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Abstract—Although remarkable progress has been made in image style transfer, style is just one of the components of artistic paintings.
Directly transferring extracted style features to natural images often results in outputs with obvious synthetic traces. This is because
key painting attributes including layout, perspective, shape, and semantics often cannot be conveyed and expressed through style
transfer. Large-scale pretrained text-to-image generation models have demonstrated their capability to synthesize a vast amount of
high-quality images. However, even with extensive textual descriptions, it is challenging to fully express the unique visual properties
and details of paintings. Moreover, generic models often disrupt the overall artistic effect when modifying specific areas, making it
more complicated to achieve a unified aesthetic in artworks. Our main novel idea is to integrate multimodal semantic information as
a synthesis guide into artworks, rather than transferring style to the real world. We also aim to reduce the disruption to the harmony
of artworks while simplifying the guidance conditions. Specifically, we propose an innovative multi-task unified framework called
CreativeSynth, based on the diffusion model with the ability to coordinate multimodal inputs. CreativeSynth combines multimodal features
with customized attention mechanisms to seamlessly integrate real-world semantic content into the art domain through Cross-Art-Attention
for aesthetic maintenance and semantic fusion. We demonstrate the results of our method across a wide range of different art categories,
proving that CreativeSynth bridges the gap between generative models and artistic expression. Code and results are available at
https://github.com/haha-lisa/CreativeSynth.

Index Terms—Visual art, diffusion models, multimodal guidance, image generation.

✦

1 INTRODUCTION

I F a picture is worth a thousand words, then two pictures can
weave a narrative beyond measure. In the field of artificial
intelligence, a transformative era has dawned with the
advent of text-to-image generation models [1]–[5], capable
of creating vivid and contextually relevant visual representa-
tions from textual descriptions. These models exemplify the
harmonious union of natural language understanding and
the creation of art, fundamentally changing how we envision
and materialize digital images, resonating with human
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creativity and intent. The inception of text-to-image models
stems from a simple yet profound pursuit to transform words
into the essence of images.

Diffusion models [6]–[8] have become exemplary for text-
guided image generation tasks, elegantly transforming latent
noise into tangible, high-resolution visual content. However,
directly applying these models for synthesizing and editing
specific artistic images remains a challenge. Firstly, artistic
images, lacking textual descriptions, contain subtle aspects
such as specific styles, aesthetic significance, texture details,
lighting conditions, and compositional perspectives [9]–[13],
which may not have corresponding terms in vocabularies.
Secondly, even with textual prompts provided, existing text-
to-image models tend to synthesize entirely new content
without understanding the original work’s creative direction,
failing to follow the theme, composition, lighting, and style
of the artistic image. In practical applications, especially
those requiring complex control over visual properties and
semantics, the application of such models is often hindered
due to the limited influence of textual input on images. Lastly,
users might wish to edit various images in numerous ways,
thus tuning large models for every image and edit type due
to high costs is undesirable.

To address these challenges, we propose CreativeSynth, a
unified framework for generating and editing artistic paint-
ings using multimodal inputs, without requiring additional
training. This framework enables users to generate and edit
images that conform to personal styles and content require-
ments, guided by reference images and textual prompts (see
Fig. 1). Our work introduces a novel approach by focusing on
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(e) Multimodal fusion
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headphones”
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(a) Image variation (b) Image editing (c) Style transfer

(d) Image fusion

“With a 
happy 

family.”

Semantic 
image

Target 
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Fig. 1. Our CreativeSynth unified framework is capable of generating personalized digital art when supplied with an art image, drawing on prompts
from either unimodal or multimodal prompts. This methodology not only yields artwork with high-fidelity realism but also effectively upholds the
foundational concepts, composition, stylistic elements, and visual symbolism intrinsic to genuine artworks. CreativeSynth supports a wide array of
intriguing applications, including (a) image variation, (b) image editing, (c) style transfer, (d) image fusion, and (e) multimodal blending.

artistic images through Cross-Art-Attention without altering
the original model’s parameters. This unique strategy aligns
the semantic information of the natural world with the
artistic paintings in a way that has not been explored in
existing research. Specifically, we combine image inversion
with an adaptive mechanism, which is a technical novelty
that allows us to maintain the aesthetics of the original
artwork at a higher level of fidelity compared to traditional
methods. Through a proposed semantic fusion mechanism,
we ensure that the generated images are not only simple
reconstructions but also are fused and generated based on
semantic and aesthetic information in multimodal inputs. In
contrast, other existing methods focus on style in paintings
and transfer it to the real world, lacking the comprehensive
and nuanced approach we present.

