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Abstract We introduce an easy
and intuitive approach to create
animations by assembling existing
animations. Using our system, the
user needs only to simply scribble
regions of interest and select the
example animations that he/she
wants to apply. Our system will then
synthesize a transformation for each
triangle and solve an optimization
problem to compute the new anima-
tion for this target mesh. Like playing
a jigsaw puzzle game, even a novice
can explore his/her creativity by
using our system without learning
complicated routines, but just using

a few simple operations to achieve
the goal.

Keywords Animation synthesis ·
Warping · Intelligent scribbling

1 Introduction

Creating a visually pleasing and realistic animation is dif-
ficult and time-consuming, which requires experienced
skill or expensive equipment to accomplish. Therefore,
most researchers in computer graphics try to reduce the
burden of the animators by providing easy-to-use tools
to create animations. In this paper, we introduce a new
approach that synthesizes the animation guided by the in-
tuitive user input. The animators or non-professionals can
use the system to create animations easily and quickly.

Our system is based on animation reuse [22], which
copies the animation of the source mesh and then applies
it to the target mesh. However, [22] requires the shape of
the source and the target meshes to be similar, and there-
fore reduces the advantage of the application. For example
in Fig. 1, it is very difficult to find a model which looks
like this target mesh, and thus we cannot reuse the existing
animation on it. In this paper, the above restriction is lifted
because we transfer the deformation between partitions

rather than the entire mesh. In this example, the anima-
tions of the warrior, eagle, and the horse are assembled
and transferred to perform the animation of the celestial
monster. Through our intuitive user interface, the user can
simply scribble the interesting regions of the target mesh,
and apply the selected animations to create a new anima-
tion.

To transfer the deformation from the source triangle
to the correct target triangle, we have to determine the
correspondence between these two meshes. Different to
the other applications, we found that the correspondence
should be more accurate at the flexible regions because the
deformations near these regions differ the most. In other
words, it is better for the user to specify the marker points
on the flexible regions rather than the high curvature re-
gions. By analyzing the source animation, our system is
able to notify the user which regions need more markers
and which regions can accept more inaccuracy. We then
solve for the least squares meshes to transform the two
meshes into similar shapes so as to find the pairs of com-
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Fig. 1. We transfer the animation of the eagle’s wings, horse’s body and the warrior’s arms to the celestial monster. The different parts of
the animations are well-blended and synthesize a new and natural animation

patible triangles. With our proposed system, the user can
specify proper and fewer markers between the meshes and
thus save operating time on this tedious work.

The main contribution of this paper is providing
an easy-to-use animating system for non-professionals,
which assembles existing animations to create a new an-
imation. The proposed method also informs the user about
putting markers on the proper and right positions. Novice
users do not have to learn complicated operations and are
thus able to create animations easily.

2 Related work

Computer animation is a very active area of research. In
the past, a significant number of techniques have been pro-
posed. Therefore, we are not going to give a very thorough
overview of such large research topics, but review the re-
lated works in the following categories.

Skeleton-based animation. The most common method
used to create animations is skeleton subspace deforma-
tion. In this category the mesh is driven by editing the
skeleton. The greatest advantage of this method is its
speed, which can be accelerated by hardware. However, it
is always time-consuming to rig and skin a model for even
professional animators. In addition, the skeleton-based
method cannot deal with non-rigid models like a face and
potentially suffers from the so-called “collapsing joint” or
“candy wrapper” defects, and thus requires better solu-
tions such as [5, 8, 13, 15] to reduce this shortcoming.

Motion capture-based animation. The motion capture sys-
tem can be used to create realistic animations by recording
an actor’s motion in the real world. There is a number of
conventional marker sets varying from markers for captur-

ing the sequence of human poses [1, 2, 6] or facial expres-
sions [4] to hundreds for capturing detailed skin deforma-
tions [18]. However, the equipment is very expensive and
only a few people can access it to record the motion from
the real world.

