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Abstract—Texture mapping with positional constraints is an important and challenging problem in computer graphics. In this paper,

we first present a theoretically robust, foldover-free 2D mesh warping algorithm. Then, we apply this warping algorithm to handle

mapping texture onto 3D meshes with hard constraints. The proposed algorithm is experimentally evaluated and compared with the

state-of-the-art method for examples with more challenging constraints. These challenging constraints may lead to large distortions

and foldovers. Experimental results show that the proposed scheme can generate more pleasing results and add fewer Steiner

vertices on the 3D mesh embedding.

Index Terms—Foldover, path-swapping, positional constraints, texture mapping, warping.

Ç

1 INTRODUCTION

TEXTURE mapping technique usually assigns ðu; vÞ texture
image coordinates to 3D mesh vertices. This assignment

can be computed using mesh planar parameterization.
Many other methods [2], [3], [4], [5], [9], [10], [12], [13], [17],
[20], [23], [25] have also been proposed. A more challenging
problem is to compute this assignment with a special
correspondence between the mesh geometry and the
texture. This problem is called constrained texture mapping
[2], [4], [10], [12], [25]. The hard constraint states that the
feature vertices on the parametric domain are exactly
aligned to the user-specified positions. In this paper, two
major contributions are listed below:

1. For a given 2D mesh, we propose a theoretically
robust and foldover-free warping algorithm to align
the positional constraints.

2. We extend this new warping algorithm to handle
texture mapping with hard constraints. In contrast to
the state-of-the-art method [10], this new constrained
texture mapping can handle more challenging
constraints with less danger of distortions. Further-
more, our method adds a fewer number of Steiner
vertices on the 3D mesh embedding.

The rest of the paper is organized as follows: Section 2
describes the most related work. We first present a
foldover-free 2D mesh warping algorithm in Section 3 and
then introduce our application to the constrained texture
mapping in Section 4. Section 5 demonstrates the experi-
mental results and gives discussion. Our conclusions and
future work are given in Section 6.

2 RELATED WORK

Several methods in [1], [2], [4], [6], [10], [11], [12], [19], [21],
[25] have addressed the problem of parameterization under
constraints, and several applications are explored including
morphing, compatible parameterization, remeshing, and
constrained texture mapping. Desbrun et al. [2] and Lévy
[12] solved constraints using Lagrange multipliers and a
least square system, respectively. However, both methods
failed to guarantee a bijective embedding. On the other
hand, Lee and Huang [14] used RBF to warp embedding for
aligning features. However, this method can create fold-
overs. Eckstein et al. [4] used a constrained simplification to
align the constraints and reconstructed simplified vertices
without foldovers by adding Steiner vertices. Fujimura and
Makarov [7] presented a 2D image warping method with
several constraints. Their approach repeatedly used the
Delaunay triangulation and edge swaps to avoid foldovers.
The examples presented in [4] and [7] were simple; so, it is
not clear how these methods were able to handle more
complicated constraints. In addition, Zöckler et al. [26] also
used [7] to handle constraints in 3D morphing. However,
the authors mentioned that this approach could potentially
create foldovers when the positions of the corresponding
features are very distinct between two embeddings.
Kraevoy et al. [10] described a state-of-the-art matchmaker
algorithm for solving constraints in texture mapping.
However, this algorithm may fail because it does not
consider consistent neighbor ordering as mentioned in [21].
This greedy path-matching approach fails to handle
challenging constraints well, and some examples will be
shown in Section 5.

Many methods for surface parameterization with con-
straints have been introduced to embed a 3D surface onto a
simpler intermediate domain. Alexa [1] suggested a
computationally intensive relaxation-based approach to
align feature vertices between two spherical parameteriza-
tions. This algorithm can potentially fail for a large number
of features. Later, Lin et al. [16] used edge swaps to solve
this problem on spherical embeddings. However, the edge
swaps can damage the geometric surface. Praun et al. [19]
consistently parameterized a set of genus-0 meshes into a
user-specified simplicial complex. However, this approach
potentially produces swirling paths, thereby increasing the
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distortion. Later, Schreiner et al. [21] and Kraevoy and
Sheffer [11] extended [10] and [19] to consistently para-
meterize models with the same genus. Recently, Lee et al.
[15] proposed a method to consistently parameterize
models with different genus on the spherical domain. In
this method, the CSG operation potentially damages the
surface, in particular, for areas near holes.

