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Abstract—The essence of a video lies in the dynamic motions. While text-to-video generative diffusion models have made significant
strides in creating diverse content, effectively controlling specific motions through text prompts remains a challenge. By utilizing user-
specified reference videos, the more precise guidance for character actions, object movements, and camera movements can be achieved.
This gives rise to the task of motion customization, where the primary challenge lies in effectively decoupling the appearance and motion
within a video clip. To address this challenge, we introduce MotionCrafter, a novel one-shot instance-guided motion customization method
that is suitable for both pre-trained text-to-video and text-to-image diffusion models. MotionCrafter employs a parallel spatial-temporal
architecture that integrates the reference motion into the temporal component of the base model, while independently adjusting the spatial
module for character or style control. To enhance the disentanglement of motion and appearance, we propose an innovative dual-branch
motion disentanglement approach, which includes a motion disentanglement loss and an appearance prior enhancement strategy. To
facilitate more efficient learning of motions, we further propose a novel timestep-layered tuning strategy that directs the diffusion model to
focus on motion-level information. Through comprehensive quantitative and qualitative experiments, along with user preference tests, we
demonstrate that MotionCrafter can successfully integrate dynamic motions while maintaining the coherence and quality of the base
model, providing a wide range of appearance generation capabilities. MotionCrafter can be applied to various personalized backbones in

the community to generate videos with a variety of artistic styles.

Index Terms—Text-to-video generation, diffusion models, motion generation

1 INTRODUCTION

Dynamic scenes that resonate with our emotions are not
solely memorable due to their captivating visual appeal,
but also through the compelling performances of actors,
engaging storylines, and meticulous cinematography. Unlike
images, videos encapsulate both spatial and temporal
information, resulting in unique dynamic motions. While
current text-to-video techniques can generate videos based
on user-input text [2]-[4], specific information about actions,
object movements, and camera movements in the generated
videos often cannot be accurately described by text.
Consequently, a significant challenge persists: how can we
effectively leverage existing pre-trained models and allow
users to precisely customize various temporal aspects in
videos.

Several current methods, such as textual inversion (TI) [5],
adopt a personal concept representation technique that
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maps image references to a text-conditioned space. This
integration with natural language aids in instance-guided
concept replication and manipulation. Other approaches,
such as DreamBooth [1] and Custom Diffusion [6], focus
on fine-tuning the core model’s internal parameters. They
leverage a set of images provided by the user to augment the
model’s ability to express specific concepts more effectively.
These aforementioned approaches have demonstrated
effective performance in tasks involving instance-guided
visual customization. In addition, various video generation
methods [7]-[10] have leveraged them to control artistic
styles or specific characters in videos. However, these image-
centric concept representation techniques mainly emphasize
appearance, overlooking the essential temporal attributes
unique to videos. Consequently, the specific challenge of
customizing motion in videos remains unaddressed by these
existing approaches.

To enhance controllability and expressiveness, inspired by
the customization of text-to-image generation, the concept
of motion customization is naturally introduced. Motion
customization aims to offer users more precise control over
actions, object movements, and camera movements, by
allowing them to specify target motions through video inputs.
The primary challenge is to proficiently learn and represent
these visual content, requiring the disentanglement and
manipulation of temporal elements and network components
within existing text-to-video generation framework.

In this work, we introduce MotionCrafter, a novel
one-shot instance-guided method for dynamic motion
customization of both pre-trained T2V models and various
T2I personalization models. To learn customization motion
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Fig. 1: Motion customization results using MotionCrafter. Our method can effectively disentangle the motion features
from the input video and generate new videos with the same motion but different objects from text prompts or with
personalized models. With various personalized backbones in the community, MotionCrafter can produce videos with a
variety of artistic styles. Animerge, Cuteyukimix, and ToonYou represent 2D stylized text-to-image generation models

fine-tuned on DreamBooth .

concepts from a given video clip, we introduce a parallel
spatial-temporal architecture to infuse motion information
into the temporal attention module of the model, aiming
at customizing video appearance and motion separately. To
achieve motion disentanglement, we propose a dual-branch
motion disentanglement strategy by introducing the base
model as a prior. During the training phase, a frozen U-Net
is incorporated with the trainable network and both perform
inference on the same text conditions, leading to results of
the base model and generated output with injected motions,
respectively. Furthermore, we design an appearance prior
enhancement scheme where we keep the text prompt for the
intended motion fixed, while altering descriptions of various
appearances (such as character, scene, etc) during training.
This scheme encourages the frozen base U-Net model to
generate results with diverse appearances. Then, using our
proposed motion disentanglement loss, we regulate the
mutual information between the generated and reference
videos, as well as between the generated results and those
from the base model, removing the appearance information

from the reference video to achieve motion-appearance
decoupling while preserving the generation capability of
the base model. To learn motion more efficiently, we
propose a timestep-layered tuning strategy. Leveraging the
characteristic of the diffusion model that different timesteps
and U-Net layers generate contents of different semantic
levels, we enable the model to focus on motion information.
Our proposed plug-and-play motion customization method
leverages the high-quality personalized models already
available in the community, and makes it possible for non-
research users, such as artists and hobbyists, to participate
in a low-cost way. Our contributions can be summarized as
follows:

o We present MotionCrafter, a one-shot instance-guided
motion customization framework that can plug-and-
play with both pre-trained T2V models and various
T2I personalization models, enabling low-cost motion
control video generation. With various personalized
backbones in the community, MotionCrafter can
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produce videos with a variety of artistic styles.