Skeleton-free mesh editing. Many skeleton-free mesh edit-
ing techniques have been proposed to deform a mesh using
a few anchors. The user moves the anchors through the
intuitive interface [9] and the system computes new pos-
itions for the remaining non-anchor vertices based on their
geometric features. The main advantage of these algo-
rithms is that they can preserve the original properties of
the mesh such as area [25], volume [24, 27] and local de-
tails [7, 16, 21, 26, 27]. In addition, some example-based
mesh editing methods [3, 23] interpolate the existing poses
in a non-linear way to fit the user’s constraints and there-
fore synthesize meaningful poses.

Animation reuse. Our approach falls into this category.
Without rigging and skinning the models, the user only
needs to manually specify compatible markers on the
source and target meshes to compute the correspondence.
In this category, techniques such as [17, 22] are particularly
useful for novice users to create animations. However, some
requirements reduce the advantages of the algorithms be-
cause 1) the shapes of the two meshes should be similar,
and 2) the reference meshes should have similar kinematic
poses. Our approach reduces these limitations.

3 Algorithm

In this section, we describe the method of our 3D anima-
tion synthesis system. The user first specifies the marker
points on the source and the target meshes to establish the
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correspondence map and then simply scribble the regions
of interest on the target mesh to apply source animation.
Our method transfers the deformation from each source
triangle of the desired animation smoothly and naturally to
the target mesh.

3.1 Correspondence

To define how the source animation is transferred to the
target mesh, some compatible markers specified on both
meshes are required. The system then determines the com-
patible triangles automatically. Before finding the closest
source and the target triangle pairs, some algorithms are
designed to warp one mesh like the other, yet our algo-
rithm warps the two meshes into similar shapes. There-
fore, some redundant markers can be removed in this step
and reduce the burden on the user.

We propose an automatic approach to establish the cor-
respondence from a small set of user-specified markers.
Before the user tries to select the markers, our algorithm
first analyzes the information of the source animation,
then uses different colors to visualize the degree of signif-
icance on the source mesh. For the deformation transfer
application, this indication can significantly help the user
make better choices while specifying the markers. For
example in Fig. 2, since our indication shows that the de-
formations in the horse’s head are nearly identical (Fig. 3),
no markers are required on the heads while computing the
correspondence. Although this kind of simplification will
cause some inaccuracies on the elephant’s head and nose,
the mapped deformation gradients are also suitable for the
elephant; therefore, we can still obtain the correct anima-
tion.

In [22], although they put more markers on the horse’s
head to better approximate the elephant’s head, we found
that it was not necessary and only increased the user’s ef-
fort. We believe the work in [22] can also work well when
the user selects the markers based on Sect. 3.1.1. However,
in some cases like Fig. 4, their algorithm computes in-
correct correspondence and therefore the deformation was

Fig. 3. The indication which helps the user to select the markers is computed according to the source animation. The region in red indi-
cates the surrounding deformations are very different and the user should put the markers there. While the region in blue shows that the
deformations near there are similar and thus can accept more inaccuracy

transferred to the wrong triangles. Our correspondence al-
gorithm does not have this problem.

3.1.1 Marker indication

Similar to [11, 12], we computed the maximum difference
from the deformation gradients between adjacent faces
among all frames of the given animation to represent the
flexibility of each triangle. The equation is formulated as:

Gij = max
f =1...k

‖D fi − D f j‖2
F, {i, j} ∈ U, (1)

where U is the set of adjacent faces, k is the number
of frames in the animation sequence, and D is the de-
formation gradient that transforms the triangle from the
reference pose to the animation pose. The flexibility of
triangle i is thus determined by averaging Gij . As Fig. 3
shows, the colors close to red represent the regions that

Fig. 2. The source (horse) and the target (elephant) meshes are
warped into similar shapes. Note that the elephant’s nose and
head are shrunk together because there is no marker. Although the
shapes in some regions are not very similar, our algorithm can still
obtain the proper deformation for each target triangle and then pro-
duce reasonable results
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Fig. 4. Implementation of the correspondence algorithm proposed
by [22], and some problems found in it. Because there are no mark-
ers on the heads of either mesh, the warped head of the source mesh
will be very different from the target mesh. Therefore, the triangles
on the elephant’s trunk are considered compatible to the horse’s
forelegs, and thus obtain the unreasonable result

are flexible, and the deformations around these regions
are quite different. The user needs to set markers at these
positions to enhance the accuracy of correspondence. Oth-
erwise, the deformation transferred to improper triangles
will cause serious mistakes.