3 FOLDOVER-FREE 2D TRIANGLE MESH WARPING

In this section, we will present a foldover-free 2D mesh
warping method to satisfy positional constraints. This
method uses edge swap operations to prevent triangles
from folding over. The basic idea behind the proposed
method is simple and well known. However, we will show
that the edge swaps must be properly arranged; otherwise,
they cannot solve foldovers. To the best of our knowledge,
this is the first theoretically robust algorithm for solving
foldovers that uses edge swaps only. Our approach,
meanwhile, can detect foldovers in advance and determine
where the edge swaps should be executed to resolve
potential triangle foldovers.

3.1 Definitions

We consider a topologically disklike 2D triangular mesh T
with a convex boundary. The following notations are used
to describe our warping algorithm:

. v. An interior vertex of T .

. e. An edge of T , and let e
$

denote a line containing e.
. P ðvÞ. The union of triangles adjacent tov (see Fig. 1).
. @P ðvÞ. The boundary (edges) of P ðvÞ.
. QðeÞ. The quadrilateral formed by the two adjacent

triangles sharing an edge e. QðeÞ is convex if none of
its internal angles is greater than �. An edge e can be
swapped if QðeÞ is convex.

. ~v. A positional constraint for v to align, and ~v is
inside triangular mesh T .

. vm
�!. A moving direction defined as a ray starting

from v and passing through ~v, that is, vm
�! ¼ v~v

!
.

. v�. The invalid point defined as the following
equation:

v� ¼ arg min
p2K

vpk k; ð1Þ

where

K ¼fx j x is the intersection of vm
�! and

e
$
; 8e 2 @P ðvÞg:

. E�ðvÞ. An edge set defined as

E�ðvÞ ¼ fe j e 2 @P ðvÞ; and e
$

contains v�g:

Our foldover-free warping algorithm gradually moves v
along vm

�! to align ~v. If v~v
�� �� � vv�k k, we need to move v to

v� first by appropriate edge-swaps and then continue
moving it to ~v gradually. The mesh therefore becomes
warped. Fig. 2 shows three different possibilities of v�: 1) v�
is on E�ðvÞ, except the vertices of E�ðvÞ, 2) v� is not on
E�ðvÞ, and 3) v� is on any vertex of E�ðvÞ. We will show that
v can move to v� without creating foldovers under the
conditions of 1) and 2). If v� is on any vertex of E�ðvÞ, we
will also show that this special case can be resolved such
that v can continue moving to v� along vm

�!.

3.2 Theoretical Analysis and Algorithm

In this section, the following theoretical analysis is given,
and the results of analysis are used to derive our foldover-
free warping algorithm.

3.2.1 Theoretical Analysis

Lemma 1. If jE�ðvÞj ¼ 1 and v� is on E�ðvÞ, v can move to v�
along vm

�! without flipping triangles after an edge swap
operation.

Proof. v� is not on any vertex of E� because jE�ðvÞj ¼ 1. Let
E�ðvÞ ¼ e. Then, we show that e can be swapped before v
moves to v� along vm

�!. If QðeÞ is convex, then e can be
swapped. If QðeÞ is not convex, the following statements
show that e can still be swapped. In Fig. 3a, let e ¼ p1p3 and
vp1p2p3 be the quadrilateral QðeÞ. Both interior angles
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Fig. 1. P ðvÞ: the union of triangles adjacent to v. @P ðvÞ: The boundary of

P ðvÞ. QðeÞ: the enclosing quadrilateral of e.

