
Adaptive Geometry Image
Chih-Yuan Yao and Tong-Yee Lee, Member, IEEE

Abstract—We present a novel postprocessing utility called adaptive geometry image (AGIM) for global parameterization techniques

that can embed a 3D surface onto a rectangular1 domain. This utility first converts a single rectangular parameterization into many

different tessellations of square geometry images(GIMs) and then efficiently packs these GIMs into an image called AGIM. Therefore,

undersampled regions of the input parameterization can be up-sampled accordingly until the local reconstruction error bound is met.

The connectivity of AGIM can be quickly computed and dynamically changed at rendering time. AGIM does not have T-vertices, and

therefore, no crack is generated between two neighboring GIMs at different tessellations. Experimental results show that AGIM can

achieve significant PSNR gain over the input parameterization, AGIM retains the advantages of the original GIM and reduces the

reconstruction error present in the original GIM technique. The AGIM is also suitable for global parameterization techniques based on

quadrilateral complexes. Using the approximate sampling rates, the PolyCube-based quadrilateral complexes with AGIM can

outperform state-of-the-art multichart GIM technique in terms of PSNR.

Index Terms—GIM, AGIM, T-vertices, zippering, tessellations.

Ç

1 INTRODUCTION

GEOMETRY image (GIM) [12], [26], [31] is a well-known
technique for representing a regular mesh without

storing its connectivity. GIMs are very suitable for hard-
ware-assisted rendering, LOD generation and compression.
Without a good 3D mesh data parameterization, the regular
GIM sampling cannot evenly represent regular samplings
on the surface. Undersampling can occur, thereby causing a
high reconstruction error. This problem is connected to lack
of area preservation of mapping. The multichart geometry
image (MCGIM) [34] presents an atlas-based parameteriza-
tion to overcome the distortion problem in GIMs [12].
MCGIM consists of many irregular charts and needs a
zippering algorithm to determine the pixel neighbors across
charts. The state-of-the-art MCGIM yields a significant
PSNR (i.e., peak signal-to-noise ratio) gain over GIM and
yields better geometric approximations than other semi-
regular remeshing methods. Irregular-chart MCGIM solves
the GIM limitation but creates other problems:

1. not suitable for dynamic LOD manipulation (i.e.,
zippering connectivity is fixed a propri in
preprocessing),

2. less efficiency in packing irregular charts,

3. less efficient implementation for applications such
as texture synthesis and mesh editing mentioned
in [3], and

4. high-valence vertices likely generated by their
zipper algorithm due to irregularity of charts. The
high-valence vertices can result in visual artifacts.

A good zippering algorithm should not create high-valance
vertices and, also, can quickly compute connectivity at
rendering time.

In this paper, we present a novel postprocessing utility
for global parameterization techniques, which can embed a
3D surface onto a rectangular domain such as GIMs and
spherical parameterization [11], [31]. This novel technique
first converts a rectangular parameterization into multiple
GIMs with different resolutions and then efficiently packs
these GIMs into an image called Adaptive Geometry Image
(AGIM). The resolution of each GIM is adaptively deter-
mined to ensure that the reconstruction error is within a
given bound. The AGIM retains the advantages of the
original GIMs and reduces the reconstruction error present
in GIMs. Experimental results show that AGIM can
significantly benefit global parameterizations such as [12]
and [31] with higher PSNR gain. The AGIM can directly
compute approximation errors for different resolutions,
which allows it to directly pick approximation errors and
zipper GIMs. This ability has a strong advantage of
benefiting applications such as view dependent LOD.
Unlike MCGIMs, the AGIM does not create irregular charts,
so there are several advantages over MCGIMs. First, the
proposed zippering algorithm to stitch square GIMs
tessellated at different rates can be quickly computed and
dynamically changed at rendering time. In addition, the
AGIM does not need to store the pixel connectivity across
square GIMs, and it only requires very small amounts of
adjacent GIM information. Second, the packing efficiency of
AGIM can be very high. Third, for the AGIM representation,
high-valence vertices for removing T-vertices are rare in our
practical scenarios. In terms of PSNR, the AGIM, starting
from a regular GIM, generally cannot outperform MCGIM.
The AGIM is suitable for global parameterization techniques
based on quadrilateral complexes. Using the approximate
sampling rates, the PolyCube-based [37] quadrilateral
complexes with AGIM can outperform state-of-the-art
MCGIM technique in terms of PSNR. Finally, we will show

948 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

. The authors are with the Computer Graphics Group/Visual System
Laboratory, Department of Computer Science and Information Engineer-
ing, National Cheng-Kung University, No. 1, Ta-Hsueh Road, Tainan 701,
Taiwan, R.O.C. E-mail: ippo@csie.ncku.edu.tw, tonylee@ncku.edu.tw.

Manuscript received 29 Sept. 2007; revised 6 Dec. 2007; accepted 25 Feb. 2008;
published online 28 Feb. 2008.
Recommended for acceptance by B. Guo.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2007-09-0149.
Digital Object Identifier no. 10.1109/TVCG.2008.39.

1. It is easy to reparameterize an irregular embedding onto a regular/or
square embedding.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

that the AGIM can be partially accelerated by the GPU to
achieve real-time rendering performance.

2 RELATED WORK

There have been several schemes such as [8] and [21]
proposed for converting irregular meshes into semiregular
remeshes. GIM [12] is a completely regular structure for
representing an arbitrary surface. The major limitation of
GIMs is its distortion problem. To parameterize an entire
mesh into a single regular chart easily leads to greater
distortion and less uniform surface sampling than can be
achieved with irregular multicharts (MCGIM) [34]. The
MCGIM achieves very high PSNR reconstruction quality
but still has some problems, as mentioned in Section 1.
Recently, the rectangular MCGIM [3] (RMCGIM) was used to
exploit rectangular patches onto tile surfaces, guaranteeing a
one-to-one pixel correspondence across chart boundaries.
However, it is difficult to guarantee each tiled patch with a
rectangular shape. The RMCGIM still has higher distortion
than MCGIM, and its packing efficiency is not too high (about
80 percent). In contrast to multichart methods, several single
chart methods such as spherical parameterization [31] and
smooth GIMs [26] can reduce undersampling or distortion
problem in GIMs. Although the spherical parameterization
[31] only supports genus-0 meshes, this drawback is over-
come by toroidal domain tessellation [35]. In addition,
Peyré and Mallat [30] attempted to improve the compression
ratio of GIMs using wavelet techniques. Hernández and
Rudomin [14] and Ji et al. [17] proposed dynamic LOD of
GIMs on GPU. To remove T-vertices, Ji et al. used a restricted
quadtree triangulation (RQT) method [15]. With RQT, the
levels of adjacent quadtree nodes differ by, at most, one.