In this work, we begin by encoding semantic informa-
tion from both images and textual prompts to establish a
foundation for condition guidance. The framework then
ensures aesthetic consistency through a new approach of
employing shared attention to adapt the style of the semantic
image to align with the target image using art-adaptive batch
normalization ArtBN. This not only maintains the integrity
of the artistic style but also enhances the overall visual
coherence. Within the semantic fusion module, CreativeSynth
leverages a decoupled cross-attention mechanism, a technical
innovation that precisely coordinates interactions between
visual and textual features, achieving a more cohesive and
intelligent synthesis rather than a simple sum of parts.
This decoupled mechanism allows for a more detailed
and accurate integration of different modalities, which is
a crucial contribution to the field of multimodal image
generation. Furthermore, the sampling process is guided by a
principle-based image inversion approach, where denoising
techniques are applied to iteratively reconstruct the image
from noise. This approach improves the quality and realism
of the generated images, offering a more reliable solution for
artistic image creation. As a result, CreativeSynth generates
customized artworks that faithfully reflect the provided
semantic prompts and desired aesthetic style. Our method

effectively handles a variety of sophisticated artistic image
editing tasks, including image variation, image editing, style
transfer, image fusion, and multimodal blending. The main
contributions of this paper include:

• We present a novel multimodal, multitasking artistic
framework that unifies diverse image editing tasks.
Using a decoupled cross-attention mechanism to
integrate textual and visual features, enables seam-
less content editing and contextual blending while
preserving the original painting style. This flexibility
empowers creators to modify objects, characters, or
scenes freely, unlocking new possibilities for artistic
expression.

• By employing adaptive instance normalization to
align the style of the target image with its semantic
content, our approach ensures the preservation of
aesthetic quality while accommodating diverse input
modalities. Additionally, the framework incorporates
reverse encoding with denoising before enhancing
semantic control in synthesized images. These design
choices facilitate the generation of high-fidelity artistic
outputs, maintaining the integrity of the original
artist’s style even in the presence of substantial
content modifications.

• Extensive experiments demonstrate that our method
achieves state-of-the-art performance in visual quality
while exhibiting a remarkable capability to capture
style and semantic information accurately.

2 RELATED WORK

2.1 Image Style Transfer
Arbitrary style transfer methods [16] employ unified models
that handle various input styles by constructing feed-forward
architectures [17]–[23]. Huang et al. [14] employ conditional
instance normalization to align the overall statistics of content
features with those of style features, which adjusts the
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Fig. 2. The conceptual differences among the three image generation
methods. (a) Classical Style Transfer [14], which combines a style
image (providing the desired artistic style) and a content image (providing
the scene or structure). (b) Text-to-Image Synthesis [15], which gener-
ates an image directly from random noise guided by textual descriptions,
such as “a beautiful lady reading a magazine in the style of oil paintings”,
without requiring a reference style image. (c) CreativeSynth, which
employs a “cross-art-attention” mechanism to seamlessly integrate
semantic content with the desired style, producing outputs that are both
semantically coherent and stylistically consistent.

statistics to achieve style transfer. An et al. [24] address
content leakage through reversible neural flows and an
unbiased feature transfer module called ArtFlow. Zhang
et al. [25] directly learn style representation from image fea-
tures using contrastive learning, achieving domain-enhanced
arbitrary style transfer (CAST). In addition to CNNs, visual
transformers have also been employed for style transfer tasks.
Deng et al. [26] propose StyTr2, a transformer-based method
that considers the long-range dependencies of input images
to avoid biased content representation in style transfer. A
variety of text-based style transfer methods have emerged
with the development of powerful multi-modal models.
Zhang et al. [27] introduce InST, a diffusion stylization
method based on an inversion technique that achieves more
expressive style transfer. Sohn et al. [28] propose StyleDrop,
an artistic image generation method that fine-tunes a minimal
number of trainable parameters within diffusion models.
While existing image style transfer methods primarily focus
on learning and transferring artistic elements into a given
content image (see Fig. 2(a)), our approach aims to create the
appearance of specific content within a target painting.

2.2 Text-to-image Generation

With the ability of neural networks to understand intricate
natural language and visual representations, the field of
image synthesis has made significant progress from textual
descriptions [29]. Transformer-based architectures such as
DALL-E [30] and its follow-up studies [7], [8] incorporate
powerful attentional mechanisms to efficiently transform
textual prompts into high-fidelity images. Similarly, VQ-
VAE-2 [31] and its autoregressive model demonstrate the
strong potential of combining textual and visual patterns
through discrete latent spaces. These methods have achieved
remarkable results, but they often do not allow for fine

control of structural details [32], [33]. Diffusion models
similar to Stable Diffusion [6] also exemplify the ability
to generate high-quality images based on descriptions.
Nonetheless, as shown in Fig. 2(b), these methods still
face the challenge of generating images with styles that
are inconsistent with textual prompts. Our research closely
follows the previous work [1], [4], [32], [34], focusing on
converting multimodal prompts into realistic artistic images
and achieving innovations in reconstructing and editing
existing images.