o We propose a dual-branch motion disentanglement
approach, which facilitates the separation of motion
and appearance by producing diverse appearance
priors from the base model.

o We propose a novel timestep-layered tuning strategy
to force the diffusion model focusing on motion-level
information, achieving more efficient and accurate
motion learning.

e Experiments on a wide range of customized motions,
including object movements, human actions, and
camera movements, demonstrate the proposed
MotionCrafter achieves state-of-the-art performance
and also generate appealing video results.

2 RELATED WORK
2.1 Text-to-video synthesis and editing

Recent studies [2]], [3], [11] have employed diffusion
models to generate lifelike videos, harnessing text as a
powerful guiding instruction. VideoFusion [4] employs a
decomposition-diffusion process to enhance control over
content and motion in video generation. Furthermore,
Imagen Video [12] explores the effectiveness of v-prediction
parameterization on sample quality and the progressive
distillation-guided diffusion model in video generation.
Similarly, VideoFactory [13] introduces a novel swapped
spatial-temporal cross-attention mechanism that reinforces
spatial and temporal interactions. ModelScopeT2V [14]
employs spatial-temporal blocks and a multi-frame training
strategy to effectively model temporal dependencies,
ensuring smooth motion between frames and improving
performance and generalization by learning motion patterns
from image-text and video-text datasets.

The above methods care about the consistency between
the text and the generated video, while accurately controlling
the specific dynamics of the generated video is still
challenging. Several methods aim at controlling videos.
ControlVideo [15] is a training-free framework for text-to-
video generation using fully cross-frame interaction in self-
attention modules and the generated motions are controlled
by edge or depth maps. Control-A-Video [16] incorporates
a spatial-temporal self-attention mechanism into the text-to-
image diffusion model, enabling video generation based on
control signal sequences. Rerender-A-Video [17] incorporates
hierarchical cross-frame constraints and employs time-aware
patch matching and frame blending, maintaining shape,
texture, and color consistency in the translated video. Tune-
A-Video [18] introduces a one-shot video tuning method
to achieve video editing. The above methods focus on
controlling the structure of the video rather than the
dynamic information. VideoComposer [19] is a textual-
spatial-temporal controllable video generation method.
They introduce 2D motion vectors that capture pixel-wise
movements between adjacent frames, as an explicit control
signal to guide temporal dynamics. However, motion vectors
are difficult to deal with complex movements and large shape
changes. Make-A-Video [20], Align-your-Latents [21], and
AnimateDiff [7]] introduce different temporal modules to the
latent diffusion model and transform the image generator
into a video generator. They obtain inter-frame consistency

by training the temporal module using extensive video
data. They further propose AnimateDiff v2 which includes
a motion LoRA [22] to learn camera movements. We inject
specific motions, includes camera movements, human actions
and object movements, into the temporal module, thereby
achieving more precise control.

2.2 Customization of generative models

The customization of text-to-image and text-to-video
generation models involves the learning of personalized
concept with pre-trained models. Gal et al. [5] propose the
task of textual inversion that aims to find a pseudo-word
that describes the visual concept of a specific object in a set
of user-provided images. Avrahami et al. [23] introduce a
method to extract distinct text tokens for each concept from
images containing multiple concepts. Besides objects, several
methods aim to learn different concepts from given images.
Zhang et al. [24] propose InST, an attention-based inversion
style transfer method. Huang et al. [25] propose ReVersion for
relation inversion, with the aim of learning specific relations
from images. Wen et al. [26] introduce the concept of hard
prompts, which invert a given concept into readable natural
languages. Voynov et al. [27] present an extended textual
conditioning space consisting of several textual embeddings
derived from per-layer prompts, each corresponding to a
layer of diffusion model’s denoising U-Net. Zhang et al. [28]
reveal that diffusion models generate images by prioritizing
low to high frequency information and represent images as a
compilation of inverted textual token embeddings generated
from per-stage prompts. Instead of inverting a concept into
textual tokens, DreamBooth [1] generates a specific subject
by finetuning the diffusion models with a unique identifier.
Kumari et al. [6] propose Custom Diffusion, which optimizes
a few parameters in the conditioning mechanism and can be
jointly trained for multiple concepts or combine several fine-
tuned models. Chen et al. [29] propose AnyDoor, a diffusion-
based image generator that can teleport target objects to
new scenes at specified locations. The above methods focus
on concept learning in image generation, while we aim to
control motions in video generation.