Like GIMs, the terrain data is always represented with a
regular grid structure. Recently, Pajarola and Gobbetti [29]
present a very thorough survey on semiregular multi-
resolution representation for interactive terrain rendering.
The adaptive terrain rendering algorithm can dynamically
generate adaptive meshes. The T-vertices may appear when
two neighboring meshes are tessellated at different rates. A
mesh with T-vertices easily creates cracks. Many techniques
[4], [20], [25] have been proposed to optimize adaptive
terrain mesh without generating T-vertices. However,
many high-valence vertices are always generated to remove
T-vertices. To avoid these types of vertices, most previous

methods require that the levels of adjacent mesh tessella-
tions differ by at most one or two [29]. Alternatively,
Lossasso et al. [7] do not remove T-vertices and propose to
use Fragment shader to blend rendering artifacts caused by
T-vertices. This approach can work well in terrain render-
ing. However, it is not suitable for geometry processing
such as mesh editing and deformation. The quaddominant
mesh [6], [13], [36], [38] is also a very popular model
representation with a regular data structure. The same
problem will be encountered as the adaptive mechanism is
applied to quadsurface [1], [27], [33]. Like MCGIMs, a
zippering algorithm can be used to remove T-vertices.

Surface parameterization research has been very active
in computer graphics. However, a detailed surface para-
meterization technique survey is beyond the scope of this
paper. A nice survey of parameterization methods can be
found in [10] or refer to the literature. In our setting, the
parameterization results from previous approaches can be
viewed as inputs to the proposed AGIM method. Our
method converts their results into a single AGIM image
with lower geometric reconstruction error and more uni-
form sampling than that which can be achieved with a GIM.

3 APPROACH OVERVIEW AND DEFINITIONS

In Fig. 1, given a surface mesh M and its surface
parameterization �, our goal is to convert � into an AGIM.
To achieve this goal, we borrow parameterization results in
[31] as the input to the proposed method. The parameteriza-
tion data from other techniques globally parameterizing a 3D
surface onto a rectangular domain can also be used. From �,
we initially create a low resolution ð2i þ 1Þ � ð2i þ 1Þ GIM
denoted as Gi at tessellation rate i. In our setting, this Gi is
treated as a virtual GIM, and each gridðx; yÞ is viewed as a
control vertex. In Fig. 2, each control vertex is illustrated by a
black dot. The surface parameterization � is also displayed
for easy explanation of our idea. For each gridðx; yÞ, our
method adaptively determines a local ð2i0 þ 1Þ � ð2i0 þ 1Þ
GIM centralized at ðx; yÞ, denoted as gi0;x;y. Therefore, the
neighbor of gi0;x;y can be tessellated at different rates, thus
creating T-vertices. Section 4 will present more details to
generate the AGIM. The zippering algorithm will be
introduced to remove T-vertices at rendering time in
Section 5.

YAO AND LEE: ADAPTIVE GEOMETRY IMAGE 949

Fig. 1. Overview of AGIM.

4 GENERATING AN ADAPTIVE GEOMETRY IMAGE

An initial Gi at a small tessellation rate i is chosen to reduce
the overall number of samplings on the AGIM. We also
initially assign a 5 � 5 (i.e., i0 ¼ 2) local gi0;x;y for each control
vertex of Gi. We then measure the reconstructed surface
error between the reconstructed surface (i.e., gi0;x;y) and
original mesh using (1) with Metro [5]:

dðP; SÞ ¼ min
p02S
kP � p0k2; ð1Þ

where the vertex P belongs to the remeshed model, and S is
the original model. If the error is beyond a threshold, this
initial 5� 5 gi0;x;y will be replaced using a new gi0;x;y with
i0 > 2. To determine an appropriate i0, we simply start
testing from i0 ¼ 3 incrementally until the measured error is
below the threshold. Fig. 3a shows a visualization of Gi

consisting of many local gi0;x;y tessellated at different rates.
These square GIMs can be packed efficiently into an image
called AGIM, as shown in Fig. 3b. Let k be the maximum i0

among all gi0;x;y. In Fig. 4b, a container is designed as a
ð2k þ 2Þ � ð2k þ 2Þ image, and an AGIM can consist of many
containers in Fig. 4d. In Fig. 4c, several gi0;x;y with 2 � i0 � k
are packed together into each container. The upper bound
on the number of containers can be computed:

ffi
�k
i0¼2ni0 � ð2i

0 þ 1Þ2
q

2k þ 2

6664
7775

0
@

1
A

2

; ð2Þ

where ni0 is the number of GIMs at tessellation rate i0. The
pseudocode of the packing algorithm is shown below. Fig. 4
illustrates the packing algorithm. Let us denote queueði0Þ as a
queue that temporarily stores all GIMs at tessellation rate i0.

Using the pseudocode below, Fill in Container
ðImage blockði0ÞÞ will return true if Image blockði0Þ can be
inserted into the current container. If this block cannot be
inserted, we will try smaller blocks until no block can be
added into the current container. Next, we start to insert
blocks into a new container if there are still some blocks
left to be added. Our packing heuristic is a greedy
method for packing all blocks into a container. Whenever
we can insert blocks into the container, we always pack
the large blocks first and, then, the small ones. Once the
number of square containers is known, it is easy to find a
rectangular AGIM to fill up all containers with the
minimal wasted space [2], [32]. Alternatively, we can
pack image blocks into an AGIM directly to reduce the
final size of an AGIM. To facilitate I/O of AGIM between
file disks and memory, we decided to pack varying-size
image blocks into containers with a fixed size and then
pack these containers in the AGIM. Later, experimental

results show that this arrangement still can have a high
packing efficiency.

allocate a new container; /** AGIM initialization **/
while(some blocks left in queues){

i0 ¼ k; /** k is the maximum i0 among gi0;x;y **/

whileði0 � 2Þf
ifððImage blockði0Þ ¼ queueði0Þ:popðÞÞ! ¼ NULLÞf
ifð!Fill in ContainerðImage blockði0ÞÞÞf
queueði0Þ:pushðImage blockði0ÞÞ;
ifði0 ¼¼ 2Þf

allocate a new container;
/* there is not enough space */

i0 ¼ k;

gelsef
i0; /* try smaller ones */

}

}

gelsef
i0; /* try smaller ones */

}

}

}

5 ZIPPERING ALGORITHM

5.1 Algorithm Overview

Fig. 5 shows an overview of the proposed zippering

algorithm. In this figure, given any two neighbors gi0
1
;x1;y1

and gi0
2
;x2;y2

with i01 < i02, some T-vertices will be created along

their boundary. To remove these T-vertices, we first remove

several 2 � 2 image blocks of gi0
1
;x1;y1

along the boundary.