2.3 Personalized Image Generation

In order to incorporate specific styles or personalities into
image generation, personalization, and style alignment
has become an important area of research. For example,
StyleGAN [35] has made impressive progress in person-
alized face generation. ControlNet [36] leverages “zero-
convolution” fine-tuning on pre-trained diffusion models
to enable diverse, prompt-driven image generation with
spatial conditioning. In terms of image restoration with
constraints, ProSpect [37] attempts to preserve the style
features of the semantic image while adapting its content to
fit the new context. In terms of achieving multi-image style
consistency, Style Aligned [32] shows how multiple images
can be stylistically consistent through a shared attention layer.
Textual Inversion [4] introduces a method for embedding
new ”words” into the model space using as few as 3-5 images,
allowing for nuanced linguistic guidance customization and
demonstrating superior concept depiction capabilities across
a range of tasks. [38] enables intuitive text-guided image
edits by inverting images into the domain of a pre-trained
model using meaningful text prompts. As demonstrated in
Fig. 2(c), our work extends the above idea by enhancing the
interaction between textual and artistic visual features made
achievable through multimodal fusion.

3 METHOD

3.1 Overview

CreativeSynth synthesizes text and image data to produce
artwork guided by specific conditions, leveraging our core in-
novation, the cross-art-attention mechanism (see Sections 3.3-
3.5). This approach establishes novel connections between di-
verse art-related information, aligning textual art descriptions
with visual art elements at both semantic and stylistic levels,
thereby enhancing feature integration. Cross-art-attention
is pivotal, intertwining artistic concepts, emotions, visual
components, and compositional styles of the target images
with the semantic content requirements from text prompts
and source images. This integration enriches the semantic
depth of the input and yields artistic outputs that are
detailed, accurate, and consistent in style and meaning. As
depicted in Fig. 3, this approach initially conducts semantic
encoding of the semantic image and text prompts, providing
content information that lays the groundwork for condition
guidance. Subsequently, our framework focuses on aesthetic
preservation, where a dedicated processor adjusts the style
of the semantic image to align with that of the target
image through adaptive instance normalization, ensuring
that the generated output maintains stylistic consistency
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Fig. 3. The overall structure of CreativeSynth. Text features and image features are first acquired from separate text and image encoders, respectively.
Then, target and semantic images are interacted by applying AdaIN to focus on image art features. An innovative decoupled cross-attention
mechanism is employed to fuse the attention between the multimodal inputs, which is subsequently integrated into a U-Net architecture. The target
image is transformed into a latent variable zT via DDIM Inversion, and the final output is refined through a denoising network.

with the desired aesthetic. During the semantic fusion
phase, a decoupled cross-attention mechanism harmonizes
visual and textual features into a unified representation. The
sampling process is guided by the image inversion principle,
which leverages denoising to reconstruct the image from
noise. As a result, CreativeSynth generates bespoke artworks
that faithfully reflect the provided semantic conditions and
aesthetic preferences.

3.2 Prelimiaries

The diffusion process is simulated through a gradual noise
addition process, where noise is progressively introduced to
the clear original image x0, generating a series of transitional
latent variables (x1, ..., xT ). In the denoising diffusion model,
this process is defined as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵθ(xt−1, t), (1)

where ᾱt =
∏t

i=1 αi is the cumulative product factor for time
step t, and ϵ is a neural network model learned from random
noise. In this process, we gradually apply forward noising
to the original image x0, creating a series of increasingly
noised images x1, x2, . . . , xT until an image that is nearly
pure noise xT is generated. Subsequently, we reconstruct
the image using a reverse process, that is, by denoising
steps learned step by step, we trace back from the noisy
image xT to the original image x0. The key to our approach
is the Denoising Diffusion Implicit Models (DDIMs) [39],
which enables precise control over synthesis, serving as the
backbone of the algorithm. DDIM employs a non-Markovian
diffusion process, characterized by a sequence of forward
noising steps followed by a reverse denoising procedure.

In order to reconstruct a real image under a given condi-
tional text, we need to perform a reverse process to recover
the image from random noise. We employ the deterministic
DDIMs as our core denoising technique. Specifically, we use

the following reverse formula of DDIM to restore the original
image:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtβ, (2)

where αt is the step size factor in the denoising process, ϵθ
is the predicted noise, β is an optional noise vector used to
increase randomness, and σt is a factor that regulates the
noise intensity.

3.3 Condition Guidance

The encoding process integrates text and image features
using a decoupled cross-attention mechanism within the
framework of a pre-trained Stable Diffusion model [6]. For
a given text prompt P , the tokenizer and the text encoder
from the pre-trained diffusion model are used to generate
the text embeddings Etext ∈ Rn×dtext :

Etext = E(Tokenizer(P )), (3)

where n is the sequence length and dtext is the text embedding
dimension.

The image encoder EI is trained using the IP-Adapter
framework [40] built upon the Stable Diffusion XL-1.0
model [15]. This encoder transforms input images into latent
representations optimized for processing by the generative
model. Specifically, for an input image I, the latent encoding
is obtained through a forward pass within the image encoder
network:

zI = EI(I). (4)

Unlike the existing U-Net cross-attention architecture, which
uses two paths to process text and image features separately,
each path consists of specialized cross-attention layers that
are dedicated to either text features or image features without
interfering with each other. Instead, we use a decoupled
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cross-attention mechanism, where shared attention results
for images and cross-attention results for text are combined
for final image generation.

