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Abstract—Ambiguous figure-ground images, mostly represented as binary images, are fascinating as they present viewers a visual

phenomena of perceiving multiple interpretations from a single image. In one possible interpretation, the white region is seen as a

foreground figure while the black region is treated as shapeless background. Such perception can reverse instantly at any moment.

In this paper, we investigate the theory behind this ambiguous perception and present an automatic algorithm to generate such images.

We model the problem as a binary image composition using two object contours and approach it through a three-stage pipeline. The

algorithm first performs a partial shape matching to find a good partial contour matching between objects. This matching is based on

a content-aware shape matching metric, which captures features of ambiguous figure-ground images. Then we combine matched

contours into a compound contour using an adaptive contour deformation, followed by computing an optimal cropping window and

image binarization for the compound contour that maximize the completeness of object contours in the final composition. We have

tested our system using a wide range of input objects and generated a large number of convincing examples with or without user

guidance. The efficiency of our system and quality of results are verified through an extensive experimental study.

Index Terms—Figure-ground perception, partial shape matching, curve deformation, image cropping, image binarization

Ç

1 INTRODUCTION

AMBIGUOUS figure-ground perception, also referred as
figure-ground reversal, is a visual phenomenon where

the perception of a meaningful object, the figure, and a shape-
less background, the ground, is not constant in an image, and
can reverse spontaneously [1]. The best known example illus-
trating such a particular perceptual experience is probably the
Face-Vase illusion drawn by Edgar Rubin as shown in Fig. 1.
In this image the viewer can perceive either the central white
region or the surrounding black region as the figure at any
moment. In the former, the contour of thewhite region defines
the shape of a vasewhile the opposite black region is regarded
as the background. Such assignment of figure and ground is
instantly reversed when the black region is interpreted as a
figure depicting two face-to-face human profiles.

The unique mental skill of humans to spontaneously
reverse figure-ground perception is closely related to a funda-
mental component in perceptual organization, namely figure
assignment. It has beenwell studied in Gestalt psychology that
the inhibitory competition between cues along the opposite
sides of a boundary shared by two contiguous regions in the
visual field plays an important role in the figure assignment
process [2], [3], [4], [5], [6]. Both the low-level geometric
features (e.g., convexity, symmetry, enclosure, etc) and

high-level cues (e.g., attention, familiarity, past experience,
etc) are reported to affect the competition process [3], [7], [8],
[9]. The figure is perceived on the side that wins the competi-
tion while the opposite region is perceived as shapeless
ground. This suggests a mechanism to create an effective
ambiguous figure-ground image by combining two objects in
a form where the competition of figure assignment is evenly
matched along the shared boundary.

As an art form, ambiguous figure-ground images are fasci-
nating to look at andwidely used in advertising designs [10].
To create effective and aesthetic art pieces, the artist and
designer strike a delicate balance in keeping salient features
of two tightly interlocked objects along the shared boundary.
The creation process may involve tedious trial-and-error
runs to place two objects in a proper spatial configuration
(i.e., position, orientation, and scale) and determine a shared
boundary between two objects. Then adjoined regions need
to be filled up with contrast colors (e.g., black and white) to
differentiate between figure and ground regions in the final
composition. Thus manually creating such images is chal-
lenging even for a skilled designer. In this work, we design
computational tools to facilitate such a process.

However, designing a computational model for generat-
ing effective and visually appealing ambiguous figure-
ground images that does not require the kinds of skills
employed by artists poses the main challenge. Inspired by
the representation of art works, we model the problem as
finding a binary image composition of two objects such that
the outlines of black and white regions effectively delineate
the shapes of objects. We approach the problem using a
novel three-stage algorithm, involving shape matching and
deformation to compute and stitch two objects at partial
matching contours, followed by image cropping and binar-
ization to get the final composition. In the key partial shape
matching stage, we propose a novel content-aware shape
matching metric for evaluating the quality of partial contour
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matching based on the measurable convexity cue in inhibi-
tory competition theory. The metric measures not only
(i) the conventional local shape similarity, but also captures
features to render ambiguous figure-ground images, includ-
ing (ii) how well the convexity cues of objects are retained
along the matching contours; (iii) the length of matching
contours; (iv) how much deformation is required to merge
twomatching contours into a common boundary; and (v) the
orientation of objects. In other words, the system prefers two
objects tomatchwith each other in the familiar upright orien-
tation and at longer partial contours where the convex parts
of an object precisely match the concave parts of the others
and vice versa. Then we perform a contour deformation to
merge two matched partial contours into a common bound-
ary and obtain a compound contour. The last stage aims to
compute an optimal window frame enclosing the compound
contour and binary color assignment of pixels to form the
final binary image. This is done by a joint optimization that
simultaneously computes image cropping and binarization to
maximize the completeness of original object contours in the
composition. To the best of our knowledge, our system is the
first one that presents a computational model to automati-
cally generate ambiguous figure-ground images.

Although our algorithm runs automatically, the system
offers additional user interfaces to allow both amateur and
advanced users to intervene in the creation process. Specifi-
cally, users can optionally select partial contours of input
objects to guide the partial shape matching process. The sys-
tem generates multiple matching hypotheses ranked by the
estimated shape matching cost, while users are able to select
among them the one they find interesting. Users can further
override the suggested cropping window by specifying a
new one, while the system, in the background, automati-
cally updates the binary image. Please see the supplemen-
tary video, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2016.2535331, for such a user session.