For text-to-video generation, Gong et al. [9] introduce
TaleCrafter, an interactive story creation system that can
handle multiple characters with layout and structural editing
capabilities. He et al. [8] propose a retrieval-based depth-
guided method that leverages existing video clips to create a
coherent storytelling video by customizing the appearances
of characters. These methods focus on modeling the
appearance of visual content, but have difficulty controlling
motions. In contrast, our approach emphasizes the specific
inter-frame dynamics of the video. Zhao et al. [30] introduce
MotionDirector, which learns motions through customized
diffusion models. Wei et al. [31] introduce DreamVideo
which can personalize the character and the motion by
tuning the diffusion models. Jeong et al. [32] introduce
VMC, a motion distillation objective that employs residual
vectors between consecutive frames as a motion reference.
PIA [33] introduces an image-to-video motion generation
approach that modulates motion using textual prompts
rather than reference videos. HiGen [34] proposes a two-
stage video generation framework, encompassing a text-to-
image appearance generation stage and an image-to-video
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motion generation stage. Direct-a-Video [35] integrates an
additional bounding box to control object movement. While
this approach effectively regulates object positioning, it
remains limited in achieving precise control over specific
actions. Our method excels in one-shot motion learning,
necessitating a meticulous disentanglement of motion and
appearance elements. Additionally, we demonstrate that our
method is compatible with T2I models, thereby enhancing
its versatility.

3 OUR METHOD

The overall pipeline of MotionCrafter is illustrated in
Fig. 2l To decompose the appearance and motion of the
generated videos, we propose a parallel spatial-temporal
architecture (Section [3.1). It leverages two separate paths to
learn the appearance and motion information from videos,
corresponding to the spatial and temporal modules in the
backbone of a text-to-video generation model. To achieve
better disentanglement, we further design a dual-branch
motion disentanglement based on an information bottleneck
(Section [3.2). We incorporate a frozen branch of the base
model to serve as an appearance prior. To better capture
the motion, which appears in structure or layout changes,
we propose a novel timed-layered tuning (Section [3.2.3).
During training, the framework takes a reference video and
enhances textual conditioning as inputs and fine-tunes the
trainable branch. During inference, our framework takes
user-provided textual conditioning as input and generates
results that incorporate the reference video information using
only the fine-tuned branch.

3.1

Our goal is a unified instance-guided motion framework
suitable for both pre-trained text-to-video and text-to-image
diffusion models. To this end, we employ the widely adopted
text-to-video diffusion model [36] and the expanded text-
to-image model [7] as the foundational models. The text-
to-video diffusion model is structured around a 3D U-Net
framework, which operates on the latent space derived from
an autoencoder. The U-Net backbone consists of down blocks,
mid blocks, and up blocks, each accompanied by spatial and
temporal attention and convolutional modules. The spatial
attention module performs operations on the 2D spatial
dimensions encompassing the width and height of the latent
codes. At each timestep ¢, the 3D U-Net takes a latent code
z; with dimensions batch X frames x width x height x
channels as input, and gives the predicted noise €4(-), where
 denotes model parameters. Additionally, textual conditions
7o (y), where y denotes input conditions, are incorporated
to provide contextual guidance module captures inter-frame
relationships along the frame dimension. The extension of
the text-to-image diffusion model is specifically tailored for
text-to-video generation. Between the layers of the U-Net, the
predicted latents are fed into an extended motion module,
which provides cross-frame perception. At each timestep ¢,
the text-to-image U-Net backbone takes a latent code z; with
dimensions batch x width x height x channels as input,
where batch is used as frames. By introducing the motion
module within the text-to-image generation framework and

Spatial-Temporal Architecture

training this module on a large video dataset, the expanded
text-to-image model is capable of generating coherent videos.
Although the motion module provides better inter-frame
continuity, it is difficult to generate accurate and high-quality
dynamics.

In our approach, we design a spatial-temporal learning
framework that leverages the intrinsic properties of the
temporal and spatial modules within the two types of
foundational models. The spatial attention and convolutional
module within the text-to-video models and the text-to-
image backbone are named as spatial module. The temporal
attention and convolutional module within the text-to-
video models and the injected motion module are named
as temporal module. For the appearance information, by
leveraging techniques from DreamBooth [1] or LoRA [22]
with its text-to-image backbone, the extended text-to-image
diffusion models can also proficiently produce videos in
diverse styles following the training of the motion module.