These 2� 2 blocks are adjacent to gi0
2
;x2;y2

. After this removal,

there are many gaps created in this figure. These removed

image blocks, called zipper blocks, are further classified into

two categories: 1) edge block and 2) corner block.

Definition. A 2 � 2 zipper block is an edge block if only one

of its four adjacent blocks belongs to the other GIM at different

tessellation rates. Otherwise, it is a corner block.

950 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 3. (a) Visualization of Gi. (b) All square gi0 ;x;y GIMs are packed into

an image called AGIM. In (a), different colors represent different sizes

of gi0 ;x;y.

Fig. 2. Control vertex and its corresponding GIM obtained using regular
surface parameterization sampling �.

Our zippering algorithm consists of three major steps

(Fig. 5): 1) generating triangulation vertices on each zipper

block, 2) triangulating all edge and corner blocks, indepen-

dently, and 3) stitching each pair of adjacent triangulations.

5.2 Generating Triangulation Vertices

5.2.1 Up-Sampling a Zipper Block

Once each 2 � 2 edge block of gi0
1
;x1;y1

is detected, we first

sample it up to the same tessellation rate with its adjacent

block within gi0
2
;x2;y2

. After up-sampling each edge block, we

build a treelike triangulation � within it to stitch gi01;x1;y1
and

gi0
2
;x2;y2

(Section 5.2.2). To smooth the zippering triangula-

tion, we achieve this up-sampling using [3]. A corner block

must have two adjacent blocks tessellated at k1 and k2 times

with k1 � k2. There will be two treelike triangulations called

�k1
and �k2

(Section 5.2.3) built within each corner block.

First, we tessellate it at k1 times to build a �k1
. To build a �k2

,

it is not necessary to tessellate it again, since all

ð2k2 þ 1Þ � ð2k2 þ 1Þ samples � ð2k1 þ 1Þ � ð2k1 þ 1Þ samples.

5.2.2 Generating Triangulation Vertices in an Edge Block

Not all samples are used to build a triangulation within

an edge block. A good � should be a triangulation

reminiscent of a balanced tree. After up-sampling, each

edge block is tessellated into a ð2k þ 1Þ � ð2k þ 1Þ block. See

several examples in Fig. 6. Its border adjacent to gi0
2
;x2;y2

is

called the bottom border, and the opposite border is called

the top border. We define a local frame to easily address

each sample at gridðx; yÞ by orienting each block (Fig. 6)

such that its bottom border is aligned with the positive

x-axis pointing right and the positive y-axis pointing up

(from the bottom border to the top border). The origin (0, 0)

is set at its left-bottom corner. Each vertex of � is denoted

as L
ð‘;iÞ
ðx;yÞ, where iði � 1Þ indicates the ith vertex on the

‘thð‘ � 0Þ level of a treelike �, and this vertex is selected

from the sample at grid ðx; yÞ of this block. There are

ð2k þ 1Þ vertices on the 0th level of �, and these vertices

are selected from ð2k þ 1Þ samples on the bottom border.

The number, N‘, of vertices on the ‘thð0 � ‘ � kÞ level of

YAO AND LEE: ADAPTIVE GEOMETRY IMAGE 951

Fig. 5. Overview of our zippering algorithm.

Fig. 4. Illustration of AGIM packing algorithm. (a) queueði0 Þ. (b) An image container. (c) AGIM consists of many containers. (d) AGIM.

� can be determined by N0 ¼ 2k þ 1; N1 ¼ ð2k þ 1� 1Þ=2 ¼
2k�1; N2¼2k�1�1; N3 ¼ ð2k � 1�1Þ=2 ¼ 2k�2 � 1; . . . ; N‘¼k ¼
ð2k�ðk�2Þ � 1� 1Þ=2 ¼ 1, respectively. The number of ver-

tices is odd on each level of � excluding the first level

when k � 2. Therefore, we need to handle this special

case using the following three simple rules to determine

the remaining vertices fLð‘;iÞðx;yÞj‘ > 0g of �:

Input. A ð2k þ 1Þ � ð2k þ 1Þ edge block and the ith vertex

L
ð‘¼0;iÞ
ðx;yÞ on the 0th level of � is located at the ðLð0;iÞx ; Lð0;iÞy Þ grid

of this block, where 0 � x � 2k and y ¼ 0. Incrementally,

from ‘ ¼ 0 to ðk� 1Þ.

1. If ðN‘ 2 oddÞ, thenLð‘þ1;iÞ
x ¼Lð‘;2�iÞx ,8i 2 ½1; ðN‘ � 1Þ=2�.

2. I f ðN‘ 2 evenÞ, then Lð‘þ1;iÞ
x ¼ ðLð‘;iÞx þ Lð‘;iþ1Þ

x Þ=2,

8i 2 ½1; ðN‘ � 1Þ�.
3. Lð‘þ1;iÞ

y ¼ Lð‘;iÞy þ ‘.
According to the above rules, if N‘ 2 odd, each vertex on

the ð‘þ 1Þth level corresponds to three vertices (1-to-3) on the

‘th level, as circled in Fig. 6. IfN‘ 2 even, the correspondence

becomes 1-to-2. The goal of the rule 3 is to keep � spread over

this ð2k þ 1Þ � ð2k þ 1Þ as much as possible.

5.2.3 Generating Triangulation Vertices in a Corner Block

Within a corner block, we build two triangulations �k1
and

�k2
with k1 � k2. In Fig. 8a, �k1

and �k2
is located in its

lower (i.e., red) and upper (i.e., blue) triangular regions.
All possible configurations of k1 and k2 are shown in
Fig. 8b, and they can be oriented to the standard
configuration in Fig. 8a. Both �k1

and �k2
are built

independently (Fig. 7) and separated by the main
diagonal. All vertices of �k1

cannot appear in the blue
region (i.e., �k2

) of this block, and vice versa. We find their
vertices in three steps (1, 2, and 3). In Section 5.2.1, we
tessellate this corner block into a ð2k1 þ 1Þ � ð2k1 þ 1Þ block,
and then, we select �k1

’s vertices (i.e., red samples) using
the same rules for handling the edge block. Excluding a
L
ð0;1Þ
ð0;0Þ vertex, its vertices can be neither on the main

diagonal nor on the upper triangular region of this block.
Therefore, we need to give up some vertices violating
these two constraints and reselect some new vertices using
the following rules in steps 1, 2, and 3, respectively:

. 1. Lð1;1Þx þ 1.