Fig. 2. @P ðvÞ consists of red edges. When v moves to v�, each shaded triangle becomes degenerated, that is, folded over. (a) E�ðvÞ ¼ feg.
(b) E�ðvÞ ¼ feg. (c) E�ðvÞ ¼ fe1; e2g.



ffp3vp1 and ffp1p2p3 inQðeÞ are less than � since they are the
internal angles of triangles in 2D triangular mesh T .
Without loss of generality, let ffp2p3v inQðeÞbe greater than
or equal to �. Then, the vertex p2 is in the shaded blue
region defined by the intersection of two half-planes.
These two half-planes are formed by p1p3

 !
and p3v

 !
,

respectively, as shown in Fig. 3a. The intersection point
pi of two lines p2p3

 !
and vv�

 !
is on the half-closed interval

½v; v�Þ. If vmoves to the open interval ðpi; v�Þ, ffp2p3v is less
than �. Then, the edge e can be swapped.

Since jE�ðvÞj ¼ 1, only the triangle �vp1p3 containing
e is degenerated when v moves to v�, as shown in Fig. 3a.
After e is swapped, the possibly degenerated triangle
�vp1p3 is removed and �vp1p2, as well as �vp2p3 are
created. Thereafter, �vp1p2 and �vp2p3 are not flipped as
v moves to v�, as shown in Fig. 3b. Our result follows.tu

Lemma 2. If jE�ðvÞj ¼ 1 and v� is not on E�ðvÞ, v can move to
v� along vm

�! without flipping triangles after an edge swap
operation.

Proof. Let E�ðvÞ ¼ fp1p2g. v� is on p1p2
 !

but not on p1p2.
Without loss of generality, we assume that p2 is farther
than p1 from v�. Let p3 be a vertex adjacent to both v and p2

such that vp1p2p3 isQðvp2Þ, as shown in Fig. 4a and 4b. The
ffp1p2p3 in Qðvp2Þ is not equal to � since jE�ðvÞj ¼ 1. Let pj
be the intersection of vm

�! and p2p3
 !

. If ffp1p2p3 in Qðvp2Þ is
greater than �, v� is farther than pj from v, as shown in
Fig. 4a. This is a contradiction to the definition of v�. Then,
we know that the vertex p2 is convex for Qðvp2Þ.

Next, we show that the edge vp2 can be swapped before
vmoves to v�. If theQðvp2Þ is not convex, we will show that
vp2 can be still swapped. The ffvp1p2 and ffp2p3v in Qðvp2Þ

are less than� since they are the internal angles of triangles
in a 2D triangular mesh T , and ffp1p2p3 inQðvp2Þ is also less
than � because p2 is convex forQðvp2Þ. Then, let ffp3vp1 � �
in Qðvp2Þ, as shown in Fig. 4b. The intersection point pi of
vm
�! and p1p3

 !
is on the half-closed interval ½v; v�Þ since

ffp3vp1 � �. If v moves to the open interval ðpi; v�Þ,
ffp3vp1 < �. Then, edge vp2 can be swapped.

Since jE�ðvÞj ¼ 1, only the triangle �vp1p2 containing
p1p2 is degenerated when v moves to v�, as shown in
Fig. 4b. After vp2 is swapped, the possibly degenerated
triangle �vp1p2 is removed and �vp1p3, as well as
�p1p2p3, are created. Thereafter, �vp1p3 and �p1p2p3 are
not flipped as v moves to v�. Our result follows. tu

Lemma 3. If jE�ðvÞj � 1 and v� is not on E�ðvÞ, v can move to
v� along vm

�! without flipping triangles after a set of edge swap
operations.

Proof. There are one or more connected components in
E�ðvÞ, as shown in Fig. 5. For each connected component
C of E�ðvÞ, we will show that the adjacent triangle of
each edge in C can be removed before v moves to v�, and
then, no triangles are flipped when v moves to v�. We
prove this by induction on jCj in the following:

Basis Step. jCj ¼ 1, letC ¼ fqaqbg and follow the similar

procedure of Lemma 2, that is, let qaqb be p1p2, as shown in

Fig. 4. We can find that the triangle �vqaqb containing qaqb
can be removed and that the triangles created by the swap

of vqb are not degenerated when v moves to v�.
Inductive Step. We assume that the statement is true

while jCj ¼ k. Now, consider jCj ¼ kþ 1. First, all edges of
C are collinear since C � E� and C is connected. Let
qsqt 2 C. Without loss of generality, qsqt is the farthest
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Fig. 3. (a) E�ðvÞ ¼ feg. When v moves to the open interval ðpi; v�Þ, QðeÞ becomes convex and e (that is, p1p3) can be swapped. (b) Edge e is

swapped, and v moves to v�.