For the motion information, we fine-tune the temporal
modules to update the correlations along the temporal
dimension. For T2V and extended T2I models, their temporal
modules’ structure may be different, and our method
should be used on the desired model. The temporal loss
is formulated as:

Ctem.poral =
2 M
1L:N
ES(xé:N),y¢e~N(O,I),t |:H€ — €p (Zt )L TQ(y)) H2:| ,

where N denotes the number of frames, and ¢ denotes the
sampled diffusion time step. However, during the training
and inference stages, the information represented by the
spatial and temporal modules is coupled together. Therefore,
the challenge of customizing motions based on pre-trained
text-to-video generation models lies in decomposing the
spatial and temporal information of the generated video.

3.2 Dual-Branch Motion Disentanglement
3.2.1 Motion disentanglement loss

To address the aforementioned coupling issue of spatial
and temporal information, we introduce a dual-branch
framework for motion disentanglement in videos, as
illustrated in Figs. 2] and B} The fitting of the model
to the appearance of input videos leads to the inherent
loss of its own diversity. By introducing a base model
as a prior, the diversity can be better preserved, thereby
alleviating the issue of appearance overfitting. During
the training process, we incorporate an additional frozen
U-Net maintaining the parameters of the base model
to provide normalization videos. To separate appearance
information from the reference video, we introduce a
motion disentanglement loss based on the information
bottleneck, which consists of an appearance normalization
loss that pushes the generated results to match the
normalization videos, and the aforementioned temporal loss
encouraging the model to generate results consistent with
the reference video. Thus, by controlling the accessibility
of information bottlenecks, we can effectively eliminate
appearance information from the reference video while
avoiding overfitting. This approach ensures the preservation
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Fig. 2: The overall pipeline of MotionCrafter. As shown in the box, we use a parallel spatial-temporal architecture
to inject appearance and motion into the corresponding layers in a one-shot fine-tuning manner. We introduce a frozen
U-Net, which retains the basic model parameters. During training, the temporally-tuned U-Net and the frozen U-Net receive
the same text prompt for appearance enhancement, resulting in normalized latents. The appearance regularization loss
Lappearance 15 used to enforce similarity between the two latents, while the temporal loss Liemperar is calculated between
the generated and reference latents. As shown in the blue box, MotionCrafter can be injected into different personalized
text-to-image models and generate consistent motions in various styles. As shown in the box, MotionCrafter can also
be applied to pre-trained text-to-video generation models by replacing temporal modules thus achieving motion control.
Each one of the two backbones is used alone with MotionCrafter.

of the pre-trained model’s appearance diversity, leading to
improved controllability of the generated videos.

process is parameterized as:

Specifically, in the autoencoder’s latent space, the dual- Lappearance = Drcr (qo(21 | ¢)[[p(21)) , 2
branch U-Net consists of a frozen U-Net backbone U/
with the original weights and another U-Net Uy with
trainable temporal layers. At each timestep, a shared
latent code undergoes separate processing by the two
branches, resulting in 2; and z;. In this process, Z; preserves
the diverse appearance generated by the frozen model,
while the reference information is injected into z; via the
trainable branch. We propose an appearance normalization
loss Lgppearance, Which imposes a constraint on the KL

where g and p denote different distributions. The appearance
normalization loss described above is combined with a
temporal loss Liemperal, thereby facilitating the extraction
of motion. The full objective is named as our motion
disentanglement loss L,,0ti0n, and is formulated as:

Emotion = Etemperal + 5Eappearancey (3)

divergence between the distributions of the latent codes
z and 2;. By aligning the distributions, the appearance
information of the reference video is squeezed out. This

where the hyper-parameter (3 is included to control the
accessibility of information bottlenecks. We set 3 = 5 in
all the experiments.
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Fig. 3: The workflow of Dual-branch Motion Disentan-
glement enables the model to strike a balance between
the reference video and the normalization video. Thus,
MotionCrafter can maintain the base model’s appearance
while have a consistent motion as the reference video.
Without the motion disentanglement, as illustrated on the
right, one-shot customization could lead to overfitting of the
appearance to the reference videos.

3.2.2 Appearance prior enhancement scheme

To better preserve the diversity of appearance in the
generated backbone, we propose an appearance prior
enhancement scheme. This scheme is designed to encourage
the original U-Net model to generate more diverse content
while simultaneously preserving the intended motion.
Specifically, we create templates that capture a variety of
appearances, including descriptions of diverse objects and
scenes in natural language (e.g., “a woman with a hat is
{} in a park”). By incorporating the appearance details of
these templates and combining them with the target motion
(i.e., replacing with a description of the motion), the original
U-Net L?, which remains frozen, is able to generate results
with a more diverse appearance while maintaining motion
information. This scheme helps the network differentiate
between appearance and motion information, leading to a
more comprehensive disentanglement.