. 2.1. If ðN‘ 2 oddÞ, then

Lð‘þ1;iÞ
x ¼ Lð‘;2�iþ1Þ

x ; 8i 2 ½1; ðN‘ � 1Þ=2�:

. 2.2. If ðN‘ 2 evenÞ, then

Lð‘þ1;iÞ
x ¼ Lð‘;ðiþ1ÞÞ

x ; 8i 2 ½1; ðN‘ � 1Þ�:

. 3.1. If (selected vertex is on the main diagonal)
Lð‘;iÞx ¼ Lð‘;iÞx þ 1; 8i > 1.

. 3.2. If (selected vertex touches the boundary of the
block) Lð‘;iÞy ¼ Lð‘;iÞy � 1; 8i > 1.

In a similar manner, the vertices of �k2
can be found in

the upper triangular region of this block, as shown in

Fig. 7b. Either k1 ¼ 1 or k2 ¼ 1 is a special case. For example,

when k1 ¼ 1, a vertex L
ð1;1Þ
ð1;1Þ of �k1

is selected on the main

diagonal of this 3 � 3 block in the step 1. We need to reselect

a new one for L
ð1;1Þ
ð1;1Þ. According to the above rules, we cannot

find a qualified one for it from the integer grids. For

simplicity, we get this L
ð1;1Þ
ð1;1Þ by subsampling at (1, 0.5)

location of this block. Similarly, when k2 ¼ 1, we get L
ð1;1Þ
ð1;1Þ of

�k2
at (1, 0.5) location.

5.3 Triangulating Zipper Blocks

In the following, let L
ð‘;iÞ
� and L

ð‘;iÞ
ki

denote that it is the

ith vertex on the ‘th level of � and �ki , respectively. Both s

952 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 6. The grid samples selected to build a � are marked in red.
(a) k ¼ 1. (b) k ¼ 2. (c) k ¼ 3.

Fig. 7. Three major steps to generate triangulation vertices in a corner
block. (a) Selected vertices of �k1¼3. (b) Selected vertices of �k2¼2.

Fig. 8. Two triangulations �k1
and �k2

with k1 � k2 are built in red and

blue areas.

and g denote samples located on the upper right and upper

left corners of a zipper block.

5.3.1 Triangulating an Edge Block

We have obtained all � triangulation vertices in Section 5.2.2.

If N‘ 2 odd, each vertex on the ð‘þ 1Þth level corresponds to

three vertices on the ‘th level. We can use either a set of

triangle strips or fans for generating triangulation between

these two levels (Fig. 9a). For fast rendering, we adopt [9] to

build a triangle strip with repeated vertices between these

two levels in the following pseudocode. Although repeated

vertices result in degenerated triangles (i.e., zero area), this

approach generates the same rendering appearance as that

by either a set of triangle strips or fans.

Begin(triangle strip){

L
ð‘;N‘�1Þ
� , L

ð‘;N‘Þ
� , L

ð‘;N‘�1Þ
� , L

ð‘þ1;ðN‘�1Þ=2Þ
� ;

/* L
ð‘;N‘�1Þ
� is a repeated vertex */.

ifðN‘ ¼¼ 3Þ Lð‘;N‘�2Þ
�

forði ¼ ðN‘ � 2Þ; i > 1; i ¼ i� 2Þ {

L
ð‘;iÞ
� , L

ð‘þ1;ði�1Þ=2Þ
� , L

ð‘;i�1Þ
� ;

ifðði� 2Þ > 1Þ
L
ð‘þ1;ði�1Þ=2Þ
� ;

/* L
ð‘þ1;ði�1Þ=2Þ
� is a repeated vertex*/

else

L
ð‘;i�2Þ
� ;

}

}end(triangle strip);

If N‘ 2 even, each vertex on the ð‘þ 1Þth level corre-

sponds to two vertices on the ‘th level. The following is

the pseudocode to build a triangle strip between these

two levels (Fig. 9b):

Begin(triangle strip){

forði ¼ N‘; i > 0; i��Þ {

L
ð‘;iÞ
� ;
ifði > 1ÞLð‘þ1;i�1Þ

� ;

}

}end(triangle strip);

Finally, an extra triangle will be formed by (L
ð‘¼k;1Þ
ðx;yÞ , s, g) to

stitch an adjacent 2� 2 block on the top border. Fig. 10 shows

several examples of triangulating edge blocks with 1 � k � 3.

5.3.2 Triangulating a Corner Block

We have obtained all vertices of triangulations �k1
and �k2

in

Section 5.2.3. In Fig. 11a, we build �k1
and �k2

independently

using the same method for triangulating an edge block. Then,

we stitch �k1
and �k2

within a corner block in two steps. First,

we build two red triangles (Fig. 11b) using two vertex-tuples

(L
ð0;1Þ
k1

, L
ð1;1Þ
k1

, L
ð1;2k2�1Þ
k2

) and (L
ðk1;1Þ
k1

, s, L
ðk2;1Þ
k2

). Second, we

triangulate the blue area (Fig. 11b) using one of the following

four possible configurations, as illustrated in Fig. 12:

1. k1 ¼ k2 ¼ 1. This is a special case, since L
ð1;1Þ
k1
¼ Lð1;1Þk2

.

In this case, we build triangle strips by traveling

vertices in the following order: g, L
ð1;1Þ
k2

, s, L
ð0;3Þ
k1

.
2. k1 ¼ k2 þ 1. The blue area becomes a trapezoidlike

shape. Some vertices of �k1
are on its lower base

including L
ð‘;1Þ
k1

with 1 � ‘ � k1. Similarly, some

vertices of �k2
are on its upper base, including

L
ð‘;N‘Þ
k2

with 1 � ‘ � k2, where N‘ is the number of

vertices on the ‘th level of �k2
. Since k1 ¼ k2 þ 1, we

build triangle strips to triangulate this trapezoid by

traveling vertices in the following order (i.e., similar

to that in Fig. 9b and please refer to its pseudocode):

L
ðk1;1Þ
k1

L
ðk2;Nk2

Þ
k2

L
ðk1�1;1Þ
k1

L
ðk2�1;Nk2

Þ
k2

; . . . ; L
ð1;Nk2

Þ
k2

L
ð1;1Þ
k1

.
3. k1 ¼ k2 6¼ 1. The blue area becomes a rectanglelike

shape. Since k1 ¼ k2 6¼ 1, we build triangle strips to
triangulate this rectangle by traveling vertices in the
following order:

L
ðk1;1Þ
k1

L
ðk2;Nk2

Þ
k2

; L
ðk1�1;1Þ
k1

L
ðk2�1;Nk2

Þ
k2

; . . . ; L
ð1;1Þ
k1

; L
ð1;Nk2

Þ
k2

:

YAO AND LEE: ADAPTIVE GEOMETRY IMAGE 953

Fig. 9. Triangle strips between levels ‘ and ‘þ 1. Arrow heads
indicate triangle orientations in generated triangle strips. (a) N‘ 2 odd.
(b) N‘ 2 even.