Fig. 4. (a) ffp1p2p3 > � in Qðvp2Þ. (b) ffp3vp1 � � in Qðvp2Þ. (c) vp2 is swapped, and v moves to v�.



element ofC from v�, and qt is farther than qs from v�. If we
follow the similar procedure as that used in Lemma 2, that
is, let qsqt be p1p2, as shown in Fig. 4. The triangle �vqsqt
containing qsqt can be removed, and the new triangles
created by edge swap of vqt are not degenerated when v
moves to v� and then jCj ¼ k. Using the induction
hypothesis, the adjacent triangle of each edge in C can be
removed, as shown in Fig. 5. Our result follows. tu

Lemma 4. If jE�ðvÞj � 1 and v� is on E�ðvÞ, but not on the

vertices of E�ðvÞ, v can move to v� along vm
�! without flipping

triangles after a set of edge swap operations.

Proof. We will show that the adjacent triangle of each edge

in E�ðvÞ can be removed before v moves to v� and that no

triangles are flipped when v moves to v�. We classify the

edges of E�ðvÞ into two sets B1 and B2.

1. B1 ¼ fqiqj j qiqj 2 E�ðvÞ and v� is on qiqjg. Then,

jB1j ¼ 1 because v� can be on one edge of E�ðvÞ
at most. Let B1 ¼ fqmqng, we can follow the

similar procedure as that used in Lemma 1, that

is, let qmqn be the edge e, as shown in Fig. 3. Then,

we can find that qmqn can be swapped to remove

the triangle �vqmqn and that the new triangles
created by the edge swap of qmqn are not

degenerated when v moves to v�.
2. B2 ¼ fqiqj j qiqj 2 E�ðvÞ and v� is not on qiqjg. By

following the similar procedure of Lemma 3, the
adjacent triangle of each edge in B2 can be

removed, and the new triangles are not degener-
ated when v moves to v�. Our result follows. tu

Lemma 5. If v� is on a vertex u of E�ðvÞ, v can move to v� along
vm
�! without flipping triangles.

Proof. We first show that u can be temporarily moved, such

that u is not on the direction of vm
�!. We create a moving

direction u0m
�!

for u by randomly picking a direction that is

not the same as vm
�! and� vm�!, as shown in Fig. 6a. Then, u

can find a temporary invalid point u0� by u0m
�!

. If umoves to

the open interval ðu; u0�Þ,u is not on the direction of vm
�!, and

no triangles are flipped. Then, by Lemma 3 or Lemma 4, v

can continue moving to v�, as shown in Fig. 6c. Our result

follows. tu
In addition, Fig. 6c shows that u can also move back to v�

along �u0m
�!

to restore its original position by Lemma 3 or

Lemma 4 after v leaves v� along vm
�!.

We can state the following theorem from Lemma 3,
Lemma 4, and Lemma 5.

Theorem 1. v can move to the invalid point v� along vm
�! without

flipping triangles.

3.2.2 Foldover-Free Warping Algorithm

Now, we will describe a foldover-free 2D mesh warping
algorithm in MeshWarp() based on the above analysis.
Iteratively, this algorithm moves each vertex v along vm

�! to
~v. If v is required to move to v�, the algorithm executes edge
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Fig. 5. Shaded triangles are degenerated when v moves to v�. (a) E�ðvÞ ¼ fq2q3; q3q4; q7q8g. The connected components of E�ðvÞ are C1 ¼
fq2q3; q3q4g and C2 ¼ fq7q8g. Before, v moves to v�, we can swap vq4 to remove �vq3q4, as shown in (b), and then swap vq3 to remove �vq2q3, as

shown in (c).