3.4 Aesthetic Maintenance

The Aesthetic Maintenance module is designed to bridge
the gap between the generated images and the art world’s
aesthetic standards, which are characterized by finer-grained
dimensions such as color, technique, and composition. The
module enables the model to prioritize key visual features
and ensure overall harmony, by leveraging style alignment
and shared attention mechanisms. Through these mecha-
nisms, the model inherits accurate painting techniques and
constructs visually balanced compositions.

3.4.1 Self-attention
Leading text-to-image (T2I) diffusion models [6], [15], [36]
integrate a U-Net structure [41] composed of convolutional
layers and transformer-based attention blocks [42]. Within
these attention frameworks, deep image features ϕ ∈ Rm×dh

undergo self-attention within layers and interact with con-
textual text embeddings through cross-attention layers.

In our study, we focus on the self-attention layers, where
the deep features are updated by mutually attending to one
another. Initially, the features are transformed into query
matrices Q ∈ m× dk, key matrices K ∈ m× dk, and value
matrices V ∈ m× dh via learned linear transformations.
Following this, the attention mechanism is calculated using
scaled dot-product attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (5)

where dk denotes the dimensionality of Q and K. Concep-
tually, the update for each image feature is a weighted sum
of V , with weights derived from the correlation between the
projected queries q and the keys K.

3.4.2 Style alignment
To achieve stylistic harmony between images, it is essential to
facilitate the flow of attention from the semantic image to the
target image. The style alignment module employs designed
art batch normalization (ArtBN) to align the queries and keys
of both the semantic and target images to a specified style.
This approach ensures that the generated images not only
maintain stylistic coherence with the desired aesthetic but
also enhance visual appeal and thematic consistency within
the synthesized content. By receiving target and semantic
inputs, the channel mean and variance of the semantic input
are adjusted to align with those of the target input. The
ArtBN definition is as follows:

Q̂t = ArtBN (Qt, Qs) , K̂t = ArtBN (Kt,Ks) , (6)

where Qs and Ks are the query and key of the semantic
image, and Qt and Kt are the query and key of the
target image, respectively. When only receiving target input,
for image variation and editing applications, the ArtBN
definition is as follows:

ArtBN(x) =
x− µ(x)

σ(x)
. (7)

For an input batch x ∈ RN×C×H×W , µ(x) and σ(x) are
computed across spatial dimensions independently for each
channel and each sample:

µnc(x) =
1

HW

H∑
h=1

W∑
w=1

xnchw, (8)

σnc(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xnchw − µnc(x))
2
+ ϵ. (9)

3.4.3 Shared attention.
Shared attention integrates the characteristics of both the
target and semantic images, updating the information in the
semantic images based on the style of the target image. Kts

represents the shared key, respectively, while Vts denotes the
value:

Kts =

[
Ks

K̂t

]
, Vts =

[
Vs

Vt

]
. (10)

When only the target input is received,

Kts = K̂t, Vts = Vt. (11)

The keys and values are jointly aggregated from both the
target image and the semantic image, whereas the query
exclusively represents the attributes of the target image. The
scaled dot-product attention mechanism is then applied as
follows:

Z′ = Attention(Q̂t,K
T
ts, Vts) = Softmax

(
Q̂tK

⊤
ts√
d

)
Vts,

(12)
where Q̂t represent the query normalized by ArtBN and d is
the dimensionality of the keys and queries.

3.5 Semantic Fusion
The semantic fusion module facilitates multi-level interac-
tions between semantic images, target images, and text by
employing a decoupled cross-attention mechanism. This
mechanism processes each information stream (image and
text features) through separate cross-attention layers, en-
abling iterative co-optimization of cross-modal information.
Thus the module significantly enhances the model’s capacity
to understand and generate outputs for complex art creation
and analysis tasks. Ultimately, the information streams are
fused to generate the final modified image features Z′′:

Z′′ = Z′ + Softmax

(
QK⊤
√
d

)
V, (13)

where Q,K, V are the transformed query, key, and value
matrices of the text features. The contributions of individual
decoupled attention operations are aggregated to shape the
final feature representation.

3.6 Sample Process
In our method, the reverse diffusion process adheres to
the formal representation below to progressively restore the
latent clean image:

zt−1 =
√
αt−1

(
zt −

√
1− αtϵθ(zt, t)√

αt

)
+
√
1− αt−1ϵθ(zt, t), (14)
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Fig. 4. Qualitative comparisons of our proposed CreativeSynth with other extant methods. The results offer a visualization of image fusion between
artistic and real images.

where αt represents the steps of the predetermined variance
schedule, and ϵθ is a parameterized neural network respon-
sible for predicting the noise component in the image at time
t. The process begins with the initial latent representation,
zT , sampled from a prior noise distribution, N (0, I), and
progressively reduces the noise to recover the original image
representation in the latent space, z0. This gradual denoising
enables our model to achieve precise image synthesis while
ensuring robust control and predictability throughout the
synthesis process.