3.2.3 Timestep-Layered Tuning

Timestep-related Tuning. Our goal is to achieve a plug-
and-play motion module that learns high-quality motions
while minimizing the impact on the expressiveness of the
generative backbones. The diffusion model has been revealed
to generate images in the order of structure first and then
details [28], [39] in the dimension of denoised timesteps.
The motion information within a video can be classified as
layout and structured information, which is generated in
the early stage of the diffusion model. Artistic styles, e.g.,
brushstrokes and textures, belong to fine-grained information
and are often generated in the later stages. This inspires a
novel timestep-related tuning strategy in our paper. During

each iteration of the prior training, a single step is sampled
from the whole steps of the diffusion process to uniformly
optimize the entire model. Timestep-related tuning ensures
that the model remains focused on target attributes by
influencing the fluency of each sampled timestep. Specifically,
this approach represents a novel sampling strategy for
timesteps during the fine-tuning process. It is a versatile
strategy applicable to various tasks aimed at learning specific
attributes and is adopted in several previous methods [25]
in image generation. For motion customization, timestep-
related tuning is designed to focus on the early stages of
generation to better learn motion dynamics. We set the
denoising probability of steps 0-500 to 0.8 and the sampling
probability of steps 500-1000 to 0.2 to focus the model on
structure-related generation. Thus, time-tuning increases the
accuracy of motion learning, and reduces the impact of
appearance overfitting on the generated styles.

U-Net layered tuning. The motion module should
efficiently and effectively learn motion information while
reducing interference from the original video’s appearance.
Voynov et al. [27] demonstrate that the U-Net structure of the
diffusion model tends to generate different types of content
at different layers, with deep layers capturing the shape
and structural information and shallow layers expressing
color and texture information. This inspires us to utilize
a U-Net layered tuning approach, which is used in some
image generation methods [29], [40], [41]]. The motion within
a video can be seen as structured information, generated in
the deep layers of the U-Net, while appearance is generated
in the shallow layers. Only the parameters of the the desired
information in the target layers are optimized, while the
other parameters are frozen. Specifically, as shown in Fig. 2}
we optimize the deep layers of the U-Net using the motion
disentanglement loss, allowing the model to better focus on
the motion information while keeping the shallow layers
frozen to reduce appearance overfitting.

4 EXPERIMENTS

In this section, we demonstrate that MotionCrafter is
capable of replicating motions from the reference video
while maintaining content coherence. Additionally, it offers
greater editability compared to state-of-the-art text-to-video
customization baselines.

4.1

Methods for comparison. We compare our approach
with state-of-the-art text-to-video generation methods
ZeroScope [36] and AnimateDiff [7], several video-to-
video editing methods including Control-A-Video [16],
VideoComposer [19], ControlVideo [15], as well as the
fine-tuning-based video customization method Tune-A-
Video [18],MotionDirector [30],VMC [32]] and DreamVideo
[31].

Evaluation dataset. To ensure a fair comparison, we
utilize widely used video segments from previous papers,
along with clips from the WebVid-10M dataset [42]], UCF
Sports dataset [37] and DAVIS dataset [38]. For WebVid-10M
and DAVIS datasets, we use 20 motions for qualitative and
quantitative evaluations. For UCF Sports dataset, we use 8

Experimental Setup
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Cutting (moving hand tools back and forth) Driving (moving from one side to another) Skiing (from right to left to right)
“Cutting bell peppers with knife” “A car driving on the road” “A man is skiing in the snow”

S %
“A parrot skateboarding in the park”

DreamVideo Ours

VMC

VideoComposer  VideoComposer  Control-A-Video Tune-A-Video MotionDirector
(motion) (depth) (depth)

ControlVideo
(depth)

ZeroScope

Fig. 4: Qualitative evaluation results. Our method outperforms state-of-the-art methods in appearance diversity and motion
fidelity.
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Reference
Video

“A woman playing golf”

Generated
Video

“An astronaut stands on the moon and plays golf”]

The camera moves forward along the road”

“The camera moves forward along the river in

(a) Results on UCF Dataset the forest”

g

2
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g >
~

“A black swan moving in the water” “Dancing”
-_-_.-l_ [ e | ETTEET

Generated
V1de0

“A pure white sailboat sails across the ocean”

(b) Results on DAVIS Dataset

“An astronaut in a space suit is dancing on
the beach”
(c) Results of Dancing

4 1

“A close-up of a little boy wearing a navy cap,
with the camera zooming in”
(d) Results of Camera Movements

Fig. 5: Results of MotionCrafter in UCF dataset , DAVIS dataset , dancing videos and different camara movements.

motions. For each motion, we employ eight basic prompts
that alter either the object or background, alongside eight
more complex prompts that involve changes to both the
object and background. Consequently, we obtained a total of
768 video clips for each method to compare.
Implementation details: In all photorealistic video
generation experiments, we use ZeroScope with the
default network architecture. In all stylized video generation
experiments, we use AnimateDiff []ZI] with the default

network architecture. We set a learning rate of 2 x 107°.