Fig. 6. (a) v� is on a vertex u of E�ðvÞ. u can find a direction u0m
�!

in (b). Then, u can move to the interval ðu; u0�Þ and v can move to v� in (c).



swaps to remove possibly degenerated triangles. Then, v

moves to v� using MoveToInvalidPointðvÞ. The procedure

MoveToInvalidPoint() is derived from Lemma 3, Lemma 4,

and Lemma 5. Note that the StepSpeed in MeshWarp() is a

user-defined constant to control the warping speed, and

MinimalStepðT Þ returns the minimal distance between each

v~v for all unaligned vertices. In our experiment, if the

StepSpeed constant is set too large, the number of edge

swaps would become bigger, and the large distortion would

occur in base mesh. From our experimental experience, the

value 0.1 is a good constant for the StepSpeed.

The warping algorithm may possibly generate very

skinny triangles that would cause a numerical error in

computation. From our practice, it is usually due to a very

small “Step” in MeshWarp(T ). We avoid this problem by

limiting the value of “Step” to not be smaller than a
predefined threshold. In addition, before an edge swap,
when v is required to move to the open interval ðpi; v�Þ, the
vertex v is always moved to 0:5 � ðpi þ v�Þ in Move-

ToInvalidPointðvÞ. Such movement is also useful in prevent-
ing the generation of skinny triangles.

4 TEXTURE MAPPING WITH HARD CONSTRAINTS

4.1 Overview and Definitions

We now extend our new warping algorithm to compute
surface parameterization for texture mapping with hard

constraints. Figs. 7a, 7b, 7c, 7d, 7e, 7f, and 7g show the
overall stages. To present this application, we define some
terminology used in the following sections. Let M be the
input triangle mesh and a set of positional correspondence
between M and texture specified at Figs. 7a and 7b. PM is
the planar embedding of M and can be obtained using any
bijective planar parameterization. In our implementation,
PM is computed with that in [24]. We also add a set of
virtual points surrounding PM , as suggested in [10], such
that the boundary of PM is free to move in the parametric
domain. Let M þ be the mesh M with virtual points, and
the embedding of M þ be PMþ, as shown in Fig. 7c. In
PMþ, each feature vertex (red point at the stage in Fig. 7c)
corresponds to a feature vertex of M (red point in Fig. 7a).
The feature vertex of PMþ will be aligned to a user-specified
position on a texture image (red points in Fig. 7b) using our
warping algorithm in Figs. 7d, 7e, and 7f. Finally, in Fig. 7g,
a variant of stretch metric [20] is used to smooth embedding
for reducing distortion. Later in Section 5, we will
experimentally compare our method in [10] and give a
discussion with the related work.

4.2 Constructing a Base Mesh

We do not directly use the warping algorithm in Section 3 to
match feature vertices of PMþ since the edge swap
operations in PMþ will damage the geometry of mesh M.
To avoid this problem, we warp a base mesh BMþ instead of
PMþ. A base mesh BMþ is constructed from PMþ. An edge
swap in BMþ corresponds to a path swap in PMþ, such that
a path swap does not change the geometry of mesh M. The
construction of base mesh BMþ is described as follows:

Let G be a guiding mesh, which is used to construct the
base mesh. The vertex set of G consists of feature vertices
and virtual points from PMþ. Then, we can determine the
connectivity of G by the constrained Delaunay triangulation
[22]. An example of G is illustrated as a red-color-edge
mesh in Fig. 7d. Each edge of G guides us to compute a path
on PMþ. We use the following steps to find such paths (the
green paths shown in Fig. 7d).

1. For each inner edge EG 2 G, we first determine a
closed region in order to locally compute its corre-
sponding path on PMþ. Initially, the boundary of the
closed region is formed by the enclosing quadrilateral
ofEG, as shown in Fig. 8a. If the corresponding path of
EG is found,EG is replaced by this path. For example, a
guiding edge f3f4 is replaced by the green path from f3

to f4, as shown in Fig. 8b.
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2. Next, if there exists some edge vmvn in PMþ, such

that vmvn divides the enclosing boundary of EG into

two disjoint subregions, then both end points of vmvn

can be either outside or are right on the enclosing
boundary of EG, for example, an edge v1v2, as shown
in Fig. 8. This edge vmvn potentially blocks the
corresponding path of EG. If vmvn is split by a Steiner
vertex, the corresponding path of EG can be found.
Therefore, we will add a Steiner vertex at the
midpoint of xmxn. The following rules are used to
compute xm and xn.