In the sampling process, we design an inversion callback
function to adjust the latent space vectors at the end of each
inversion step, ensuring the text alignment of the image. This
function is defined as:

Callback(zt, t) =

{
zT , if t = T,

zt, otherwise,
(15)

where zt denotes the latent variable corresponding to the
temporal index t, which is replaced with a pre-computed
vector derived via the DDIM inversion [43]. This ensures that
throughout the diffusion process, our optimized latent space
vector remains highly consistent with the inherent attributes
of the target image.

4 EXPERIMENTS

4.1 Implementation Details
The Stable Diffusion XL (SDXL) [15] model utilized in our
experiments has been pre-trained on a large-scale corpus of

text-image pairs, fully leveraging its representational capacity.
To maintain experimental consistency, we standardized the
number of generation steps to 30 and the guidance scale
to 5.0 throughout our evaluations. Furthermore, the input
images utilized in the experiments are uniformly scaled
to a resolution of 1024 × 1024 pixels for both the image
reversal process and subsequent image synthesis tasks. The
generation of each image requires approximately five seconds
on a single NVIDIA L40 GPU and around two seconds on a
single NVIDIA RTX 4090 GPU.

4.2 Qualitative Evaluation

4.2.1 Image fusion

We conduct comparisons for image fusion tasks with state-of-
the-arts methods including Image Mixer [44], Kosmos-G [45],
and Versatile Diffusion [46]. Qualitative results are shown in
Fig. 4. Image Mixer and Kosmos-G tend to generate results
with subdued stylistic expression, often producing images
that are more realistic than artistic. Versatile Diffusion, by
contrast, consistently demonstrates strong creative expres-
siveness across a variety of outputs but struggles to capture
the nuanced subtleties of distinct styles. In comparison, our
approach consistently produces harmoniously fused results
that balance creative excellence and aesthetic appeal, while
excelling in style representation and effectively integrating
semantic information.
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Fig. 5. Visual comparison of our proposed CreativeSynth with state-of-the-art methods for text-guided editing of diverse types of art images.

TABLE 1
Statistics of quantitative comparison with state-of-the-art methods for text-guided image editing. Specific metrics include Aesthetic Score, NIMA,

CLIP-T, and CLIP-I. The best results are in bold while the second-best results are marked with underline.

Ours IP-Adapter ProSpect DreamBooth TI SDXL I2I Instruct P2P Masactrl VD

Aesthetic Score ↑ 7.563 7.249 6.297 6.216 6.441 6.636 5.344 5.707 6.818
NIMA ↑ 6.4382 5.9713 4.6754 5.3396 4.5942 5.3647 3.7937 3.9487 4.3901
CLIP-T ↑ 59.123 57.956 58.004 46.792 48.576 57.981 55.203 45.147 53.516
CLIP-I ↑ 69.84 54.62 58.79 84.36 39.31 63.14 48.41 51.95 45.46

4.2.2 Text guided image editing

To accurately assess model performance, we conduct baseline
comparisons for the task of single-image text editing. As

shown in Fig. 5, our model takes succinct personalized text
descriptions as input and successfully performs operations
such as semantic introduction, facial attribute modification,
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TABLE 2
Statistics of quantitative comparison with state-of-the-art methods for Image fusion. Specific metrics include Aesthetic Score, NIMA, and CLIP-I. The

best results are in bold while the second-best results are marked with underline.

Ours VD Image Mixer Kosmos-G

Aesthetic Score ↑ 7.563 6.818 7.151 6.125
NIMA ↑ 6.3648 4.4269 5.3955 5.3071
CLIP-I ↑ 52.067 44.973 48.349 50.564

and complex scene recreation across a range of different
scenes and objects. For a comprehensive evaluation of
our method, we select several advanced baseline models
for comparison, including IP-Adapter [40], ProSpect [37],
DreamBooth [1], Textual Inversion [4], SDXL I2I [15], Instruct
Pix2Pix [47], Masactrl [33], and Versatile Diffusion (VD) [46].

Based on the results, although the IP-Adapter generates
results of superior quality, it fails to preserve the non-
editing information of the target image. In terms of style
consistency, some models like ProSpect, DreamBooth, and
SDXL I2I exhibit high congruence with the target image.
However, Instruct Pix2Pix and Masactrl often damage the
composition and content of the target image during editing,
introducing distortions and unnatural artifacts. For instance,
images processed by Instruct Pix2Pix show obvious ghosting
effects on headphones and ice cream, while Masactrl faces
challenges in generating specific and realistic human faces.
ProSpect and SDXL I2I perform admirably in preserving the
semantic content of the original image, but often experience
significant alterations in key features such as facial details
of people, impacting the image’s authenticity and credibility.
In contrast, DreamBooth’s results display very limited input
image information changes, leading to the production of
images that nearly do not align with the text editing require-
ments, thus limiting their potential for practical application.
Lastly, Textual Inversion and Versatile Diffusion can generate
quite distinctive artworks, which are creative but still deviate
significantly from the target image in terms of style and
semantic preservation.

Compared to baselines, our results guarantee a high level
of content fidelity and stylistic coherence during image mod-
ification. The altered images retain the principal structure of
the original while integrating new attributes or alterations
in accordance with text-based directives. In the domain of
facial attribute editing, our method yields facial features
that are both more natural and realistic, minimizing visual
anomalies and undue artistic alterations. Furthermore, our
approach facilitates the effective reconstruction and editing
of intricate scenes without disrupting the global composition
of the image.