The resolution of the input video is 256 x 256 and each
sequence contains 16 frames. The training process for each
motion requires approximately 150 ~ 300 iterations using
an NVIDIA 140 with a batch size of 1. MotionCrafter dose not
influence the inference time of the base model. The number
of inference steps is set to 7' = 25 and the guidance scale is
set to w = 7.5.

4.2 Qualitative Evaluations

As shown in Fig. [} we conduct qualitative comparisons with
nine state-of-the-art methods. To highlight MotionCrafter’s
robust ability to decouple motion and appearance, we
employ complex prompts that involve substantial content
changes between the reference and generated videos, such
as “knives” transforming into “chainsaws”.

We choose the common used ZeroScope as our
baseline model. ZeroScope is capable of generating videos
with the desired appearance. Due to the lack of motion
control, it struggles to produce results that correspond
to the target actions. DreamVideo achieves motion
customization by injecting an additional motion adapter
and encodes the appearance image of the reference video
with CLIP and broadcasts the embeddings during the
training process to minimize fitting to the appearance during
training. However, simply adding an extra appearance
prompt without decoupling it with specific constraint leads
to overfitting the appearance, as shown in Fig. [ VMC
relys on motion vectors, and it encounters challenges in

scenarios where the generated objects are inconsistent with
the objects in the reference videos. As shown in Fig. [4
VMC fails to guide human motion using the movement of a
vehicle. MotionDirector struggles to effectively balance
the removal of appearance features while preserving motion,
particularly in complex scenarios such as transforming
a car into a person, where motion characteristics may
become coupled with the appearance of the reference video.
Additionally, in cases involving intricate motions, such as
the trajectory and posture associated with skiing, it tends
to lose critical details. Tune-A-Video is a fine-tuning-
based method similar to ours, but its objective does not
focus on decoupling motions. Therefore, it fails to handle
significant changes in the appearance of the image and
tends to generate results similar to the original video.
We employ the depth-map control model of Control-A-
Video to minimize the impact of the original video’s
appearance. However, it fails to alter the shape of objects,
generating a car in the second example and a distorted
monkey in the third example. We use VideoComposer
with both depth-map control and motion control models.
The depth-map control also faces challenges in altering the
shapes of objects. VideoComposer represents video-specific
elements using motion vectors, i.e., 2D vectors that capture
pixel-wise movements between adjacent frames. However,
this motion representation method fails to capture fine-
grained motion patterns, such as the arm movement in the
third example. We utilize the depth-map control model of
ControlVideo [15]. The depth-wise constraint is relatively
less restrictive, allowing drastic changes in the appearance
to match the specified style. However, this method results
in the loss of motion information from the reference video.
MotionCrafter generates desirable content while ensuring
consistent actions and high visual quality.

To demonstrate the generalization capability of Motion-
Crafter, as shown in Fig. El (a) and (b), we present the results
in UCF Sports dataset and DAVIS dataset. MotionCrafter is
able to achieve good results on different datasets and various
types of sports. As shown in Fig. 5(c), MotionCrafter can even
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Fig. 6: Results of the integration of our MotionCrafter with AnimateDiff I]ZI] Without the guidance of MotionCrafter, it is
difficult for the backbone model to generate obvious dynamics. Our method demonstrates strong generalization performance
and can generate high-quality animation results with controllable motions.

TABLE 1: Quantitative evaluation results on UCF dataset, DAVIS dataset and our own dataset. The best numbers
are in bold and the second best results are underlined.

Quantitative evaluation on UCF H Quantitative evaluation on DAVIS H Quantitative evaluation on own data

Method } Motion fidelityT | DiversityT | ConsistencyT | FID] || Motion fidelityT | DiversityT | ConsistencyT | FID] || Motion fidelityT | DiversityT | ConsistencyT [ FID{
Zeroscope |36 0.6405 0.2462 0.8921 241.1 0.4405 0.2581 0.8854 238.1 0.4511 0.2465 0.8923 251.2
Control-A-Video |16] 0.6923 0.2123 0.7952 2735 0.3915 0.2413 0.7742 2525 0.3524 0.2126 0.7917 263.5
ControlVideo |15/ 0.6125 0.2244 0.8273 278.6 0.4463 0.2138 0.8015 272.1 0.4223 0.2282 0.8571 278.6
VideoComposer (depth) [19] 0.7535 0.2416 0.8294 264.3 0.4721 0.2315 0.8354 249.7 0.4633 0.2424 0.8892 267.6
VideoComposer (motion) [19] 0.7748 0.2522 0.8862 275.1 0.4738 0.2682 0.8714 262.0 0.4746 0.2427 0.8980 270.4
Tune-A-Video [18] 0.7539 0.2215 0.8112 232.7 0.4322 0.2615 0.8321 229.4 0.4067 0.2209 0.8112 239.2
MotionDirector [30] 0.7514 0.2317 0.8756 235.7 0.6226 0.2678 0.8814 230.0 0.4522 0.2325 0.8854 255.7
VMC ’32 0.6724 0.2553 0.8955 265.7 0.6513 0.2647 0.8724 251.1 0.5252 0.2513 0.8854 252.1
DreamVideo [31 0.7324 0.2413 0.8542 236.6 0.5842 0.2436 0.8613 2404 0.4878 0.2213 0.8741 257.1
Ours | os514 | 02541 | 08958 | 2355 ||  0.6891 | 02698 | 08712 | 2234 || 06502 | 02548 | 08956 | 2506

generate complex dance movements. As shown in Fig. [f
(d), MotionCrafter can also maintain consistency in different
camera motions.