3.1.2 Warping

Our algorithm determines the correspondence between the
source and the target meshes by warping both of them
into similar shapes (Fig. 2). According to the user’s spe-
cification, we constrain the source markers at the pos-
itions of their compatible target markers. The least squares
meshes [20] are then solved, respectively, using these
marker constraints. Since the shapes of the source and the
target meshes are similar after the deformation, we can
determine the compatible triangles between the meshes
based on the distances of their centroids.

We observed that the least squares meshes [20] are
fairly smooth except for the regions near constrained ver-
tices. With the aid of this property, our algorithm can avoid
bump surface disturbances when we compute the cor-
respondence. The least squares meshes are reconstructed
using only the mesh information and a few constrained
vertices by minimizing the quadratic energy terms, i.e., we
solve

‖LV ′‖2 +
∑

ω|c′
i − ci |2, ci ∈ C, (2)

where L is the Laplacian operator, V ′ is the reconstructed
vertices, C ⊂ V denotes the set of constrained vertices
and ω is a large number to enforce the soft constraint
(ω = 10 000 in our experiment results). Here, we set co-
efficients of the Laplacian operator by the mean value
coordinate, where

Lij =

⎧
⎪⎨

⎪⎩

δij i f {i, j} ∈ E
−qi i f i = j

0 otherwise,

δij = tan(αij/2)+ tan(βij/2)

‖vi −vj‖ , qi =
∑

{i,k}∈E

δik. (3)

Fig. 5. The angles used in the mean value coordinates for edge
{i, j}

E is the set of edges between two nearby vertices and αij
and βij are the angles depicted in Fig. 5. To solve for the
vertex positions of the deformed mesh, we transform the
equations into an over-determined linear system
[

L

0|ω
] [

V ′
C

]
=

[
0
C

]
. (4)

Since the sparse matrix can be solved with very low cost,
our algorithm computes the correspondence efficiently.

3.1.3 Correspondence map

Once the source and the target meshes are warped into
similar shapes, we determine the two triangles are com-
patible if their centroids are close enough and the angle
between their deformed face normals is less than 90◦. This
orientation test is necessary because triangles that have
very short distances but belong to different regions should
be prevented from being considered as compatible (e.g.,
triangles from the two sides of the armpit). The target tri-
angle will correspond to at least one source triangle. That
is, if there is no source triangle close enough to the tar-
get triangle, we set the closest one compatible to this target
triangle.

3.2 Animation synthesis

After the correspondence is established, the system will
know to which target triangle the source triangle defor-
mation should be transferred. Our system provides a user-
friendly interface for the user to scribble the regions of
interest on the target mesh and select the source anima-
tions from the database. The system copies the source
partial deformations and applies them to the target mesh.
The deformation of each target triangle can be obtained
by interpolating or compounding from several source an-
imations. For example in Fig. 6, the cat stretching and the
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Fig. 6. The stretching and running animations are multiplied together on the elephant for the desired animation

horse foreleg running are extracted and are multiplied to-
gether to compute the new elephant animation.

However, this naïve approach creates artifacts. For ex-
ample in Fig. 7, the careless scribbling causes kinematic
problems. The elephant’s forelegs are bent at the wrong
positions and look very strange. In addition, the angle at
the joint is too sharp because the two deformations are not
well-blended. Thus the selection system must be more in-
telligent and the different deformations between partitions
must be smoothly interpolated. In the following, we will
describe how to obtain natural and smooth animations.