4.3 Quantitative Evaluation
To comprehensively assess the performance of our proposed
method, this paper employs four key metrics—Aesthetic
Score [48], NIMA [49], CLIP-T [50], and CLIP-I [50]—for
quantitative comparison with the state-of-the-art methods.
The Aesthetic Score reflects the visual appeal and artistic
quality of the generated images, NIMA evaluates the realism
and naturalness of the images, CLIP-T describes the semantic
consistency between the generated images and the edited

text, and CLIP-I indicates the visual and content coherence
between the generated images and the target images.

Text guided image editing. The comparison results are
shown in Table 1. In terms of Aesthetic Score, our method
significantly outperforms other methods, achieving the
highest average score of 7.563, demonstrating its excellent
performance in overall aesthetic appeal. In the NIMA score,
our method also achieves a high score of 6.4382, indicating
that our generated images excel in realism and naturalness.
On the CLIP-T metric, our method leads with a score of
59.123, which shows the effectiveness of our method in
ensuring semantic consistency between the generated images
and text descriptions. Furthermore, our method also achieves
a high score of 69.84 on the CLIP-I metric, highlighting our
method’s ability to maintain visual semantics and detail
fidelity. While Dreambooth achieved the highest score in the
benchmarks, it struggled when executing text commands.

Image fusion. The comparison results are shown in
Table 2. In terms of Aesthetic Score, our method also performs
exceptionally well, scoring 7.563, which is a high score in
the task of image fusion. In the NIMA score, our method
scores 6.3648, which shows the advantage of our image
fusion results in terms of realism and naturalness. On the
CLIP-I metric, our method scores 52.067, indicating that our
method can effectively maintain visual quality and content
consistency when it comes to image fusion.

4.4 User study

4.4.1 Preference
We benchmark CreativeSynth with ten other leading-edge
image-generation techniques to determine which generates
the most favored artistic outcomes. We presented each par-
ticipant with 50 randomly selected sets of results, displaying
the images produced by CreativeSynth and an alternative
method in no particular order. We asked participants to
identify the results that (1) were the most visually pleasing
overall, (2) most closely matched the artistic expression of
the target image, and (3) most closely related to the editorial
semantics of the text or image. In the end, we obtained
11, 850 votes from 79 participants, and the percentage of
votes for each method is detailed in Fig. 6. It is worth noting
that CreativeSynth is particularly popular in the categories
of ink drawing, oil painting, and digital art.

4.4.2 Necessity study
We also included the following inquiries in the user research
questionnaire to help determine the requirement of our sug-
gested idea: (1) does it generate realistic artwork?; (2) is the
outcome innovative and interesting?; and (3) is it necessary?
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Fig. 6. The user study with the comparative method consisted of three aspects: overall preference, aesthetic preference, and semantic preference.
Users chose between the comparative methods and CreativeSynth. The table shows the percentage of people who chose the comparison method.

TABLE 3
The user study with the comparative method consisted of three aspects: overall preference, aesthetic preference, and semantic preference. Users

chose between the comparative methods and CreativeSynth. The table shows the percentage of people who chose the comparison method.

IP-Adapter ProSpect DreamBooth TI SDXL I2I Instruct P2P Masactrl VD Image Mixer Kosmos-G

Overall Preference 24.1% 19.2% 1.5% 3.0% 12.9% 3.3% 14.7% 8.6% 20.3% 26.1%
Aesthetic Preference 34.2% 13.4% 44.1% 4.6% 18.7% 10.1% 24.1% 8.6% 28.4% 31.6%
Semantic Preference 17.7% 10.6% 4.1% 5.1% 18.0% 6.1% 9.4% 12.9% 21.5% 32.4%

Fig. 7. Results of ablation study on mechanism dissection. The aesthetic
maintenance, image inversion, and semantic preservation components
play key roles in style maintenance, detail consistency and semantic
preservation respectively.

Finally, we collected 237 votes from 79 participants. The
voting results showed that a percentage of 94.9% supported
the necessity of our idea, the potential of the idea to be
applied in practice, and the possibility of fulfilling a specific
need. In addition, 91.1% of the participants believed that it is
indeed possible to create highly realistic works of art based
on our idea, which shows the credibility of our technical
realization and the recognition of the expected results. Most
strikingly, a whopping 96.2% found the artworks generated
by our idea to be innovative and appealing. In view of this,
our idea is not only widely recognized by the potential
user community, but also has some prospects for practical
application.

4.5 Ablation Study
To evaluate the effectiveness of the various components in
CreativeSynth, we conducted an ablation study incorporating
the concepts of aesthetic maintenance, image inversion,
semantic preservation, and condition guidance.

4.5.1 Mechanism dissection
We show the ablation results for the main mechanisms in
Fig. 7. The third column of the figure shows the results

Fig. 8. Results of ablation study on semantic preservation guidance scale.
As the scale increases, the degree of semantic image guidance increases
and the expression of semantic information in the results is enhanced.