We further validate the effectiveness of MotionCrafter on
the basis of AnimateDiff and AnimateDiff v2 [7]. During
inference, the motion module acquired by MotionCrafter
can be combined with any desired generation backbone,
resulting in the production of videos that exhibit controllable
motions while possessing different stylistic effects. We select
several representative personalized models contributed by
artists affiliated with CivitAI [43]. As illustrated in Fig. [6}
AnimateDiff v2 provides a fine-tunable motion module
designed to achieve camera movements, such as the camera
panning to the right depicted in the second column.).
However, when it comes to more complex motions, the
lack of strong constraints often makes it difficult to generate
distinct dynamics. MotionCrafter is well-suited for extending
the model from text-to-image to text-to-video generation.

4.3 Quantitative Evaluations

We measure the appearance diversity using the average
CLIP [44] similarity between the diverse text prompts
and all frames of the generated videos. We measure the
temporal consistency using the average CLIP similarity
between adjacent frames. We use the action classification
method UniFormer and calculate the average accuracy
of each method. We use FID score to evaluate the
image quality. Since the FID score is computed between
reference frames and generated frames, Tune-A-Video ,
which is spatially trained on the reference videos, get higher
scores. Our method can injects motions into the backbone
model without harming the visual quality. Table[T] presents
the quantitative evaluation results of our method and the
baseline approaches. We achieve state-of-the-art results in
motion fidelity, diversity, and maintain good consistency and
visual quality. VideoComposer delivers desirable results
in terms of diversity and consistency. However, as indicated
by our user study results and qualitative comparisons, it may
fall short of accurately transferring the target motion. VMC
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TABLE 2: User study results. The best numbers are in bold and the second best results are underlined.

User preference

Method Motion fidelity? | DiversityT | Consistency? | Visual quality?
Zeroscope [36 2.05 2.57 2.70 2.46
Control-A-Video [16] 3.22 248 2.94 2.54
ControlVideo [15] 1.65 2.36 2.08 2.03
VideoComposer (depth) [19] 2.95 2.88 3.08 2.73
VideoComposer (motion) [19] 2.70 2.90 2.98 2.71
Tune-A-Video [18] 2.70 249 232 227
MotionDirector [30] 3.14 3.28 2.94 2.66
VMC [32] ) 3.70 3.04 104
DreamVideo [31] 3.32 3.61 2.49 3.26
Ours I 4.34 | 4.33 | 4.16 | 4.12
g
2E
52
T >
~ . !
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-3
58
=g

w/o time- w/o timestep-  w/o layered-
layered-tuning tuning tuning

Baseline

“A singer waves hands exc:ted[g

on the stage”

“A prmcess with a crown takes a “A sports car driving on the track
selfie in the castle”

Fig. 7: Ablation study results of MotionCrafter. Without U-Net layered tuning, the overall colors are more similar to the
reference. Without timestep tuning, the accuracy of motion learning is lower. Without timestep-layered tuning, the magnitude
of the motion is reduced. Without L,ppearance, the appearance and background are more similar to the reference.

adopts a multi-stage generation process, introducing a low-
resolution motion generation model and a super-resolution
model, thereby achieving better consistency.

4.4 User Study

We conduct a user preference assessment, comparing our
approach with the aforementioned baseine methods. We
employ a rating scale with four criteria: motion fidelity,
appearance diversity, video consistency, and visual quality,
applied to a dataset of 12 motions. In total, 102 participants
took part in the survey. They were first informed about the
objectives and settings of the motion customization task.
Subsequently, we showed them reference videos, outputs

from eight different methods, and the corresponding prompt
conditions. The participants were asked to rate the outputs
of each method using a five-point scale, with higher scores
reflecting greater user satisfaction with the generated results.
The user study results are presented in Table 2} Our method
achieves the highest user preference, particularly in terms of
motion fidelity and appearance diversity.