We have tested our system using a wide range of input
objects and generated a large number of convincing exam-
ples (60 images) with or without user guidance. The effec-
tiveness of perceiving figure-ground reversal in our results
is verified by a user study. The results indicate that our sys-
tem is efficient and flexible for users to interactively create
ambiguous figure-ground images. Fig. 2 shows an example
generated using our system.

Contributions. In summary, our contributions include:

� an interactive system that facilitates creating effective
and appealing ambiguous figure-ground images;

� investigating the guiding principles behind the
ambiguous figure-ground perception, based on
which we develop computational models to tackle
the composition problem;

� a novel partial shape matching based on a content-
aware shape matching metric that is capable of mea-
suring multiple matching criteria and tailored to cap-
ture characteristics of ambiguous figure-ground
images; and

� a joint optimization that simultaneously computes
optimal image cropping and binarization to maxi-
mize the completeness of object contours in the final
composition.

2 RELATED WORK

2.1 Perceptual Organization

The ability to perceive ambiguous figure-ground reversal is
closely related to a fundamental operation in perceptual
organization, figure assignment, which distinguishes mean-
ingful figure from shapeless ground from two contiguous
regions. It has been extensively studied in psychological
research about what kind of factors influence figure assign-
ment. In the classic point of view, the figure assignment is
believed to occur at a low-level in the visual hierarchy and
is affected only by geometric features [7], [9], [11]. The
empirical studies demonstrate that viewers tend to perceive
regions that are convex, symmetric or enclosed as figures
rather than those are concave, asymmetric or enclosing. The
modern theoretic models of figure-ground perception fur-
ther introduce high level factors, such as attention, familiar-
ity and past experience [2], [3], and assume an inhibitory
competition between both low-level and high-level cues [2],
[4], [5]. We refer the reader to [6] for a comprehensive sur-
vey. Our method is mainly inspired by the inhibitory com-
petition model and aims at finding a binary image
composition where the figural competition of two objects in
convexity cue is evenly matched along the shared
boundaries.

Fig. 1. A classic example of ambiguous figure-ground image. The per-
ception of a white vase on a black background or two black human
profiles in front of a white background can exchange spontaneously.

Fig. 2. An ambiguous figure-ground image created by our system.
The input objects are shown on the left.
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2.2 Computational Arts

Computer aided design of recreational arts has been an active
research topic in computer graphics in the recent decade. Pre-
vious researches that are related to our topic appear in various
contexts including illusory art [12], [13], hidden images [14],
[15], [16], [17], and collage art [18], [19], [20], [21], etc. Among
the diverse and vast existing researches, our method bears
partial similarity to works based on shapematching [15], [18],
[19], [20], [21]. Kaplan and Salesin [18] propose a solution to
the ‘Escherization’ problem that finds a regular tiling using
a closed figure resembling the original input image.
Gal et al. [19] design a 3D collage system that mimics
Acrimboldo’s paintings by assembling common 3D shapes to
form a compound object. The idea is later reformulated by
Huang et al. [20] who utilize internet images to compose a 2D
figure that resembles the input image. Yoon et al. [15] present
a hidden-picture puzzle generator that aims at finding suit-
able places to hide small objects in a cluttered background
image. Tong et al. [21] present an automatic system for creat-
ing nested images. The system embeds an inner figure within
an outer figure based on a contour matching that considers
the holes of former figure and the contour of latter one. While
these works successfully generate impressive results, their
previous systems are customized for generating specific
art forms, which are fundamentally different from
ambiguous figure-ground images. Thus, none of these previ-
ous approaches can be directly used to solve our problem of
compositing a binary image from two objects.

2.3 Shape Matching

Shape matching is a well-studied topic in computer vision
and can be roughly divided into two categories, the bright-
ness- and feature-based methods [22]. The brightness-based
approaches treat the intensity of each pixel as the shape
descriptor, which is sensitive to the changes in object poses
and image illumination [23]. In contrast, feature-based
approaches [24], [25], [26], [27], [28] describe the shapes of
objects using geometric properties of the image (e.g., con-
tours, sample points, etc), and are proved to obtain better
performance. For instance, Belongie et al. [25] efficiently per-
form global shape matching based on the translate- and
scale-invariant shape context descriptors. However, the
global shape matching is fragile to images with strong
articulation and occlusion. To address the problem, Donoser

et al. [27] introduce a novel chord angle descriptor that enco-
des both local and global information and is invariant to sim-
ilarity transformations. An integral image based shape
matching, namely IS-Match, is presented to efficiently return
a large set of partial sub-matches. The IS-Match algorithm is
further extended by Riemenschneider et al. [28] to handle
objects with open contours. However, such conventional
shape matching algorithms, which measure only the shape
similarity between objects, frequently fail to generate prom-
ising ambiguous figure-ground images (see Section 8.3). In
this work, we propose a novel shape matching with a con-
tent-aware shape metric tailored for capturing dominant
characteristics that render effective ambiguous figure-
ground images.