Fig. 10. Triangulations of edge blocks with 1 � k � 3. Both samples s

and g are illustrated as green points. (a) k ¼ 1. (b) k ¼ 2. (c) k ¼ 3.

Fig. 11. (a) Build �k1
and �k2

independently. (b) Generate triangles to
stitch �k1

and �k2
.

4. k1 � k2 > 1. Similar to case 2, we first create triangle

strips by traveling vertices in the following order

L
ðk2þ1;1Þ
k1

L
ðk2;Nk2

Þ
k2

L
ðk2;1Þ
k1

L
ðk2�1;Nk2

Þ
k2

; . . . ; L
ð1;Nk2

Þ
k2

L
ð1;1Þ
k1

. Since

k1 � k2 > 1, we next create a fan of triangles by

traveling vertices in the following order: L
ðk2;Nk2

Þ
k2

,

L
ðk2þ1;1Þ
k1

; L
ðk2þ2;1Þ
k1

; . . . ; L
ðk1;1Þ
k1

. The origin of this fan is

L
ðk2;Nk2

Þ
k2

. For case 4, theoretically, the vertex degree of

L
ðk2;Nk2

Þ
k2

can be unbounded. However, from our

practice, most of this case is with k1 ¼ k2 þ 2, in

particular, k1 ¼ 3 and k2 ¼ 1. Therefore, we usually

do not create high-valence vertices.

Fig. 12 shows the most frequent configurations of the

above four cases. This table can be treated as a lookup table

for triangulation. Any configuration with k1; k2 � 4 seems

not practical, since it will potentially generate more samples

than the original GIM [12]. To prevent this, we can simply

enlarge the resolution of Gi. Therefore, for case 4, a high-

valence fan at L
ðk2;Nk2

Þ
k2

can be avoided.

5.4 Stitching Adjacent Zipper Blocks

After all zipper blocks are triangulated independently,

we need to stitch all adjacent zipper blocks. In terms of

their block-to-block adjacency, there are three possibilities:

1) E-to-E, 2) E-to-C (or C-to-E), and 3) E-to-NZ (or NZ-to-E),

as shown in Fig. 5, where E denotes a edge block, C denotes a

corner block, and NZ denotes a 2 � 2 nonzipper-block,

respectively. Figs. 13a and 13b show two examples of E-to-E

and C-to-E cases. We stitch these two cases using the

method for triangulating a corner block. In Fig. 13a, there

are two triangulations called �l and �r within the left and

right blocks. First, we need to add two edges ðLð1;N1Þ
l ; Lð1;1Þr Þ

and ðLðl;1Þl ; Lðr;1Þr Þ into �l [�r, thereby generating two

triangles in the red area. Similar to triangulate the blue

area in Fig. 11, we triangulate the blue area in Fig. 13a using

Fig. 12. In Fig. 13b, on the left side, it is a corner block, and

therefore, it has two triangulations �k1
and �k2

within this

block. Then, Fig. 13b can be handled like Fig. 13a. In Fig. 13a,

let us assume �l has an NZ neighbor, i.e., a 2 � 2 block on its

left side. We can triangulate this NZ-to-E case by creating a

fan of triangles by traveling vertices in the following order:

g, L
ðl;1Þ
l ; L

ðl�1;1Þ
l ; . . . ; L

ð1;1Þ
l . The origin of this fan is the sample

at g. In a symmetric manner, we can handle an E-to-NZ case,

too. According to the definition of a corner block, both cases

C-to-C and C-to-NZ (or NZ-to-C) will not occur. Further-

more, for either C-to-E or E-to-C case, �l ¼ �r. However, for

an E-to-E case, l and r can be different.

6 RESULTS AND DISCUSSION

6.1 Results

In Table 1, we experimentally compare distortion rate
(PSNR) from geometric reconstruction by AGIM and
spherical parameterization [31] and GIM [12]. The input
parameterization to our AGIM is in [31]. To fairly conduct
this comparison, our initial virtual GIMs, Gi are all
tessellated at 17 � 17 for all cases in this table. Remarkably,
the number of samples for AGIM is close to or lower than
other methods, but we efficiently reduce reconstruction
error and therefore get higher PSNR than others. Fig. 18
shows AGIMs, original model and reconstructed model for
the gargoyle, horse, and dinosaur examples. Fig. 14 shows a
close look to reconstructed models comparing AGIM and
[31]. Results show that AGIM can adaptively adjust GIM
such that reconstructed models can better approximate the
original models than [31]. From the above results, we can
see our AGIM can benefit other parameterization methods
such as [31]. The PSNRs of some results (horse and gargoyle
in Table 1) are very close to MCGIM [34]. For achieving
better PSNR, we must sacrifice the data storage, even if it is
bigger than GIM.

As mentioned earlier, the MCGIM [34] can achieve very
low distortion for parameterizing models. It is not very

954 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 12. Configurations of the inner triangulation in a corner block.

(a) k1 ¼ k2 ¼ 1. (b) k1 ¼ 3; k2 ¼ 2. (c) k1 ¼ k2 ¼ 2. (d) k1 ¼ 3; k2 ¼ 1.