. If both end points of vmvn are outside the
boundary of EG, xm and xn become the inter-
section points of vmvn and the boundary of EG,
for example, x1 and x2 in Fig. 8a.

. If one end point vm of vmvn is outside the
boundary of EG, and the other vn is right on the
boundary of EG, xm becomes the intersection
point of vmvn and the boundary of EG, and xn is
the same with vn, for example,x1 andx2 in Fig. 8b.

. If both end points of vmvn are right on the
boundary of EG, xm can be vm, and xn can be vn.
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Fig. 7. (a) and (b) Input triangle mesh M and 2D texture. (c) The planar embedding of M with virtual boundary. (d), (e), and (f) Warping algorithm is
used to align constraints. (g) The resulting embedding is further smoothed. (h) The resulting textured model.

Fig. 8. fi are feature vertices, and red dotted lines are edges of G. A
corresponding path (green) of f3f4 was computed in (b). In (a) and (b),
an edge v1v2 of PMþ divides the enclosing boundary of f1f3 into two
subregions. A Steiner vertex (blue) is added, and the corresponding
path of f1f3 is shown in light blue.



3. We can find the correspondent path of EG by

Dijkstra’s shortest path algorithm within the enclos-

ing boundary of EG. Only the vertices inside the

enclosing boundary of EG can be joined to the

shortest path computation.

In addition, for each boundary edge of G, its correspond-

ing path consists of the boundary edges of PMþ. After

constructing the corresponding path of each edge in G, PMþ

is then decomposed into a set of triangular patches, for

example, in Fig. 7d, the boundary of each patch is drawn in

green. Then, we can straighten the boundary of each patch

in PMþ, and the base mesh BMþ would therefore be created,

as shown in Fig. 7e. We parameterize the vertices inside

each patch by Tutte’s method [24]. Then, the vertices inside

each triangular patch are encoded by the barycentric

coordinates with respect to the triangle nodes of BMþ. Note

that before we straighten the boundary of each base

triangle, there may be some vertices outside the correspond-

ing base triangle. However, after 1) straightening the

boundary of each triangle and 2) parameterizing the

vertices inside each triangle patch using [24], the vertex

inside the triangle patch is inside the corresponding triangle

of base mesh, and the resulting barycentric coordinates

become valid.

4.3 Warping a Base Mesh

To match constraints, we warp a base mesh BMþ instead

of an embedding PMþ. Each edge swap of BMþ

corresponds to a path swap since the edge of base mesh

is actually a path on PMþ. Say, the edge e of BMþ to be

swapped. First, we find the quadrilateral QðeÞ and

reparameterize the inner vertices contained in QðeÞ using

barycentric parameterization [24]. From Section 3, we

know that QðeÞ can become convex before the edge swap.

Therefore, the barycentric parameterization is always

valid. Next, let the other diagonal of QðeÞ be a guiding

edge to compute a new path P for the swap of e. The

new path P is computed by Dijkstra’s shortest path

algorithm. An additional Steiner vertex will be added if

there exists an edge in PMþ, such that its two end points

are on the boundary of QðeÞ. Once path P is determined,

it needs to be straightened, and two new triangular

patches adjacent to P are reparameterized. Therefore, the

edge e of BMþ is swapped. Note that the inner vertices in

each triangular patch of BMþ are encoded by the

barycentric coordinates. These vertices are extracted to

compute a new path before an edge swap in BMþ, and

the barycentric coordinates of these vertices need to be

updated after an edge swap in BMþ.

4.4 Smoothing the Embedding

After aligning the constraints, the embedding is distorted.

As suggested in [10], the postembedding smoothing will be

useful in reducing distortion. Our smoothing procedure is a

variant in [20] and is based on a restricted and iterative

relaxation procedure. All feature vertices are restricted to be

stationary, whereas the positions of other nonfeature

vertices are iteratively adjusted. The adjustment aims at

minimizing a stretch metric �ðtÞ for each triangle t defined

below:

�ðtÞ ¼ �2
stretch þ �2

stretch;

where �stretch ¼
�

�;� � 1

1=�;� � 1
and �stretch ¼

�
�; � � 1

1=�; � � 1:

ð2Þ

�and� are singularvalues derived from that in [20]. In�ðtÞ,
both enlargement � and shrinkage � are treated with the same

importance to measure the distortion of t. To further reduce

the distortion for the neighborhood of the feature vertex, we

use the weighted distortion metric w � �ðtÞ instead of �ðtÞ to

smoothen the embedding. The valueofw is computed by1=d2
f ,

where df is the distance between the centroid of t and the
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Fig. 9. Mesh smoothing using (a) [10], (b) the metric �ðtÞ, and (c) the weighted metric w � �ðtÞ.