3 OVERVIEW

An overview of our system is shown in Fig. 3. The system
takes two object images as inputs and extracts the outer con-
tours to serve as the basic processing units. Such contour
images can be generated from clip arts or converted from ras-
ter images using image filtering such as artistic threshold-
ing [29]. The system starts by finding partial contourmatches
between two objects based on a content-aware shape match-
ing metric. This metric is tailored to capture features of
ambiguous figure-ground images and measures the local
shape similarity, the lengths of the matching contours, the
matching degree in convexity cues, the global shape defor-
mation energy, and the object orientation (see Section 4.1).
Specifically, we first perform an efficient partial shapematch-
ing algorithm to obtain a large set of sub-matching contours
based on local shape similarity (see Section 4.2). These sub-
matching contours are further clustered based on the similar-
ity of pairwise rigid transformation estimated using the
matching contour points (see Section 4.3). For each cluster,
we compute an optimal partial contour matching along with
a sequence ofmatching contour points by integrating the con-
stituent sub-matching contours. This is done by solving a
minimum weighted bipartite matching of a graph where the
edge weight captures the local shape similarity, the matching
degree in convexity cues and the shape deformation between
matching contour points (see Section 4.4). Clusters are ranked
according to the evaluated shape matching cost, and the
system selects the top 5 as candidate shapematching pairs.

Fig. 3. An overview of our system to automatically generate an ambiguous figure-ground image using two outer contours extracted from input
images. (a) The system starts by finding candidate partial contour matches based on a novel content-aware shape matching metric. (b) The matching
pair with top score is selected by the system and both matched contours are adaptively deformed to share a common boundary. (c) Last, the system
computes an optimal cropping window and image binarization to maximize the completeness of object contours in the final result.
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Given a shape matching pair, the system combines two
objects to share a common boundary by deforming the cor-
responding matching contours. The contour deformation is
guided by the measured convexity on the matching contour
points, and an as-rigid-as possible shape deformation is
employed to obtain a smooth result (see Section 5). To gen-
erate the final binary image composition, the system deter-
mines a cropping window and renders the cropped image
using black and white to distinguish figure and ground
regions. We propose a joint optimization that iteratively
adjusts the dimensions of the cropping window and com-
putes the image binarization to maximize the completeness
of object contours (see Section 6). Our system is flexible and
offers intuitive user controls. Users are able to go back and
forth between the above processes, override the suggestions
made by the system, and explore the creation in different
dimensions (see Section 7).

4 PARTIAL SHAPE MATCHING

Given two input objects and corresponding outer con-
tours, the key step toward generating an effective ambig-
uous figure-ground image is to find a good partial shape
matching between two contours. While a major effort
from researchers has been devoted to designing shape
descriptors that measure local shape similarity, we pro-
pose a novel partial shape matching algorithm with a tai-
lor-made metric that measures multiple matching criteria.
Specifically, we design a content-aware shape matching met-
ric to find partial contour matches where (i) the local
shapes of matching contours are similar; (ii) the convex
parts of a particular contour match the concave parts of
the other one and vice versa; (iii) the length of matching
contours is as long as possible; (iv) the shape deformation
required to merge two matching contours into a common
boundary is minimum; and (v) objects are matched in
their upright orientation. While the first criterion inherits
the conventional setting, the other four criteria are mainly
inspired by the theoretic model and artistic works that
render effective and visually appealing ambiguous
figure-ground images.

4.1 Content-Aware Shape Matching Metric

We denote two outer contours as Ca ¼ faiji ¼ 1; . . . ; nag and
Cb ¼ fbjjj ¼ 1; . . . ; nbg, where ai; bj 2 R2 represent the
ordered sampling points on both contours, respectively (see
Fig. 4a). A partial shape matching is represented as
fca; cb;p;Tg, indicating two partial contours, ca 2 Ca and
cb 2 Cb, are matched on a sequence of order-preserved
matching points fðai; bpðiÞÞjai 2 ca; bpðiÞ 2 cbg, where p is a

bijective function and T ¼ ðdx; dy; uÞ is a 2D rigid transfor-
mation that maps the ca onto cb with a displacement ðdx; dyÞ
and planar rotation of angle u 2 ½�180�; 180��. We estimate
T by minimizing the following objective function:

E ¼
X
8ai2ca

kTðai � �aÞ � bpðiÞk2; (1)

where �a is the centroid of the Ca. Equation (1) is solved using
SVD and we employ the RANSAC algorithm to improve
robustness. Now let us define thematchingmetrics as follows:

Shape similarity cost. This metric aims at capturing the
local shape similarity between matching contours. We
adopt the chord angle shape descriptor introduced by
Donoser et al. [27] to encode a descriptor matrix for each
object contour and denote them as Ma and Mb. The distance
between two partial contours is defined as:

Esðca; cb;pÞ ¼ 1

N2
p

Xi< sþNp

i¼s

Xj< sþNp

j¼s

½Maði; jÞ �MbðpðiÞ;pðjÞÞ�2;

(2)

whereNp represents the number of pairs of matching points
and s is the index of the first sampling point of ca in Ca. We
refer the reader to [27] for more details about the definition
of Equation (2). Note that while there are other alternatives,
we favor the chord angle descriptor because it is invariant
to similarity transformations.

