uses a graph-
based algorithm for token pruning across multiple cascaded
attention block groups. We structured the MMDiT into
six groups to align with this configuration. Additionally,
AT-EDM incorporates a DSAP schedule that preserves un-
pruned attention blocks at the mid-stage due to the low fea-
ture level; this concern is not present in MMDiT. AT-EDM
leaves the first attention block in each down-stage and the
last in each up-stage unpruned. Consequently, we designate
the first three groups as down-stage and the last three as up-
stage to mirror this architecture.

TokenCache. TokenCache deploys a TPRR token prun-
ing schedule, where T −M serves as Phase I and M − 0 as
Phase II. During each phase, a cyclic schedule is employed,

alternating between I-steps, with no pruning, and K-steps,
where a Cache Predictor is trained to prune non-essential
tokens. We implement TokenCache in SD3 Medium using
this strategy and train the Cache Predictor according to the
procedures outlined in their paper. We determine the opti-
mal values of (M,K1,K2), based on their ablation study,
to be (0.5T, 4, 2), where K1 and K2 correspond to different
steps for Phase I and Phase II.

DyDiT. DyDiT introduces a timestep-wise dynamic
width (TDW) to reduce model width and a spatialwise
dynamic token (SDT) strategy to minimize redundancy
at spatial locations. We integrated these strategies into
SD3 Medium, using the FLOPs-aware end-to-end training
method proposed by them to train the model. To ensure
training stability, DyDiT incorporates fine-tuning stabiliza-
tion, which is crucial for the FLOPs-aware end-to-end train-
ing method. Consequently, we conducted four training ses-
sions and selected the optimal results. For the hyperparame-
ter of cache interval, we chose an interval of 2, as identified
as optimal in their ablation study.

A.3. Details of Evaluations
Our evaluation adheres to the settings employed in AT-
EDM, conducting experiments on the COCO2017 valida-
tion split. We implemented a prompt deduplication strategy
to ensure unique pairings of each image in the validation
set with one prompt. Each image is center-cropped and re-
sized for comparison. For metric calculations, we utilize the
clean-fid1 to compute FID scores and the ViT-G/14 model
from Open-CLIP2 to calculate CLIP scores. Unless speci-
fied otherwise, all experiments were conducted using two
NVIDIA A100 GPUs, generating images of 1024×1024
resolution with a batch size of four.

B. Additional Analyses

B.1. Reduced Computation via Timesteps
In our methodology, we introduce similarity-prioritized
structure merging to enhance the efficiency of MHSA and
MLP blocks during the structure stage, and inattentive-
prioritized detail merging to speed up MLP blocks in the
detail stage. Additionally, we progressively decrease the
compression ratio as denoising progresses. Based on the
SD3 Medium model with our SDTM approach, we gener-
ate images with a resolution of 1024×1024 and display the
MACs of MHSA and MLP blocks at representative steps
40, 30, 20, and 10 in Fig. S2. The results indicate increas-
ing computational allocation across the timesteps, aligning
with the evolution of feature redundancies over time as dis-
cussed in Sec. 3.

1https://github.com/GaParmar/clean-fid/tree/main
2https://github.com/mlfoundations/open-clip



Figure S2. Reduced MACs of main components along timesteps.

Object Complexity SD3-M MACs SD3-L MACs

Model - 6.01T 20.13T
Similarity O(ND + N

m2 log(
N
m2 )) 3.0E-04T 1.0E-03T

Inattentive O(N2 +N logN) 8.1E-04T 2.7E-03T

Table S1. Complexity and cost analysis of identifying redundancy.

B.2. Identification Computation
Although similarity-prioritized structure merging and
inattentive-prioritized detail merging reduce the computa-
tion of original transformer blocks, they introduce addi-
tional cost for identifying similarity and inattentive redun-
dancy. Assuming the feature X ∈ RN,D and a window size
m×m, we report the complexity and MACs for redundancy
identification in Table S1. Results show that for both the
SD3 Medium and SD3.5 Large models, the computational
cost of redundancy identification is negligible compared to
the overall model cost.