Fig. 13. Stitching adjacent zipper blocks. (a) E-to-E case and
(b) C-to-E case.

surprising to expect that the MCGIM can achieve better
results than AGIM in this respect. Even if we increase the
sampling rates of AGIMs to those of MCGIM, our
resampled regular AGIMs have lower PSNR than MCGIMs
or at most have comparable PSNR to that of MCGIMs. The
gain of PSNR is bounded by the quality of input
parameterization. However, the AGIM still shows some
potential advantages over MCGIM as follows: First, the
AGIM retain more advantages of the original GIM than
MCGIM, as discussed in Section 1. Table 2 shows another
advantage than [34] regarding the packing efficiency. The
AGIM shows much higher packing efficiency than [34]. Our
results are even better than those of a recent work called
RMCGIM [3] (about 80 percent was achieved at this work).
For example, the packing efficiency for horse and gargoyle
is 75.6 percent and 72.7 percent using MCGIM and is
81.7 percent and 83.6 percent using RMCGIM, respectively.
Fig. 15 shows another interesting comparison between two
methods regarding the valences of vertices. In this figure,
we directly excerpt the bunny example in their paper [34] to
compare with our results. There are many high-valence

vertices (more than eight) observed in their zippered

regions. In our case, we create the worst case on purpose

to the bunny example. However, using Fig. 12, the AGIM, at

most, creates 8-valence vertices for this worst case.
The AGIM is suitable for global parameterization techni-

ques based on quadrilateral complexes. In this paper, we first

manually built PolyCube-based [37] quadrilateral complexes

and then used the PolyCube method to parameterize the

surface onto the quadrilateral complexes. Fig. 19 shows

several models and their quadrilateral complexes. Finally, for

each quad of a quadrilateral complex, we used an adaptive

resolution of GIMs to approximate surface parameterized on

this quad. To stitch adjacent GIMs with varying sizes, we used

the proposed zippering algorithm. Fig. 19 also shows the

YAO AND LEE: ADAPTIVE GEOMETRY IMAGE 955

TABLE 1
Reconstruction Error (PSNR) and the Number of Samples Using Different Reconstruction Methods

Fig. 14. A close look at reconstructed models comparing AGIM and Spherical Parameterization and Remeshing [31].

Fig. 15. A close look at reconstructed models comparing AGIM and

Sander et al. [34].

TABLE 2
AGIM Packing Efficiency

reconstruction results based on PolyCube with AGIMs.

Table 3 shows a PSNR comparison with MCGIM for these

examples. Using the approximate sampling rates, our

method can outperform state-of-the-art MCGIM in terms of

PSNR. In this table, we also show PSNR for PolyCube that

serves as the input to our AGIM. Our results show that the

PolyCube with AGIM can also achieve significant PSNR gain

over the PolyCube. For completeness, in Table 1, we show

PSNRs for PolyCube with AGIM to experimentally compare

with [12], [31], and PolyCube without AGIM. These results

show that PolyCube with AGIM can significantly outperform

other methods.
Next, the levels of details (LOD) can be easily imple-

mented for AGIM. Fig. 16 shows two view-independent

LOD examples. We adapted [26] for our AGIM to generate

LODs in these figures. For comparison, we also show LOD

results of GIMs [12]. Our LOD results appear better than

that in [12] in their visual appearance. In these two

examples, we simply used the distance from the eye to

the center of a model as a metric in order to switch LODs. In

addition, another advantage of AGIM can allow selective

refinements on GIMs instead of globally uniform refine-

ments in [12]. Therefore, it is very straightforward to

implement view-dependent LODs using AGIM. In this case,

our zippering algorithm can still dynamically stitch GIMs

tessellated at different rates; so, no crack occurs. In contrast,

it is not easy to have this advantage using MCGIM [34]. For

a view-dependent LOD example in Fig. 17, whenever an

adaptive GIM is out of view-frustum, its resolution is

switched to the lowest resolution in our implementation

(see our accompanying video). For this purpose, we test if

its corresponding quad of the quadrilateral complex is out

956 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

TABLE 3
Reconstruction Error (PSNR) Comparison Using Different Methods

Fig. 16. View-independent LOD comparison between AGIM and Gu et al. [12]. For AGIM LOD, we do not show zippered regions (red) for the most

distant one in this figure, since it becomes Gi after this distance, i.e., no need to zipper. If further simplification is needed, we can simplify it similar to

Gu et al. [12].

Fig. 17. A view-dependent LOD example using PolyCube with AGIM. Whenever a quad is out of view-frustum, its corresponding AGIM will be

switched to its lowest resolution.

YAO AND LEE: ADAPTIVE GEOMETRY IMAGE 957

Fig. 18. Results for horse, gargoyle, and dinosaur examples using AGIM.

Fig. 19. Results for feline, dragon, horse, and gargoyle using PolyCube [37] with AGIM.

of view-frustum or not. Therefore, the cost of this test is also
very small (see Table 4).

Finally, there is a trend for modern graphics cards
supporting arrays of texture. With this hardware support,
we can store each GIM of an AGIM on a texture array. In other
words, we will no longer need to pack all GIMs onto a single
chart like MCGIM, RMCGIM, etc. In our AGIM implementa-
tion, we used an Nvidia G80 graphics card handling arrays of
texture directly. Since a texture ID can be allocated to each
GIM, each GIM can be independently executed on its own
texture memory. Furthermore, the texture coordinate of each
GIM can be stored on a Vertex Buffer Object (VBO).
Therefore, the multiresolution of each GIM can be efficiently
executed on GPU by using a texture array and VBO together.
Currently, we used CPU to execute the zippering method.
Table 4 shows a detailed timing information and comparison
with/without GPU acceleration. With GPU acceleration, our
rendering can achieve a real-time performance. When we
executed AGIM on CPU alone, we only obtained an
interactive frame rate. In this table, the connectivity of
zippered regions is computed for each frame, and the timing
is obtained from the average of 1,000 running timings for our
view-dependent LOD examples.

6.2 Discussion

Experimental results show that AGIM can significantly
outperform GIM in terms of PSNR. Furthermore, the
PolyCube-based complexes with AGIM can yield a higher
PSNR than MCGIM. The GIM is the most extremely
regular remeshed representation, and it is easy for
hardware-assisted rendering and LOD generation. The
proposed AGIM is less extremely regular than GIM. For
AGIM, the nonregular triangular areas are on zippering
blocks. As shown in Table 5, the number of triangles from
these zippering blocks only contributes very small
percentages of the total number of triangular meshes,
i.e., less than 5 percent. In other words, the AGIM retains
more than 95 percent regular representation, and these
different resolutions of GIMs can still be highly benefited
from hardware-assisted rendering. Therefore, the AGIM
can achieve real-time rendering performance, as shown in
Table 4. The zippering blocks are rendered by CPU, and
they cost only very little CPU time. The GIM can only
benefit global view-independent LOD generation. The
AGIM can adaptively refine GIMs and zipper them in real
time. Figs. 16 and 17 show that the AGIM can benefit both
view-independent and view-dependent LOD generations.