Convexity matching cost. This metric is used to measure
how well the convex parts of ca match the concave parts of
cb and vice versa. To quantify the convexity cue on a con-
tour, we first apply the Douglas-Peucker algorithm [30] to
approximate a curve contour using a polyline with the

Fig. 4. Partial shape matching pipeline. (a) The input contours and sampled points. (b) Initial sub-matching contours returned by the IS-Match.
(c) Grouping the sub-matching pairs with similar rigid transformations into clusters. (d) Estimating an optimal partial contour matching for each
cluster. (e) The candidate partial shape matching results with top five scores.
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vertices fv1; . . . ; vng in counter-clockwise order. The magni-
tude of the convexity cue at each vertex is defined as:

aðviÞ ¼ sgnððvi � vi�1Þ � ðviþ1 � viÞÞ � jffvi�1viviþ1 � 180j
180

;

where the sgnð�Þ represents a sign function and ffvi�1viviþ1 is
the internal angle of vi. The range of að�Þ is �1:0; 1:0½ �, where
the positive and negative value represent respectively the
convex and concave vertices. The larger (smaller) the value,
the higher the degree of convexity (concavity) is at the ver-
tex. The magnitude of the convexity cue at contour points is
computed by modulating the value of nearest vertex by a
Gaussian function. The cost function is then defined as:

Ecðca; cb;pÞ ¼ 1:0þ 1

Np

X
8ai2ca

fcðai; bpðiÞÞ;

fcðai; bpðiÞÞ ¼ sgnðaaðaiÞ � abðbpðiÞÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaaðaiÞ � abðbpðiÞÞj

q
:

(3)

Note that a smaller value indicates a better matching result.
Matching length cost. The cost function prefers a partial

contour matching that takes a large portion of input con-
tours and is defined as:

Elðca; cb;pÞ ¼ 1:0�max
kcak
kCak ;

kcbk
kCbk

� �
; (4)

where the term kcik
kCik indicates the ratio of length of the partial

contour ci to that of original contour Ci.
Shape deformation cost. Since we need to determine a com-

position where two objects are combined and partially share
a common boundary, we measure in advance how much
shape deformation is expected to merge two matching
contours, ca and cb, into a common boundary. Specifi-
cally, this cost function computes the average displace-
ment between matching points after the contour ca is
mapped onto cb through the optimal rigid transformation
T, and is defined as:

Edðca; cb;p;TÞ ¼ 1

Np

X
8ai2ca

fdðai; bpðiÞ;TÞ;

fdðai; bpðiÞ;TÞ ¼ kTðai � �aÞ � bpðiÞk:
(5)

A better matching indicates a smaller amount of deforma-
tion, which is required in the latter contour deformation
stage.

Shape orientation cost. The experimental studies reported by
Peterson and Gibson [3] indicate that an object is more likely
to be perceived as figurewhen it is presented in its upright ori-
entation rather than in an inverted setting. Hence we model
this particular perceptual feature by penalizing the shape
matching where the object deviates from its upright orienta-
tion in rotation space. The cost function is thus defined as:

EoðTÞ ¼ 1:0� exp
u2

2s2

� �
; (6)

where u is the angle of rotation of optimal rigid transforma-
tion that maps ca onto cb, and we use the default setting of
s ¼ 45.

Total matching cost. Given the definition of matching met-
rics, the partial shape matching problem is formulated as
minimizing a total matching cost:

fc	a; c	b ;p	;T	g ¼ arg min
ca;cb;p;T

½vsEs þ vcEc þ vlEl þ vdEd þ voEo�;

(7)

with vi controlling the relative importance of cost functions.
Unless otherwise mentioned, we use the default parameters
setting of vs ¼ 5, vc ¼ 20, vl ¼ 60, vd ¼ 1, and vo ¼ 15 for
generating all the examples in this paper. Nevertheless,
computing an optimal partial shape matching that mini-
mizes Equation (7) is non-trivial and, to the best of our
knowledge, has not been addressed by previous methods.
We tackle the optimization problem using a divide-and-
conquer algorithm as elaborated below.

4.2 Initial Sub-Matching Contours

The matching process is bootstrapped by finding partial
contour matches that are similar in local shape. We employ
an efficient partial shape matching algorithm by Donoser
et al. [27], namely IS-Match, to retrieve a large set of sub-
matching contours using a chord angle descriptor. To adapt
to IS-Match framework, we make the following assump-
tions and preprocessing on input images. (i) Since the IS-
Match is sensitive to the size of input images, we first resize
two images to have equal diagonal length. Then we enrich
the samples of input contours by resizing a particular con-
tour (e.g., Ca) at different scales and adding mirror images
to improve the likelihood of good matches. We use scaling
factors ranging from 0.6 to 1.4 with an interval of 0.2 to
obtain 10 different samples. For simplicity in notation, we
use Ca to represent any instance of samples. (ii) In order to
capture the shape orientation in Equation (6), we assume
the input objects are already in their upright orientaion. (iii)
The object contours are closed and the sampling points are
generated with equidistant sampling to improve the robust-
ness of partial shape matching [27]. The IS-Match outputs a
set of sub-matching pairs with the matching cost below a
fixed threshold. Note that while there are other alternatives,
we find the performance of IS-Match is sufficient to deliver
an interactive system and generate satisfactory results.

4.3 Sub-Matching Contours Clustering

The initial sub-matching pairs obtained in the previous sec-
tion provide evidences of shape matches at local scales. To
extract partial shape matches at larger scales, we need to
accumulate these local evidences by grouping sub-matches
into clusters. This requires the definition of a feature
descriptor for each sub-matching pair and a distance metric
in the feature space. Thus we characterize a sub-matching
pair using the corresponding 2D rigid transformation
T ¼ ðdx; dy; uÞ and define the distance metric between two

rigid transformations as the weighted norm kTi � Tjk2 ¼
ðdix � djxÞ2 þ ðdiy � djyÞ2 þ bðui � ujÞ2. The weight b is used to

adjust the relative influence of the translation and rotation
components [31]. In our experimental setting, we set the
weight so that a rotation by 180 degree corresponds to a dis-
placement of half the bounding box diagonal of Ca. We
apply the non-parametric mean shift clustering algorithm to
the corresponding data points with kernel and bandwidth
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functions as suggested in [32] to obtain clusters of sub-
matches with similar rigid transformations (see Fig. 4c).