Fig. 9. Results of ablation study on condition guidance scale. As the
condition guidance scale increases, the agreement between the results
and the target image increases.

of the full model output. The fourth to sixth columns, on
the other hand, show the images generated without style
understanding, image inversion, and semantic preservation,
respectively. The results show that when the model includes
the style understanding component, it is able to effectively
reproduce the stylistic features of the input images and
generate stylistically consistent and aesthetically pleasing
output images. In contrast, models lacking style understand-
ing produce images with oversaturated colors. The image
inversion component enhances the model’s understanding by
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Fig. 10. Implement the display of the results of Image variation by using
CreativeSynth.

parsing the original image details. This mechanism allows the
generated image to better retain the detailed information of
the original image, improving visual coherence and realism.
The inclusion of semantic preservation helps to generate a
more rational structure and more complete semantic informa-
tion, highlighting the effectiveness of semantic preservation
in improving overall quality.

4.5.2 Semantic preservation

As shown in Fig. 8, we adjusted the guidance scale of the
semantic images and recorded the changes in the generated
images at different scales. As the guidance scale increases, the
generated images reproduce the input semantic information
more accurately under the given conditions, producing well-
structured and semantically rich images. On the other hand,
the generated outputs fail to capture the essential infor-
mation of the input and instead create confused semantic
information at lower guiding scales. In addition, our method
generates images with more harmonious tones, textures, and
lighting between the foreground and background, resulting
in more realistic artistic results.

4.5.3 Condition guidance

By analyzing the visual results provided in Fig. 9, we discover
that as the guidance scale increases, the details of the results
become richer and more precise, aligning closer to the
target style. This set of experiments, supported by both the
visual demonstration in Fig. 9, confirms that increasing the
guidance scale significantly improves the clarity and detail
representation of the images, as well as the controllability
over the generated images, thereby enhancing their accuracy
and editability. Consequently, adjusting the guidance scale
parameter effectively optimizes the performance of our
image generation algorithm.

Target image Semantic image Ours Versatile Diffusion

Fig. 11. Employ CreativeSynth to realize the presentation of the outputs
of image style transfrer.

5 DISCUSSION

5.1 Application

5.1.1 Image variation

CreativeSynth’s ability to distill stylistic and semantic nu-
ances from a reference image allows it to create work that
closely matches artistic qualities. Fig. 10 demonstrates the
ability to generate similar results from a single reference
image. As shown in Fig. 10(c), we compared the results of
CreativeSynth with the state-of-the-art multimodal guided
generation method Versatile Diffusion [46] that can lead to
artifacts and distorted results, where the generated images
may present inconsistencies in content. These variations
not only highlight CreativeSynth’s adaptability in dealing
with different artistic styles but also emphasize its utility in
extending the user’s creativity by offering the possibility of
multiple styles from a single starting point.

5.1.2 Style transfer

CreativeSynth specializes in fusion style and content for any
given style of the target image, striking a balance between
style transfer and preserving the original structure. While
digital hand-drawn styles and anime provide a difficulty to
standard style transfer methods, CreativeSynth may achieve
style transfers, as seen in the example in Fig. 11. The
remarkable capacity of CreativeSynth to produce digital art
is demonstrated by its ability to imitate intricate artistic styles
while preserving the recognizable elements of the original
image. In contrast, Fig. 11(d) results from Versatile Diffusion
tend to introduce additional distorted content information,
and they fail to maintain artistic effects well, often resulting
in images with high saturation.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025 11

Target image Semantic image Editing text Ours Versatile Diffusion

Fig. 12. Multimodal blending results. CreativeSynth can modify the
content according to textual requirements based on the incorporation of
semantic image information.

Fig. 13. Diversity experiments results. The first two rows illustrate the
results obtained by fixing the target image while replacing the semantic
image, whereas the last two rows depict the results of fixing the semantic
image and varying the target image. The results demonstrate the
robustness and versatility of CreativeSynth.

Fig. 14. Results of the semantic discrepancy between semantic image
and editing text. (a) Semantic consistency. (b) Semantic inconsistency.

5.1.3 multimodal fusion
As shown in Fig. 12, CreativeSynth extends to image
generation and editing by integrating multimodal in-
puts.CreativeSynth demonstrates its innovative approach
to art creation by fusing visual and textual prompts, thus
introducing new semantic elements and transforming their
content. Based on the user’s creative thoughts, CreativeSynth
may create concrete and semantically different artworks. The
findings in Fig. 12 highlight the respective effects of semantic
pictures and textual prompts on the created outcomes. As
demonstrated in Fig. 12(d), CreativeSynth is able to maintain
the artistic information better than the results of Versatile
Diffusion in Fig. 12(e), and generates more aesthetically
pleasing and homogeneous results. Also, Versatile Diffusion
could be improved in following the text editing information.