On the other hand, MCGIM generates irregular charts and
discretizes these charts onto the image. The irregularity of

chart boundaries forces MCGIM to require complicated
sampling processes (interior and boundary rasterizations,
and nonmanifold dilation) and, therefore, complicates its
zippering algorithm. As reported in [34], both sampling and
zippering takes less than one minute and are done in
preprocessing, i.e., zippering connectivity must be stored in
advance, and it cannot be computed on the fly. Therefore, the
MCGIM is not suitable for real-time applications requiring
adaptive zippering connectivity such as view-dependent
LOD generations. Unlike MCGIM, the AGIM does not need to
store zippering connectivity in preprocess, and it can
adaptively compute zippering connectivity in real time. In
addition, for zippering areas, the AGIM only needs to store
the adjacency of GIM blocks, and MCGIM needs to store all
pixel connectivity along the irregular chart boundaries. The
RMCGIM is a variant of MCGIM, and it partitions meshes
into rectangular charts. Generally, the RMCGIM has higher
distortion than MCGIM. To preserve a one-to-one texel
correspondence across chart boundaries, the RMCGIM
requires a complicated process to solve the continuity
problem on the shared chart boundaries. As reported in [3],
this process can be repeated several times so that all patches
have necessary resolution to maintain one-to-one texel
correspondence. Like GIM, the RMCGIM cannot adaptively
refine each chart, since T-junction will occur and its one-to-
one texel correspondence across chart boundaries will be lost.
In this paper, the AGIM adapts non-power-of-two (i.e., 2i þ 1)
GIMs. Currently, the restriction of textures to power-of-two
dimensions has been relaxed on modern graphics hardware.
For example, Hoppe et al. in their original GIM [12] and
smooth GIM [3] also adapt non-power-of-two (i.e., 2i þ 1)
GIMs with graphics hardware implementation. In addition,
non-power-of-two textures have been promoted from the
ARB texture non-power-of-two extensions [28].

7 CONCLUSION AND FUTURE WORK

The AGIM is a practical postprocessing technique to reduce
the remeshing error of a GIM parameterization. Given
existing planar surface parameterizations [12], [31] as input,
experimental results show that the PSNR gain can be
significant from AGIM. The AGIM is also very suitable for
quaddominant parameterization methods. We show an
example of a quadlike PolyCube method with AGIM. As a
result, we outperform the state-of-the-art MCGIM method
in terms of PSNR using the approximate number of
samples. In addition, AGIM has the advantage of selective
refinements on GIMs, and therefore, it can easily benefit the
implementation of view-dependent LODs. We show a real-
time dynamic view-dependent LOD rendering performance
partially accelerated by modern GPU hardware. Currently,
the zippering algorithm is not accelerated by GPU, since
this zippering is beyond hardware programmability of
current generation (including Geometry Shader). This

958 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

TABLE 4
The Timing Information for View-Dependent LOD Examples

with/without GPU Acceleration

Charts: the number of quads for a quadrilateral complex.

TABLE 5
Percentages of the Total Number of Triangular Meshes on

Zippering Regions

disadvantage may potentially hinder the scalability of our
method, since the CPU must be bothered to send ad hoc
geometry and connectivity for the zippering part, which is
different every time as the used resolution changes. Further
work with this approach will be explored in the near future.
First, we will apply AGIM to other global parameterization
methods such as [18] and [19]. We also like to investigate
the possibility of new global parameterization method
specialized to the need of AGIM or to dynamically modify
the input parameterizations to obtain better PSNR. In
addition, some further processing on AGIM such as mesh
optimization [16] can improve reconstructed quality. How-
ever, this is computationally expensive. In this paper, we
adaptively refine the quality of AGIM using only Hausdorff
distance. In the future, other metrics such as the normal
deviations can be used. In particular, for the rendering
purposes, normal accuracy will become important. Finally,
we will explore other possible AGIM applications such as
3D morphing [22], [24] or constrained texture mapping [23].

ACKNOWLEDGMENTS

The authors would like to thank Praun and Hoppe [31] for
providing their open parameterization data for helping with
our experiment. They also thank the anonymous reviewers
for helping them to improve this paper. This work was
supported by the Landmark Program of the NCKU Top
University Project under Contract B0008 and was supported
in part by the National Science Council under Contracts NSC-
95-2221-E-006-193-MY2 and NSC-96-2628-E-006-200-MY3.

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
“Anisotropic Polygonal Remeshing,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 485-493, 2003.

[2] N.A. Carr and J.C. Hart, “Meshed Atlases for Real-Time
Procedural Solid Texturing,” ACM Trans. Graphics, vol. 21, no. 2,
pp. 106-131, 2002.

[3] N.A. Carr, J. Hoberock, K. Crane, and J.C. Hart, “Rectangular
Multi-Chart Geometry Images,” Proc. Fourth Eurographics Symp.
Geometry Processing (SGP ’06), pp. 181-190, 2006.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno, “Planet-Sized Batched Dynamic Adaptive
Meshes (P-BDAM),” Proc. IEEE Visualization ’03, pp. 147-155,
Oct. 2003.

[5] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring
Error on Simplified Surfaces,” Computer Graphics Forum, vol. 17,
no. 2, pp. 167-174, 1998.

[6] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J.C. Hart,
“Spectral Surface Quadrangulation,” ACM Trans. Graphics, vol. 25,
no. 3, pp. 1057-1066, 2006.

[7] M.A. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller,
C. Aldrich, and M.B. Mineev-Weinstein, “Roaming Terrain:
Real-Time Optimally Adapting Meshes,” IEEE Visualization,
pp. 81-88, 1997.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle, “Multiresolution Analysis of Arbitrary
Meshes,” Proc. ACM SIGGRAPH ’95, pp. 173-182, 1995.

[9] F. Evans, S.S. Skiena, and A. Varshney, “Optimizing Triangle
Strips for Fast Rendering,” Proc. IEEE Conf. Visualization, pp. 319-
326, R. Yagel and G.M. Nielson, eds., http://www.cs.sunysb.edu/
stripe/, 1996.

[10] M.S Floater and K. Hormann, Surface Parameterization: A Tutorial
and Survey, 2005.

[11] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of Spherical
Parameterization for 3D Meshes,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 358-363, 2003.

[12] X. Gu, S.J. Gortler, and H. Hoppe, “Geometry Images,” Proc. ACM
SIGGRAPH ’02, pp. 355-361, 2002.

[13] X. Gu and S.-T. Yau, “Global Conformal Surface Parameter-
ization,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry
Processing (SGP ’03), pp. 127-137, 2003.