4.4 Optimal Partial Contour Matching

Once we have clusters of sub-matching contours, our
goal in this section is to analyze and integrate constitu-
ent matching contour points to obtain an optimal partial
contour matching for each cluster. This can be drawn as
a weighted bipartite graph matching where the goal is to
find a one-to-one mapping, i.e., a permutation p, among
all pairs of matching points in the cluster that minimizes
the objective function:

HðpÞ ¼
X
i

½vsfsðai; bpðiÞÞ þ vcfcðai; bpðiÞÞ

þ vdfdðai; bpðiÞ; ~TÞ � fqðai; bpðiÞÞ�:
(8)

For each pair of matching points fai; bpðiÞg, i.e., an edge in the
graph, the cost function fs, similar to equation (2), returns
the average shape similarity cost of all associated sub-
matching contours that contain the pair. fc and fd measure
the convex matching cost and shape deformation cost,
respectively. Note that we use the average rigid transforma-

tion ~T of all sub-matching contours within the cluster to eval-
uate the shape deformation cost. The function fq computes
the normalized frequency of the pair among all pairs of the
matching points in the cluster. The minimum weighted
bipartite matching problem is solved using the Hungarian
algorithm [33], and the optimal permutation is denoted as
p	. Nevertheless, p	 is not guaranteed to be order-preserving
andmay create crossedmatching as shown in Fig. 5a. Hence,
we further refine p	 by finding a longest increasing subse-
quence using dynamic programming and removing those

crossed matching pairs (see Fig. 5b). Then we resolve the
permutation problem for those unpaired contour points.
This process iterates until we obtain a sequence of order-
preserving matching points (see Fig. 5c). The system then
ranks the optimal partial contour matching retrieved from
clusters via the combined cost function in Equation (7)
and selects the top five results as candidate partial shape
matching pairs (see Fig. 4e).

5 ADAPTIVE CONTOUR DEFORMATION

Given a candidate matching pair fca; cb;p;Tg suggested
by our system, the next step is to combine two matched
object contours into a compound contour. For this pur-
pose, the system first maps Ca onto Cb using the rigid
transformation T. We denote the transformed Ca and cor-

responding partial contour ca as ~Ca and ~ca, respectively.
A naive approach to generate a compound contour would
be to use the bijective function p and move both matching
points f~ai; bpðiÞg to the same point in the middle of line

connecting two points. Obviously, this simple approach
may dramatically damage the shapes of matching con-
tours (see Fig. 6b). We solve the problem using a con-
strained rigid curve deformation to fuse two matching
contours at both ends and selecting the side with most
salient convexity features as the common boundary.

Specifically, we employ an adaption of the state-of-the-
art MLS image deformation [34] to rigid deformation for 2D
curves [35] to achieve smooth deformation. This deforma-
tion mechanism is driven by a set of control points, which
are represented by the vertices of an approximated polyline
of a contour in our case. The key idea is to find new posi-
tions of control points and apply the derived rigid transfor-
mations to contours such that (i) the deformed matching
points are spatially coincident with each other; and (ii) the
deformed matching contours should resemble the original
shape (i.e., convexity cues). Note that the former criterion
represents a hard constraint to stitch up matching contours
precisely at each pair of matching points and is difficult to
comply under the rigid transformation. We relax it by con-
sidering only the end points of matching contours and intro-
duce a soft constraint that favors proximity of the remaining
matching points under the rigid transformation. In this way
we modify the configuration of control points by adding
extra control points at both ends of matching contours and
removing those ones within the matching contours (see
Fig. 6c). We denote the end control points of ~ca and cb as

Fig. 5. (a) The minimum weighted bipartite graph where the matching
points are not order-preserved. The problem is solved by (b) finding the
longest increasing subsequence, removing the crossed matching pairs,
and (c) resolving the permutation for the unpaired contour points.

Fig. 6. Adaptive contour deformation pipeline. (a) Two matched partial contours with contour points shown in red dots. (b) A naive approach to gener-
ate a compound contour by stitching up each pair of matching points. Note that the shapes of both matching contours are smoothed out. (c) The con-
figuration of control points (green dots) used in constrained curve deformation. (d) Two matching contours are fused at end control points, while the
remaining contour points are deformed via the rigid transformations derived from control points. (e) The compound contour is generated by selecting
the deformed partial contour with prominent convexity cues (i.e., Snow white’s profile) as a common boundary shared by two objects.
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f~aj; ~akg and fbpðjÞ; bpðkÞg, respectively. The problem of fusing

two matching contours at both ends is formulated as:

fl	a; l	bg ¼ arg min
fla;lbg

h X
8ai2ca

ðklað~aiÞ � lbðbpðiÞÞk2þ

jaaðaiÞ � aaðlað~aiÞÞj2 þ jabðbpðiÞÞ � abðlbðbpðiÞÞÞj2Þ
i
;

s:t: lað~aiÞ ¼ lbðbpðiÞÞ; for i 2 fj; kg;