Fig. 10. Example of failure in Zöckler et al. [26]. The red nodes are

feature vertices, and the black nodes are the other mesh vertices

encoded by the barycentric coordinates. The shaded triangle is flipped

when the feature f1 continues moving.



nearest feature vertex of t. Fig. 9 shows an experimental

comparison between [10] and our mesh smoothing method

using �ðtÞ andw � �ðtÞ. The weighted metricw � �ðtÞperforms

the best in this example.

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Results

When corresponding features are very distinct, it is easy to

yield large distortions and foldovers. We experimentally
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Fig. 11. (a) Feature vertex C is at the different side of path AB. (b) Path AB does not prevent C from moving since it can be swapped. (c) Feature

matching in (b). (d) The matching paths using [10]. (e) Feature matching from that in (d). Note that the vertices inside each triangle patch are not

shown in (b), (c), (d), and (e) for easy illustration.

Fig. 12. (a) Input mesh M. (b) Input texture. (c) The embedding PMþ of M. (d) The initial paths (green) of base mesh BMþ. (e) BMþ after feature

matching. (f) Texture mapping result after smoothing from (e). (g) The path matching using [10]. (h) Texture mapping result in [10].



compare the proposed method and that in [10] for

challenging examples as follows: The initial planar embed-

ding for each example is computed by Tutte [24]. In Fig. 12,

we design a special example, where the orientation of

corresponding features is different between the texture in

Fig. 12b and embedding in Fig. 12c. As shown in Figs. 12g

and 12h, the proposed method creates a much better result.

In Fig. 12f, long swirls are created by their approach, and

thus, a large distortion is made in Fig. 12h. In Figs. 12d and

12e, our method simply swaps the edge e13 and moves

feature vertex v2 to its positional constraint. Other two

examples are evaluated, as shown in Figs. 13 and 14. In both

examples, in [10], a number of Steiner vertices are added

since many paths wind around some feature vertices, as

shown in Figs. 13f and 14f. Figs. 13g and 14g show that our

result is still better than Figs. 13h and 14h. Furthermore, we

compare the number of Steiner vertices introduced by both

methods. We add 0, 10, and 34 Steiner vertices for those in

Figs. 12, 13, and 14, respectively. However, the number of

Steiner vertices created by their approach is 12, 368, and

2,687 for Figs. 12, 13, and 14, respectively. In Figs. 12, 13,

and 14, the texture mapping results in [10] are obtained

after smoothing is applied by our proposed smoothing

method. There are some other nice results created by our

method, as shown in Figs. 15, 16, and 17. Kraevoy et al. [10]

mentioned some challenging examples similar to those in

Figs. 16 and 17. Our method can also handle these similar

examples well. In Fig. 15, the cow example (Figs. 15c and

15d) is a very challenging one due to lots of deformations in

the horns. We show the final planar embeddings after

smoothing for the cow model, especially near the horns.

Table 1 shows several statistics for our experiments. We
implemented the proposed algorithm on an Intel Pentium 4,
2.4-GHz PC with 1 Gbyte of RAM. In our implementation,
we also removed unnecessary Steiner vertices after mesh
optimization, as suggested in [10]. For Figs. 15, 16, and 17,
the texture mapping results are very similar to those in [10]
in visual perception, but the number of Steiner vertices
added by our approach is much fewer than [10], as shown
in Table 1. In this table, we show the numbers of Steiner
vertices introduced by both methods before and after
removing redundant Steiner vertices.