3.2.1 Intelligent scribbling

The source and the target meshes are compatible after
establishing the correspondence map. Therefore, we can
obtain the flexibility of the target triangle from the source
mesh and then separate the target mesh into several par-
titions according to a threshold γ (usually is 0.1). In the
beginning we set each triangle as an individual partition.
After that, we merge the nearby partitions if their flexibili-
ties are both less than γ . This process will loop until there
is no partition left to merge. We consider the partitions
with more than one triangle as stiff partitions, which copy
the deformations of the source meshes, and the rest are
flexible partitions, which are used to blend the animations
between different stiff partitions. Note that the smaller γ

Fig. 8. Our system refines the regions after the user’s selection. The regions in blue are the triangles refined by our system. The colors
between blue and white mean that the regions are used to blend the different deformations

Fig. 7. The regions are sometimes not correctly selected for the
deformation and therefore cause artifacts

means the deformations within the partition are more simi-
lar, and thus the extracted stiff partitions are more rigid.

When more than half the number of triangles in a par-
tition is selected, we consider that all triangles in that par-
tition are selected. Otherwise we remove all the triangles
from being deformation-transferred. We call this approach
intelligent scribbling. This is because the deformation in
the same stiff partition must be similar, especially when
kinematic deformations are transferred. From our experi-
ence, we observed that this is very convenient and helpful
for the user to scribble the regions of interest. In addition,
this intelligent design can prevent some unexpected arti-
facts caused by careless selection. For example in Fig. 8,
with the aid of our intelligent scribbling, the refined re-
gions are adequate for the kinematics, and the boundaries
are well-blended.
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3.2.2 Deformation blending between partitions

When the source animation is transferred to the target
mesh, we should blend this animation with the trans-
ferred animation by the triangles in the flexible partitions.
For this reason, we first compute the blending weight of
each triangle and then determine the deformation gradient
based on this weight. The source deformation gradients
are interpolated with the identity matrix and then multi-
plied to those of the target animation if the user wants
to compound the two animations. In contrast, the two de-
formation gradients are simply interpolated if the user re-
quires the two animations to be well-blended. Of course,
the weights of the stiff triangles are 1.0 if the triangles are
selected, otherwise they are 0.0. The weights of the flex-
ible triangles depend on the distance and the weights of
the stiff triangles around them. To obtain smooth blending
weights and to keep the weights of the stiff triangles con-
stant, we compute the unknown weights w by minimizing
the following quadratic function:
∑

i∈T

∑

j∈Qi

|wi −wj |2 +κ
∑

a∈Φ

|wa −1|2 +κ
∑

b∈Ψ

|wb|2, (5)

where T denotes the triangles on the target mesh, κ is
a large number to enforce the soft constraint (κ = 10 000
in our experiment results), Qi is the set of triangles ad-
jacent to triangle i , Φ and Ψ denote the selected and un-
selected triangles, respectively. We solve the equation in
a least square sense similar to the warping algorithm men-
tioned in Sect. 3.1.2.

The deformation gradients are interpolated using the
weights obtained in Eq. 5. In Fig. 8, the color regions from
blue to white are used to blend the animations of different
partitions. Because linear combination is not adequate to
interpolate transformations, we first decompose the defor-
mation gradient into rotation and stretch components [19]
and then interpolate the two transformations, respectively.
The rotation matrices should be reformulated as quater-
nion and then interpolated by the SLERP algorithm, while
the stretch matrices are linearly interpolated. We com-
pute the synthesized deformation gradients by multiplying
the two interpolated transformations, and thus naturally
smooth the deformations between partitions.

3.2.3 Deformation transfer

After the target deformation gradients are determined,
we can reconstruct the target animation in the same way
as [22] by solving an optimization problem. Therefore, we
introduce the objective function:

min
N1+d1,...,N|N|+d|N|

|N|∑

j=1

‖Mj × Rj − Nj‖2
F

subject to Njvi +dj = Nkvi +dk, i, j, k ∈ p(vi), (6)

where p(vi) are the triangles that share vi , M denotes the
set of synthesized target deformation gradients, N is the
unknown deformation gradient for the solved animation,
and R is the rotation transformation obtained from pose
modification.