(9)

where la and lb are rigid transformations derived respec-
tively from the displacement of control points f~aj; ~akg and
fbpðjÞ; bpðkÞg. Equation (9) is a constrained nonlinear optimi-

zation problem, which is computationally expensive to
solve. To reduce the search space, we further simplify the
problem by refining the hard constraint to

lað~aiÞ ¼ lbðbpðiÞÞ ¼ ð1:0� tiÞ~ai þ tibpðiÞ; for ti 2 ½0:0; 1:0�; i 2 fj; kg;

which constrains the fused position to lie on the line connect-
ing two matching contour points. Thus Equation (9) can be
solved efficiently using conventional direction set methods
such as Powell’s conjugate direction method [36]. Fig. 6d
shows an example. Once we have two matching contours
that are fused at both ends, the shared boundary between
deformed contours l	að ~CaÞ and l	bðCbÞ is simply determined
by choosing among l	að~caÞ and l	bðcbÞ the one with larger aver-
agemagnitude of convexity cues (see Fig. 6e).

6 IMAGE CROPPING AND BINARIZATION

Given the the compound object contour denoted as
C0 ¼ C0

a [ C0
b, the last step is to compute an optimal window

frame enclosing the compound contour and binary color
assignment of pixels to composite the final binary image. In a

naive approach, one can simply crop the image using the
bounding rectangle of a particular object, and fill the interior
of contour with black (or white) while treating the rest of
regions as a white (or black) background. As shown in Fig. 7,
although such a simple approach perfectly keeps the shape of
one object, it largely sacrifices the shape of the other; it can
only be recognized at the shared boundary. To address the
problem, we propose a joint optimization that simultaneously
computes image cropping and binarization to maximize the
completeness of both object contours as illustrated in Fig. 8.

Let us denote a cropping window as w ¼ ðx; y;W;HÞ,
representing a window with dimensions W �H that is
placed at the integer location ðx; yÞ in the image. According
to the boundary of w, C0

a and C0
b, the system divides the

image into disjoint regions RðwÞ ¼ fr1; . . . ; rnðwÞg by

extracting connected components in image domain using a
flood fill algorithm. We denote the regions enclosed by C0

a

and C0
b as ra and rb, respectively. Next we construct an adja-

cency graph G ¼ ðV;EÞ with each vertex in V corresponds
to a region. An edge ei;j is added to E when two regions ri
and rj adjoin each other. The edge weight li;j encodes the
length of shared boundary between ri and rj. Fig. 8b shows
such a graph. Our goal is to compute a cropping window w
and a binary color assignment of regions, BðwÞ ¼ fb1; . . . ;
bnðwÞjbi 2 0; 255g, that maximize the equation:

fw	; B	g ¼ arg max
fw;Bg

"
1

kC0
ak

X
ea
ij
2E

bi 6¼bj

li;j þ 1

kC0
bk

X
eb
ij
2E

bi 6¼bj

li;j

#
; (10)

with eai;j and ebi;j denoting the edges that are incident respec-
tively to ra and rb. Equation (10) measures the proportion of
object contours retained in the final binary image. Note that
the structure of the adjacency graph varies with the parame-
ters of the cropping window. Hence it is computationally
expensive and infeasible to solve Equation (10) using a
brute-force algorithm. We employ an EM-like iteration [37]
to efficiently obtain a local maximum.

We first initialize the cropping windoww using a bound-
ing rectangle of C0

a [ C0
b (see Fig. 8a). In the E step, we

optimize the binary color assignment B by fixing the param-
eters of w. This is equivalent to finding a maximum
weighted spanning tree of the adjacency graph G. We use
Prim’s algorithm, which starts from a tree with two vertices
fra; rbg and initial color assignment fba ¼ 255; bb ¼ 0g. The
tree is augmented greedily by adding an edge ðri; rjÞ with
maximal weight such that rj is a vertex adjacent to the tree

Fig. 7. The naive approach for rendering the final image. (Left) The input
compound contour. The results generated using the bounding rectan-
gles of Snow White and an apple core are show on the middle and right,
respectively.

Fig. 8. EM-like iteration for optimizing the image cropping and binarization. (a) Using the bounding rectangle of two objects as an initial cropping win-
dow. (b) The constructed adjacency graph with the thickness of edges being proportional to their relative weights. (c) Computing an optimal binary
color assignment based on the graph shown in (b). (d) Moving the top edge downward to improve the objective function in Equation (10). The edge
and its associated vertices are color coded similarly. The steps (b)-(d) iterate until convergence. (e) The optimized result.
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and the insertion does not introduce any cycle. Then we
assign rj the opposite color of ri. Fig. 8c shows an example
of optimized binary color assignment.

The M step aims at adjusting the parameters of w to
improve the objective function. However, it is intractable
using a gradient search in the parametric space because dif-
ferent configurations of w may correspond to the same adja-
cency graph G. Thus, we adopt a heuristic approach to
identify a subset of valid configurations that will potentially
improve the objective function (i.e., changing the structure of
G). We first approximate the outer contour of C0

a [ C0
b using a

polyline of which the vertices are classified into four sets
based on their proximity to four edges of w as shown in
Fig. 8d. The M step is formulated as moving one of the four
edges ofw to one of the associated vertices. Thus, we experi-
mentally test every possible movement by translating the
edge either vertically or horizontally to each associated vertex
and run the E step. We choose among all the movements the
one that best improves the objective function and update w
accordingly. The process iterates until no more improvement
can be found. Fig. 8e shows an example of optimized result.