5.2 Discussion with Related Work

For a 3D morphing application, Zöckler et al. [26] used
edge-swaps to solve foldovers on base mesh, also called
warp mesh. There are many significant differences between
our algorithm and theirs. First, each edge of their warp
mesh is a direct line connecting two features on the
embedding. In contrast, we need to compute a path on
the embedding for each edge of warp mesh. We solve
foldovers by edge swaps, and each edge swap on the base
mesh corresponds to a path swap on the embedding.
Second, their approach is not robust and cannot avoid
foldovers, as shown in Fig. 10. In contrast, we present a
theoretically robust algorithm to detect and solve foldovers.
Moreover, our algorithm can robustly handle parameteriza-
tion under a large set of constraints. These constraints can
be very distinct in their positions.

For the path matching-based algorithm [10], [11], [19],
[21], an undesired “swirl” situation may arise. In [19],
swirling indicates that the matching path may wind around
the other path. From our observation, this usually happens
while the neighbor vertex of the matching path is located at
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Fig. 13. (a) Input mesh M. (b) Input texture. (c) The embedding PMþ of M and the initial paths (green) of base mesh BMþ. (d) Initial base

mesh BMþ. (e) BMþ after feature matching. (f) Texture mapping result after smoothing from (e). (g) The path matching using [10].

(h) Texture mapping result in [10].



the different side between the embedding domain and the
texture. Our warping strategy can easily deal with this issue
using the edge swap. We will illustrate this by a simple
example, as shown in Fig. 11. Let A, B, and C be the three
feature vertices, where there exists a matching path AB,
such that the feature point C is at the different side between
PMþ and the texture. The feature vertex C should move
around A or B to align the destination on PMþ since the
existence of path AB. In contrast, using our approach, this
feature vertex C can move directly to the destination using
the edge swap of path AB. The result of matching paths
using [10] is shown in Fig. 11d. In addition, Praun et al. [19]
and Schreiner et al. [21] try to avoid swirling using the
heuristics that delays such bad path matching or reroutes
the path to let neighbor features be at the same side between
the embedding and the texture. In contrast, our approach
simply uses the edge swap to avoid swirling instead of

these more complicated heuristics. Finally, regarding a path

finding, we should also mention the following observation.

For [10], [11], [19], and [21], their path-matching algorithms

require tedious tests for path blocking and path searching in

a global and greedy manner. In contrast, the path finding

and block checking are only executed within the local

enclosing quadrilateral, as shown in the warping algorithm

of Section 3.2.2.

6 CONCLUSION

We presented a new and theoretically robust warping

algorithm to align features for the planar embedding of a

triangle mesh. Our algorithm robustly detects where a

foldover occurs and determines where to execute edge

swaps. This new algorithm is extended to solve texture
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Fig. 14. (a) Input meshM. (b) Input texture. (c) The embedding PMþ of M and the initial paths (green) of base mesh BMþ. (d) Initial base mesh BMþ.

(e) BMþ after feature matching. (f) Texture mapping result after smoothing from (e). (g) The path matching using that in [10]. (h) Texture mapping

result in [10].
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Fig. 15. More results. In (c) and (d), the embeddings are the final results after smoothing.



mapping with hard constraints. This new algorithm

employs path swaps to eliminate possible triangle foldovers

during the matching constrained vertices process between

embedding and texture. We experimentally verify the

proposed method and also compare it with the state-of-

art method for some challenging examples. Our results

show the advantage of the proposed method in handling

challenging constraints well. In the near future, many

related and interesting researches will be continued. For

example, minimizing the number of edge swaps and

intelligently scheduling edge-swaps to avoid skinny trian-

gle shapes of the base mesh will pose very challenging

problems. In addition, we plan to apply our method to

other applications, such as morphing and consistent

parameterization of several models. Our smoothing is an

iterative and local relaxation scheme. It cannot be computed

on the fly. We will investigate possible alternative to fast

smoothing embedding. In constrained texture mapping,

constraints might be localized, and therefore, they create a

sort of groups that might cause a highly distorted area. A

global relaxation method may reduce the problem (at least

visually). We will investigate this possibility in the near

future.
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Fig. 16. (a) A hairless head model with the texture image. (b) Texture mapping results. (c) Initial parametric map. (d) Final embedding after mesh

smoothing.
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