4.5 Ablation Study

We conduct ablation study to validate the effectiveness of
the three key components of our method, i.e., parallel spatial-
temporal architecture, dual-branch motion disentanglement
and timestep-layered tuning.
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Ablation on extended T2I model. The ablation study
results on extended T2I model are presented in Fig. [7} along
with a comparison to the baseline model AnimateDiff [7].
Due to the lack of inter-frame awareness in the generation
backbone of extended T2I models, their dynamics are often
more challenging to express than real T2V models, relying
solely on an additional motion module. From the third row,
it can be seen that incorporating timestep-related tuning
significantly enhances the dynamic results and enables the
learning of more accurate motion. However, without U-
Net layered tuning, the overall appearance of the model’s
results is influenced by the reference video, leading to less
vivid colors. The fourth row illustrates that models with
U-Net layered tuning can generate more vivid and diverse
appearances and artistic effects. However, without timestep-
related tuning, there is a noticeable decrease in motion
accuracy, and the overall dynamics are weakened. The fifth
row shows the results of adding motion loss to the baseline,
where the model can learn primary motion information.
However, without time-layered tuning, the model struggles
to learn stronger motion and the generated artistic effects are
compromised. The last row shows the results of ablating time-
layered tuning and motion loss, i.e., the baseline method.
It can be observed that without dynamic guidance, the
baseline model can generate very simple motions. The
second row shows the results of the full model, which
combines both motion accuracy and appearance diversity
while maintaining the personalized generation backbone’s
artistic effects. Compared to these alternative baselines, our
full model produces superior results, particularly in motion
fidelity and appearance diversity.

Ablation on T2V model. The ablation results on the T2V
model are illustrated in Fig.|8| In the third row, it is evident
that without employing Lappearance to decouple appearance
from motion, the model reproduces similar appearance
features from the reference video. Furthermore, the model’s
capacity to learn motion is weakened, as shown in the fourth
example, where the dynamic effect is absent in the output. In
the fourth row, the generated video overfits to the reference
video without separate tuning.

Ablation on the hyper-parameter 3. As illustrated in
Fig.[0} we present the ablation results for the hyper-parameter
B in the motion loss, which controls the strength of the
appearance normalization loss. A large S value leads to
greater diversity in the generated appearance, while a small
value results in an appearance closer to the reference video.
We set 5 to 1, 5, and 20 to evaluate its impact on the final
results. When [ is set to 1, as shown in the second row, the
model generates diverse content, but the shape of objects is
difficult to alter. When [ is set to 5, as shown in the third
row, the model produces diverse content with varied shapes,
and the visual quality is satisfactory. However, when [ is
set to 20, as shown in the fourth row, the generated videos
exhibit blurriness and artifacts, resulting in lower video
quality. Excessively large appearance normalization loss
impairs the model’s ability to learn appropriate motions and
appearances from the reference and normalization videos.
Consequently, we set 3 = 5 in all experiments shown in our
main manuscript.

Motion: driving
(moving from one side to another)

Motion: pouring
(moving from up side to down side)

s
“A car driving on the road”

Joint-tuned  W/0 Lypeqrance Full model

Baseline

“A spaceship

Fig. 8: Ablation study results of MotionCrafter on text-to-video
generation backbone.

Shaking(shaking hands excitedly)

“A woman shaking her arms excitedly”

“A boy is shaking his arms
excitedly”

with chainsaw”

Fig. 9: Ablation study results of the hyper-parameter 3 in
our dual-branch motion disentanglement.

5 CONCLUSION

In this work, we tackle the challenge of motion customization
in video generation by proposing a plug-and-play instance-
guided approach. The proposed parallel spatial-temporal
architecture can effectively separate motion and appearance,
enabling the injection of reference motions into the
temporal module of the base model. Additionally, our novel
dual-branch motion disentanglement method successfully
decouples appearance and motion, by incorporating a
motion disentanglement loss and an appearance prior
enhancement scheme. By proposing a timestep-layered
tuning strategy, the efficiency and quality of motion learning
can obviously be improved. The extensive quantitative and
qualitative evaluations, as well as the user preference survey,
demonstrate the effectiveness of MotionCrafter. MotionCrafter

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on May 19,2025 at 06:05:32 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3568880

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. , AUGUST 2023 12

can produce videos with a variety of artistic styles with
various personalized backbones in the community. Our
work paves the way for more motion-aware text-to-video
generation methods.

Limitations and Future Work While we have demonstrated
the ability of MotionCrafter to generate complex dynamic
motions, there are certain limitations imposed by the
model structure and computational resources. In cases of
complex actions requiring extended durations for completion,
such as a series of aerobics exercises, maintaining action
coherence often necessitates learning from more than 24
frames. One potential approach to tackling this issue
is segmenting sequential actions into multiple units or
implementing interpolation between frames. Furthermore,
for complex actions involving a group of individuals, such as
scenes from a ballet group performance, MotionCrafter may
struggle to accurately capture the detailed dynamics of each
individual. This challenge arises partly from the intrinsic
complexity of motions and is also due to the limitations
of current text-to-video generation models in producing
high-quality representations of group objects. Addressing
the aforementioned challenges will be targeted in our future
work.
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