[14] B. Hernández and I. Rudomin, “Simple Dynamic LOD for
Geometry Images,” Proc. Fourth Int’l Conf. Computer Graphics
and Interactive Techniques in Australasia and Southeast Asia
(GRAPHITE ’06), pp. 157-163, 2006.

[15] B.V. Herzen and A.H. Barr, “Accurate Triangulations of
Deformed, Intersecting Surfaces,” Proc. ACM SIGGRAPH ’87,
pp. 103-110, 1987.

[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh Optimization,” Proc. ACM SIGGRAPH ’93, pp. 19-26, 1993.

[17] J. Ji, E. Wu, S. Li, and X. Liu, “Dynamic LOD on GPU,” Proc.
Computer Graphics Int’l (CGI ’05), pp. 108-114, 2005.

[18] M. Jin, J. Kim, and X.D. Gu, “Discrete Surface Ricci Flow: Theory
and Applications,” Proc. IMA Conf. Math. of Surfaces, pp. 209-232,
2007.

[19] M. Jin, F. Luo, and X. Gu, “Computing Surface Hyperbolic
Structure and Real Projective Structure,” Proc. ACM Symp. Solid
and Physical Modeling (SPM ’06), pp. 105-116, 2006.

[20] B.D. Larsen and N.J. Christensen, “Real-Time Terrain Rendering
Using Smooth Hardware Optimized Level of Detail,” J. Winter
School on Computer Graphics, Proc. 11th Int’l Conf. Central Europe
on Computer Graphics, Visualization and Digital Interactive
Media (WSCG ’03), vol. 11, no. 2, pp. 282-289, Feb. 2003.

[21] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin,
“Maps: Multiresolution Adaptive Parameterization of Surfaces,”
Proc. ACM SIGGRAPH ’98, pp. 95-104, 1998.

[22] T.-Y. Lee and P.-H. Huang, “Fast and Intuitive Metamorphosis of
3D Polyhedral Models Using SMCC Mesh Merging Scheme,”
IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 1,
pp. 85-98, Jan.-Mar. 2003.

[23] T.-Y. Lee, S.-W. Yen, and I.-C. Yeh, “Texture Mapping with Hard
Constraints Using Warping Scheme,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 2, pp. 382-395, Mar./Apr. 2008.

[24] C.-H. Lin and T.-Y. Lee, “Metamorphosis of 3D Polyhedral
Models Using Progressive Connectivity Transformations,” IEEE
Trans. Visualization and Computer Graphics, vol. 11, no. 1, pp. 2-12,
Jan./Feb. 2005.

[25] F. Losasso and H. Hoppe, “Geometry Clipmaps: Terrain Render-
ing Using Nested Regular Grids,” Proc. ACM SIGGRAPH ’04,
pp. 769-776, 2004.

[26] F. Losasso, H. Hoppe, S. Schaefer, and J. Warren, “Smooth
Geometry Images,” Proc. Eurographics/ACM SIGGRAPH Symp.
Geometry Processing (SGP ’03), pp. 138-145, 2003.

[27] M. Marinov and L. Kobbelt, “Direct Anisotropic Quad-Dominant
Remeshing,” Proc. 12th Pacific Conf. Computer Graphics and
Applications (PG ’04), pp. 207-216, 2004.

[28] What’s New in OpenGL 2.1, OpenGL.org.
[29] R. Pajarola and E. Gobbetti, “Survey of Semi-Regular Multi-

resolution Models for Interactive Terrain Rendering,” Visual
Computer, vol. 23, no. 8, pp. 583-605, 2007.

[30] G. Peyré and S. Mallat, “Surface Compression with Geometric
Bandelets,” ACM Trans. Graphics, vol. 24, no. 3, pp. 601-608, 2005.

[31] E. Praun and H. Hoppe, “Spherical Parametrization and
Remeshing,” ACM Trans. Graphics, vol. 22, no. 3, pp. 340-349,
2003.

[32] B. Purnomo, J.D. Cohen, and S. Kumar, “Seamless Texture
Atlases,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry
Processing (SGP ’04), pp. 65-74, 2004.

[33] N. Ray, W.C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic
Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4,
pp. 1460-1485, 2006.

[34] P.V. Sander, Z.J. Wood, S.J. Gortler, J. Snyder, and H. Hoppe,
“Multi-Chart Geometry Images,” Proc. Symp. Geometry Processing,
pp. 146-155, 2003.

[35] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-
Surface Mapping,” Proc. ACM SIGGRAPH ’04, pp. 870-877, 2004.

[36] D. Steiner and A. Fischer, “Planar Parameterization for Closed
Manifold Genus-G Meshes Using Any Type of Positive Weights,”
J. Computing and Information Science in Eng., vol. 5, no. 2, June 2005.

[37] M. Tarini, K. Hormann, P. Cignoni, and C. Montani, “Polycube-
Maps,” Proc. ACM SIGGRAPH ’04, pp. 853-860, 2004.

[38] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun, Designing
Quadrangulations with Discrete Harmonic Forms, 2006.

YAO AND LEE: ADAPTIVE GEOMETRY IMAGE 959

Chih-Yuan Yao received the BS and MS
degrees in computer engineering from the
National Cheng-Kung University, Taiwan, in
2002 and 2003, respectively. He is currently
working toward the PhD degree at the Depart-
ment of Computer Science and Information
Engineering, National Cheng-Kung University.
His research interests is computer graphics.

Tong-Yee Lee received the PhD degree in
computer engineering from Washington State
University, Pullman, in May 1995. He is currently
a professor in the Department of Computer
Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan, R.O.C.
He served as a member of the international
program committees of several conferences
including IEEE Visualization, Pacific Graphics,
the IEEE Pacific Visualization Symposium, the

IEEE-EMBS International Conference on Information Technology and
Applications in Biomedicine, the International Conference on Artificial
Reality and Telexistence, and the International Conference in Central
Europe on Computer Graphics, Visualization, and Computer Vision. He
leads the Computer Graphics Group, Visual System Laboratory,
National Cheng-Kung University (http://graphics.csie.ncku.edu.tw/). His
current research interests include computer graphics, nonphotorealistic
rendering, image-based rendering, visualization, virtual reality, surgical
simulation, medical visualization and medical system, and distributed
and collaborative virtual environments. He is an associate editor for the
IEEE Transactions on Information Technology in Biomedicine from 2007
to 2010. He is also on the editorial advisory board of the Journal Recent
Patents on Engineering, an editor of the Journal on Information Science
and Engineering and a region editor of the Journal of Software
Engineering. He is a member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

960 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