5.1.4 Fixed input response
To further illustrate the versatility of CreativeSynth, Fig. 13
shows CreativeSynth’s response to the fixed target image and
semantic image input. When the target image is held constant,
CreativeSynth shows remarkable flexibility in adapting to
a wide range of semantic inputs, being able to subtly incor-
porate its style and composition while faithfully retaining
its inherent semantic qualities. This enables the creation of
personalized artworks that resonate with the user’s stylistic
and thematic preferences. Conversely, if the input is a single
semantic image, CreativeSynth can reinterpret the same
subject in multiple styles, displaying a variety of features.
The diversity and adaptability of the results shown in Fig. 13
highlight the versatility and robustness of CreativeSynth.

5.2 Semantic conflict

To deeply explore the interaction between semantic images
and text prompts for their effects when they conflict, we
conducted a series of experiments. As shown in Fig. 14,
under the same image input condition, we can observe two
different results. In Fig. 14(a), we input text prompts that
are consistent with the semantic image, and the results show
that the image generation is consistent with the expectation,
indicating that the system can efficiently combine the two
types of information to generate the target image when the
textual and image information are coordinated.

Conversely, the scenario shifts in Fig. 14(b), where a text
prompt discordant with the semantic image—specifically,
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Fig. 15. Experiments on exchanging input images between target image
and semantic image. When the target image is an artistic image and the
semantic image is a natural image (see (a), (c), and (e)), the process
performs an image fusion task, such as embedding a human face into a
painting. Conversely, when the target image is a natural image and the
semantic image is an artistic image (see (b), (d), and (f)), the process
executes a stylization task, introducing the style of the painting to the
natural image.

“male” is deliberately introduced. This resulted in a notable
phenomenon: despite the semantic image depicting a female,
the textual information led to the enhancement of three-
dimensionality in the female facial features, marked by
increased shadows, grooves, and angles. This indicates that
the effect of textual information on the image is significant,
even if it conflicts with the semantic image. It is worth
noting that the final generated image retains the main female
features despite the conflict between the text prompt and
the semantic image, suggesting that the influence of the
semantic image on the final result is still more significant
in our CreativeSynth system. This finding suggests that
when using such systems, parameter adjustments may be
needed to properly balance the effects of textual and image
information on the final generated results to achieve optimal

image generation.

5.3 Swapping Input Images
To explore more possibilities of CreativeSynth inputs, we
broke the inherent pairing of artistic image as target image
and real image as semantic image. As shown in Fig. 15,
we swapped the channels of the input image. From the
results of rows 2, 4, and 6 in Fig. 15, the facial features
of the people in the art image can be reproduced in the
real image to a certain extent, but it is difficult to retain the
authenticity of the faces, and the results are still more in favor
of the art paintings. CreativeSynth is primarily designed and
optimized as an art generation model rather than a real face
generation model. When it comes to handling the merger
of realistic and creative pictures, CreativeSynth’s particular
powers and limits are demonstrated by this experimental
method of channel-switching. Although it performs well in
mimicking features in artistic images, there are still some
challenges in maintaining the point of face realism. In our
future research and applications, we can try to create artistic
images without losing the sense of realism by using different
combinations of inputs and parameter adjustments.

5.4 Failure cases
Although CreativeSynth is capable of working with a wide
range of art styles, including Drawing and Cubism, it
may not be accurate enough in capturing specific elements
of certain styles, such as unusual shape variations and
brushstroke characteristics, as shown in Fig. 16. This is
demonstrated when attempting to transform or blend styles
with complex textures and brushstroke expressions, such as
Impressionism, the resulting artwork may be too smooth
and lack the vigour and roughness of the brushstrokes
typical of the style. This excessive smoothness and clarity
may diminish the expressiveness of the work, especially
when attempting to retain or emphasize specific stylistic
features in the original artwork. To address these issues,
future research may need to explore more refined style-
capturing techniques, as well as improved algorithms that
can better understand and reproduce detailed features, such
as the variety of brushstrokes and the complexity of textures,
in various art styles. By analyzing and modeling these details
in greater depth, CreativeSynth, and similar tools may be
able to support a wide range of artistic expression and
style reproduction more effectively, providing artists and
designers with a richer set of creative tools.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present CreativeSynth, a unified frame-
work designed to enable creative fusion and synthesis of
visual artworks. The primary aim is to infuse multimodal
semantic information into artworks using our novel Cross-
Art-Attention mechanism without altering model parame-
ters. This innovative approach ensures the preservation of
the art pieces’ inherent themes, emotions, and narratives,
transcending a mere overlay of style onto natural images,
by integrating semantic and aesthetic information through
a unique semantic fusion mechanism and style alignment
technique. In this way, each synthesized work is not only a
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Fig. 16. Bad cases. CreativeSynth is lacking in some of the special art textures, with a less prominent style that tends to produce smooth results.

visual fusion, but also an intersection of meaning and story;
with a strong personality, a unique visual narrative, and an
exclusive emotional depth. Experimental results have shown
that CreativeSynth is not only popular for its visual results,
but also highly effective in executing user-specific artistic
editorial intent. In the future, we plan to apply this approach
to different image generation architectures and to broaden
its application to encompass other forms of media, such as
video. With subsequent refinements and applications, our
approach will help creators realize creative expression like
never before.
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