7 USER CONTROLS AND APPLICATION

User controls. Although the proposed algorithm runs auto-
matically, our system currently supports users the following
intuitive controls to assist the creation process:

� Region of interest. The user is able to specify the region
of interest for an input object through a marquee
selection tool, while the system utilizes the selected
partial contour to guide the shapematching process.

� Ranking re-ordering. In addition to the top ranked
partial shape match, the system simultaneously
shows the user the four other alternatives sorted by
their shape matching costs. The user then selects the
one she prefers and proceeds the creation process.

� Cropping control. The user can override the optimized
cropping window by specifying a new one via a
drag-and-drop mouse interface, while the system
automatically updates the binary color assignment
in the background.

Automatic search by ranking. In addition to above user con-
trols, we also develop a simple search mechanism to auto-
matically retrieve matching candidates from a database.
Given an object and a target database, the system first
exhaustively searches the best matching result with respect
to every object in the database. The results are then ranked
using the combined shape matching cost in Equation (7),
and the system suggests and displays top 5 ones (see sup-
plementary video, available online, at 2:20).

We believe such an interactive system will not only facili-
tate creating ambiguous figure-ground images for amateurs,
but also benefit skillful artists to initiate their art pieces.
We refer the reader to the supplementary video, available
online, and executable program to experience such a crea-
tion process.

8 RESULTS AND EVALUATION

We have tested our system on a dataset with 183 clip arts
comprised of a wide variety of shapes, including humans,

animals, plants, insects, man-made objects, etc. Using our
system, 80 results are created with or without user interven-
tion. Please refer to the supplementary material, available
online, for a complete gallery. Some examples can be found
in Fig. 9. Note that in addition to results composed of two
objects, our system is also capable of combining multiple
objects to produce aesthetically pleasing results (see
Figs. 9a, 9b, 9c, 9d, 9e, 9f, 9g). Moreover, only a few images
(see Figs. 9a, 9b, 9c, 9d, 9e, 9f, 9g, 9l, 9s, 9t) are generated
with simple user assistance to specify a region of interest for
partial shape matching. In general, creating ambiguous
figure-ground images using our system is easy and intui-
tive, involving only a few clicks to go through the three-
stage pipeline (see supplementary video, available online).
In the following sections, we conducted several experiments
to quantitively and qualitatively evaluate our system.

8.1 Timing Performance

Table 1 details the average running times of our system for
generating all results. As we can see, the proposed algo-
rithm is fast and takes less than a second on average to gen-
erate a result. The major computational burden lies in the
partial shape matching process and is proportional to the
complexity of the input contours.

8.2 Shape Matching Metric Evaluation

The shape matching metric defined in Equation (7) com-
bines five energy terms to evaluate the quality of the partial
shape matching. To evaluate the effectiveness of individual
energy terms, we conducted a small experiment that com-
pares the visual quality of a few results generated with or
without enabling a particular energy term in the partial
shape matching stage. Fig. 10 shows five examples, corre-
sponding to the side-by-side comparisons of each energy
term. More comparisons can be found in the supplementary
material, available online. We can tell from the results that
each energy term indeed plays a role in capturing important
features for matching partial contours to render promising
ambiguous figure-ground images.

8.3 Performance of Partial Shape Matching

To validate the effectiveness of proposed content-aware
partial shape matching algorithm, we compare the visual
quality of our results with those generated by the state-of-
the-art partial shape matching algorithm. Specifically, we
prepared 53 pairs of images, each of which contains one
image from our results while the other is generated by
adopting the method of Donoser et al. [27] in the partial
shape matching stage to retrieve a partial contour matching
with maximum shape similarity (see supplementary mate-
rial, available online). We conducted a user study, in which

TABLE 1
Timing Performance of Our System

partial shape
matching

contour
deformation

cropping and
binarization

overall

avg. 0.7 0.020 0.06 0.78
std. dev. 0.4 0.006 0.03 0.4

The completion time, measured in seconds, is averaged over all results.
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Fig. 9. Twelve ambiguous figure-ground images generated using our system with or without user intervention. (a)-(g) show four image compositions
using more than two objects, while (h)-(v) are eight results composed of two objects. Our system is efficient and takes less than a second to
generate these visually appealing results either automatically or with simple user assistance to specify the region of interest for shape match-
ing ((a)-(g),(l),(s),(t)).
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six participants were recruited to view all 53 images and
asked to pick among each pair the one that best interprets
the ambiguous figure-ground perception. Note that each
participant was first instructed on the nature of ambiguous
figure-ground perception using the Rubin’s Face–Vase
image. In each display, the images were shown in a side-by-
side random arrangement. Not surprisingly, our results
won about 94 percent of the vote, indicating that the con-
ventional shape matching, that only takes into account
shape similarity, can not guarantee a promising result. An
example can be found in Figs. 11a, 11b where the conven-
tional shape matching is likely to partially match the shape-
less contours. We also looked into the images where the
preference is reversed and found analogous results gener-
ated by both approaches as shown in Figs. 11c, 11d.