3.2.4 Pose modification

The transferred results will have some problems if the
source and the target reference poses are dissimilar [12].
Our system solves this problem by applying the method
in [12] to modify the orientation of the selected partition.
In addition, we also provide a user-friendly interface for
the user to edit the target pose. The user selects the regions
of interest with our intelligent scribbling system, and then
adjusts the orientation of the partition to edit the reference
pose. The rotation axis is based on the screen coordinate
system so that the operation can be more intuitive to the
user. In addition, the target mesh is solved in real-time to
achieve interactive editing.

4 Results

We used our system to create several interesting anima-
tions by assembling existing animations. The program is
written in C++ and run on a Pentium 4 3.4 GHz PC, with
2 Gb RAM. The timing data and model information we
use in this paper are shown in Table 1. The animation se-
quence is solved efficiently because the linear system can
be factored and stored in the pre-computation step. The
interface for the user to edit the kinematic pose can be op-
erated in real-time.

For example in Fig. 9, we assembled Dino, King Kong,
and Lizard animations to create a new interesting anima-
tion. The Dino first stomps its feet, beats its breast and
waves its tail to show its majestic appearance. The an-
imations are applied on different partitions at different
times so that they can work well together and perform
surprising results. Another example is shown in Fig. 10.
We compounded the running animation with the morph
sequence [10, 14] together so that the elephant mesh can
morph into the horse while running. In this way, the two
deformation gradients are multiplied together before the
objective function is solved to obtain the running morph-
ing sequence.

Table 1. Model information and the timing statistic for blending
weights, factorization and solving animation

Mesh Triangle Blending Factorization Solve

Monster 39 998 2.312 s 5.687 s 0.156 s
Dino 20 000 1.063 s 1.688 s 0.078 s
Elephant 85 796 6.922 s 11.574 s 0.391 s
David 64 021 6.344 s 7.922 s 0.344 s
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Fig. 9. The Dino animation is assembled from the animations of King Kong’s torso, the Lizard’s tail and itself

Fig. 10. We compound the deformation gradients of the morphing sequence and the running sequence, so that the elephant can morph into
the horse while running

Fig. 11. The emotion and the verbal expressions are assembled on David’s head to perform the talking animation with different emotions
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Our system can animate non-articulated models, as
well. For example, we can combine different emotional
and verbal expressions on the head model. In Fig. 11, we
have happy, angry and cry expressions as well as the ver-
bal expressions on different head models. We assembled
these expressions together on David’s head so that he can
talk with different emotions. Because the head animations
are not driven by a skeleton, it is meaningless to separate
the mesh into stiff and flexible partitions. Therefore we
do not need to use the intelligent scribbling system to re-
fine the selected regions, but just blend the two animations
based on the geodesic distance. The user chooses a reason-
able threshold to determine the region that grows from the
boundary. The system interpolates the weights for those
regions. In this manner, the mesh is separated into three
partitions: selected, unselected, and the intermediate par-
titions. Similar to what we mentioned in Sect. 3.2.2, we
set all of the faces in the selected partition as 1.0 and all
of those in the unselected partition as 0.0. Equation 5 is
solved to obtain the blending weights of the triangles in
the intermediate partition, therefore blending the two ex-
pressions naturally.

5 Conclusions and limitations
We introduce a new approach to create animations that
are harmonically assembled from several existing anima-
tions. The proposed system is designed for novice users,
requiring only a little manual effort. The main idea be-

hind our algorithm is animation reuse on partial meshes
and therefore the shapes of different meshes are not re-
quired to be similar. We also propose a new approach for
computing the correspondence, which can obtain reason-
able results with fewer markers and consequently save the
user’s time. This simplification does not affect the results
in our application because the deformation gradients in the
stiff partitions are nearly identical.

Although different animations can be assembled
smoothly in our system, there are still some remaining
artifacts on the created animation. This is because the
animation may not satisfy the momentum conservation
requirement. Moreover, the constraint vertex is fixed in
the same position through the entire sequence. The mesh
only acts on different poses and always stays where it
is, making the animation strange. Therefore, in our next
research step, we will add kinematic factors to our ani-
mation system to solve these problems. In addition, the
self-intersection problem still occurred. With improper
assembling operations, different parts of the mesh will col-
lide with others and artifacts occur. We take this problem
into consideration in our future work.
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