C. Additional Results
C.1. More Comparisons with Baselines
More Comparisons with Baselines. We expanded the
integration of SDTM and SDTM* into additional baselines
to assess their adaptability. These included the SD3.5
Large Turbo, a distilled version of SD3.5 Large designed
to enhance image quality with fewer denoising steps3; and
FLUX.1-dev, a 12 billion-parameter rectified flow trans-
former noted for its advanced performance in image gen-
eration. We utilized their default CFG values and recom-
mended schedulers. For FLUX.1-dev, we observed that in-
cluding Rotary Positional Embedding in the MHSA blocks
is extremely sensitive to token reduction; therefore, we left
these MHSA blocks unpruned. The outcomes, presented in
Table S2, indicate that despite considerable reductions in

3https://stability.ai/news/introducing-stable-diffusion-3-5

Method Step W-MACs(T) ↓ Latency(s) ↓ FID ↓
SD3.5 Large Turbo 4 47.7 0.69 30.48
+SDTM 4 33.4 0.53 31.25
+SDTM* 4 32.8 0.52 30.62

SD3.5 Large Turbo 10 119.4 1.30 30.27
+SDTM 10 75.6 0.89 31.01
+SDTM* 10 74.5 0.87 30.41

FLUX.1-dev 20 595.2 13.81 30.25
+SDTM† 20 386.5 10.15 30.68
+SDTM*† 20 381.4 10.08 30.21

Table S2. Comparisons of our SDTM and SDTM with SD3 Large
Turbo and FLUX.1-dev at various steps. A dagger † indicates that
the MHSA block is not accelerated for adaptation.

Method Image size MACs(T) ↓ Latency(s) ↓ FID ↓
baseline 512 1.83 2.47 28.74
+SDTM 512 1.10 1.61 29.86

baseline 768 3.58 5.39 29.27
+SDTM 768 2.16 3.54 29.65

baseline 1536 12.97 31.29 28.06
+SDTM 1536 8.04 21.28 28.24

Table S3. Ablation of our SDTM with the SD3 Medium using a
50-RF scheduler across various image sizes.

steps and the constraints imposed on MHSA, which lower
the compression ratio, our method still achieves a favorable
acceleration while maintaining the image quality.

C.2. Ablation of Image Size
Following the settings of AT-EDM, our experiments were
primarily conducted on 1024 px images. To assess our
method’s applicability across different image sizes, we
tested resolutions including 512, 768, and 1536 px, with re-
sults detailed in Table S3. We utilized the SD3 Medium
equipped with a 50-RF scheduler as our baseline. It is
important to note that the FID scores for different image
sizes are not comparable since they correspond to distinct
distributions. The results demonstrate that smaller image
sizes slightly compromise image quality; this reduction can
be attributed to the decreased similarity between patches
at smaller sizes, which leads to less feature redundancy.
Nonetheless, our approach consistently delivers significant
acceleration compared to the baseline method.

C.3. More Visualization of Samples
In Fig. S3, we compare our methods with fine-tuning-free
techniques including ToMeSD and AT-EDM based on the
SD3.5 Large. Fig. S4 displays uncurated images generated
by our methods across SD3 Medium and SD3.5 Large. Our
methods outperform other SoTA techniques and maintain
robust generative capabilities across various scenes.



Easy prompt: "Two ceramic cups - one with a bird and the other with a fox."

Medium Prompt:  "A girl holding a half eaten banana in her hands."

Hard Prompt:  "A painted school bus reads ‘Van Gogh Museum Bus’."

SD3.5 Large ToMeSD AT-EDM SDTM SDTM*

Figure S3. Qualitative comparison on SD3.5 Large under varying data complexities. For ToMeSD and AT-EDM, we use versions with
approximately 1.3× acceleration, while others use approximately 1.5× versions. Best viewed when zoomed in.
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Figure S4. Uncurated images generated using SD3 Medium and SD3.5 Large configurations under the SDTM and SDTM* frameworks.
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