8.4 Ranking Evaluation

We mentioned in Section 4.4 that the system ranks all
retrieved partial shape matching pairs according to the cost
function in Equation (7), and suggests users only the top
five scoring results. We hypothesize that the quality of
resultant ambiguous figure-ground images is related to the
rank of partial shape matching. Since the ultimate judge-
ment of image quality is by humans, we conducted a user

study to verify the hypothesis. We recruited five partici-
pants with prior knowledge about ambiguous figure-
ground perception to collaboratively look through 800
examples. Each example was comprised of two objects ran-
domly picked from our dataset and five results were gener-
ated according to five candidates suggested by the system.
Then 160 displays, each containing five results from an
example arranged in random order, were shown to a partic-
ipant. In each display, the participant is asked to vote for
the one out of five results she/he found most visually
engaging and best interpretation of the ambiguous figure-
ground perception. Fig. 12a shows the voting results, which
indicate a trend that participants’ preferences tend to favor
images with a higher ranking in partial shape matching,
and thus verifies our hypothesis.

8.5 Figure-Ground Ambiguity Test

A good ambiguous figure-ground image should achieve a
delicate balance in figural competition between two con-
tiguous regions and present viewers with the visual phe-
nomena of perceiving either the white or black region as
foreground while treating the other as background at any
moment. In order to evaluate the effectiveness of images
created by our system, we conducted a user study involv-
ing nine participants with normal vision to view a
sequence of 37 images. The image sequence was com-
prised of five target images from our results and orga-
nized to have five repeated occurrences of each target
image with three normal object images filling in between
image repetitions. We followed the procedure similar

Fig. 10. Evaluating the influence of individual energy terms in Equation (7) on the quality of results. In each example, we show (Left) the partial match-
ing contours retrieved by the system and (Middle) the corresponding result without enabling a particular energy term as labeled below. (Right) The
original result.

Fig. 11. Two examples in the comparison with conventional partial shape
matching. (a,c) The results generated by Donoser et al. [27]. (b,d) Our
results. The retrieved partial matching contours are shown on the left.

Fig. 12. User study statistics. (a) Preference rate and (b) recognition rate
of generated ambiguous figure-ground images as observed in course of
user study (see Section 8).
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to [5] to capture which objects (i.e., black/white regions)
are perceived as figures by participants at an instant. Spe-
cifically, each image was displayed for 300 ms followed
by a blank display, then participants were asked to recog-
nize and name the object(s) they saw. The study began by
instructing participants using three example trials, and
we recorded the answer(s) given by participants for each
target image. Fig. 12b shows the recognition rates of the
two objects in each target image. The numbers indicate
that regions in most of examples (see Figs. 9k, 9p, 9r, 9v)
are equally likely to be seen as foreground figures under
an instant display, which agrees with the expected visual
phenomena. Though a mediocre result (see Fig. 9q) is
observed, which might possibly be attributed to the unfa-
miliar posture of human figure (e.g., gymnastic pose), we
still obtain a reasonable recognition rate close to 50
percent.

8.6 Limitations

Limitations of our algorithm are as follows: (i) The partial
shape matching algorithm still inherits the setting of con-
ventional approaches and might fail to find good partial
contour matching between complex shapes. For instance,
the IS-Match will return a large number of short and diverse
sub-matching contours that can not be effectively aggre-
gated into clusters. (ii) Since we assume mild contour
deformation to generate the compound contour, it will
sometimes cause severe shape degeneration in the cases
that demand substantial contour deformation (see Fig. 13a).
(iii) A good partial shape matching result does not always
guarantee high quality ambiguous figure-ground images
due to the restriction of binary representation in which a
tradeoff of keeping shapes between objects has to be made
as shown in Fig. 13b.

9 CONCLUSION AND FUTURE WORK

Ambiguous figure-ground images are fascinating and enter-
taining to both ordinary people and artists as they present
viewers an interesting visual phenomena of perceiving mul-
tiple interpretations from a single black and white image.
We present an automatic algorithm to generate such images
from two arbitrary objects and develop an interactive sys-
tem with several assistant toolkits to facilitate the creation
process. Experimental study indicates that our system not
only significantly reduces the tedious manual efforts during
the creation to only a few clicks, but also produces results
that are proved by human viewers to be effective and visu-
ally engaging. With the aid of our system, amateurs can

enjoy the efficient exploration of creating ambiguous figure-
ground images, while skilled artists can use it for initial
design of their artworks to reduce their production time.

Several interesting future works lie ahead. First, we can
further improve the robustness of the system by employing
the partial shape matching algorithm by Riemenschneider
et al. [28] to support input objects with open contours. Sec-
ond, we plan to study a more sophisticated shape deforma-
tion to improve the quality of our results, particularly for
articulated figures. However, a tradeoff between time com-
plexity and quality needs to be carefully evaluated. Our
shape matching metric considers only local geometric fea-
tures, while artists would frequently utilize the global shape
features such as symmetry in their designs to enhance the
aesthetic feeling. Thus, it will be worth exploring the incor-
poration of symmetry detection [38] into our framework.
Moreover, the metric is also unaware of semantic features
(e.g., eyes, noses, etc), and therefore can not take into
account the relative importance of such features in both
shape matching and deformation stages. While automatic
detection could be difficult, we plan to utilize user scribbles
to prescribe different weights for different regions. Finally,
the efficiency of our algorithm enables the possibility of cre-
ating a massive number of results, which will potentially
benefit studies in cognitive psychology via providing
diverse visual stimulus.
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