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Abstract—A very fast and intuitive approach to generate the metamorphosis of two genus 0 3D polyhedral models is presented. There

are two levels of correspondence specified by animators to control morphs. The higher level requires the animators to specify scatter

features to decompose the input models into several corresponding patches. The lower level optionally allows the animators to specify

extra features on each corresponding patch for finer correspondence control. Once these two levels of correspondence are

established, the proposed schemes automatically and efficiently establish a complete one-to-one correspondence between two

models. We propose a novel technique called SMCC (Structures of Minimal Contour Coverage) to efficiently and robustly merge

corresponding embeddings. The SMCC scheme can compute merging in linear time. The performance of the proposed methods is

comparable to or better than state-of-the-art 3D polyhedral metamorphosis. We demonstrate several examples of aesthetically

pleasing morphs, which can be created very quickly and intuitively.

Index Terms—Polyhedral metamorphosis, embedding, relaxation, warping, merging, SMCC.
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1 INTRODUCTION

THREE-DIMENSIONAL metamorphosis (or morphing) is a
widespread technique in entertainment and animation

to generate a smooth transition from a source object into a
target object. This research focuses on morphs between two
genus 0 3D polyhedra. In the literature, most polyhedral
morphing techniques consist of two main steps: The first
involves finding the one-to-one correspondence between
two polyhedral meshes. The second involves defining the
interpolation paths for each pair of corresponding vertices
on the meshes to calculate the in-between shapes. A lot of
previous work has been published in the area of
3D polyhedral morphing. There are three excellent 3D
morphing surveys in [1], [2], [3].

In this study, our design goal was to provide animators

with easy morph control and fast morph creation. There are

two control levels for animators to intuitively establish

correspondence. First, the animators specify the scatter

features to decompose the models into the corresponding

patches, called morphing patches in this paper. This higher-

level control provides the approximate correspondence

between two models. If finer correspondence is required

on each patch, the lower-level control allows the animators

to specify extra feature points on each patch. With the help

of the lower-level control, we only need to identify a few

corresponding morphing patches. Afterward, there are

three techniques that automatically and efficiently establish

a complete one-to-one correspondence between the models.

In contrast to most other approaches, the proposed methods

are very fast and can be computed within a few seconds.

These proposed schemes are the main contributions of this

paper and are listed below:

. An efficient but simple SMCC (structures of mini-
mal contour coverage) merging method is presented
to create a merged embedding that contains the
faces, edges, and vertices of two given embeddings.
The SMCC is designed to speed up the merging
process and the merging is always computed in less
than a second. In addition, there are several lookup
tables designed for easy and efficient implementa-
tion. The SMCC merging scheme is the major
contribution proposed in this paper. With one
simple data structure, the SMCC can handle well
all degenerated cases. Programmers can easily
implement embedding merging that is always
error-prone.

. An efficient relaxation method is proposed to embed
3D morphing patches onto 2D regular polygons. In
contrast to other relaxation methods, such as in [5],
our method is computed within a few seconds
(usually less than 1 second in our examples).

The rest of our paper is organized as follows: Section 2

reviews the related work on 3D polyhedral metamorphosis.

The proposed techniques are presented in Section 3. The

proposed schemes are evaluated and experimentally

compared with other work in Section 4. The conclusion

and future work are presented in Section 5.

2 RELATED WORK

Lazarus and Verroust [1] provide an excellent survey of the

previous work on the 3D morphing problem. There are two
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major classes of 3D morphing techniques: a volume-based
approach and a surface-based approach. In this paper, we
focus on the surface-based approach. For more work related
to the volume-based approach, please refer to [1]. The
surface-based approach works on boundary representations
such as polyhedral meshes or patch complexes. Methods
involving this approach usually create an interpolation
mesh, which is a common embedding method for both the
source and target meshes. This interpolation mesh is then
geometrically deformed to create morphed shapes. This
common embedding solves the correspondence problem,
associating the vertices or triangles between the source
mesh and the target mesh. This is a key issue in the surface-
based approach.

A lot of work has been published on the correspondence
issue. Kent et al. [7] introduce parameterizations for solving
the correspondence problem. Their approaches project star-
shaped objects onto spheres to accomplish parameterization.
Similarly, Alexa [5] employs a relaxation method to embed
polyhedral shapes onto spheres. Lazarus and Verroust [8]
introduce skeletons for cylinder-like objects. This approach is
an extension of [7] for objects that are star-shaped around an
axis. Parent [9] presents a recursive algorithm that auto-
matically finds a correspondence between the surfaces of two
objects with equivalent topologies. Decarlo and Gallier [10]
present a method to transform objects with different
topologies. The user must identify a sparse control mesh on
each object surface. This control mesh specifies how to
transform one surface into another. It is therefore very
complicated and difficult to transform complex shapes.
Kanai et al. [11] and Zöckler et al. [6] utilize mesh
parameterization techniques such as harmonic mapping to
embedamesh region into a 2Dconvexpolygon.Gregory et al.
[4] apply a user-specified control mesh to decompose the
surface into a large number of disk-like patches and used a
greedy area-preserve heuristic to compute 3D-to-2D embed-
dings. Lee et al. [12] employ the MAPS algorithm [13] to
parameterize inputmeshes over simple base domains and an
additional harmonic map bringing the latter into the
correspondence. Their approach could have a fold-over
problem and user interaction is required to manually fix this
problem. Recently, Praun et al. [15] presented a versatile
technique to achieve consistent mesh parameterizations
among given models. This technique can be applied to
polyhedral morphing and avoid model merging to create a
common embedding. However, this technique requires
remeshing to fit the original models, starting from a common
based model. This remeshing is the bottleneck in the
computational performance. In their experiments, this
remeshing took about six minutes. If interactive control is
an important issue for animators, this technique requires
more advances to improve its fitting speed.

3 METHODOLOGY

3.1 Overview

In this paper, the inputs are genus 0 3D polyhedral models
that consist of 1-ring structure triangular meshes. Our work
is closest in spirit to Gregory et al.’s [4] and Alexa’s work
[5]. Our overall system structure is similar to their theme.

Generally, the overall system structure of most surface-
based morphing techniques is similar in spirit. For example,
the works of Zöckler et al. [6], Bao and Peng [16] are similar
to [4] and [5], too. But, new techniques are presented in [6]
and [16]. In this paper, we present novel techniques in our
design. The main procedures are listed below:

. Selection of Vertex Pairs and Decomposition into
Morphing Patches: For a given two 3D polyhedral
models, the animators select the corresponding
vertices on each polyhedron to define the correspon-
dence of regions and points in both models. The
algorithm automatically partitions the surface of
each polyhedron into the same number of morphing
patches by computing a shortest path between the
selected vertices. The above corresponds to the high-
level morph control in our design.

. 3D-to-2D Embedding: Each 3D morphing patch is
mapped onto a 2D regular polygon using the
proposed relaxation method.

. Aligning Feature Vertices: The interior vertices in
the regular 2D polygons are matched using a
foldover-free warping technique. Users can specify
extra feature vertices to have better correspondence
control. This design corresponds to the lower-level
morph control.

. Merging, Remeshing, and Interpolation: The algo-
rithm merges the topological connectivity of the
morphing patches into a regular 2D polygon.
Additional retriangulated edges are inserted into
the regions in the merged regular 2D polygon. This
step reconstructs the facets for the new morphing
patch, i.e., a common interpolation mesh. Exact
interpolation meshes across the common interpola-
tion meshes are then computed.

3.2 Specifying Corresponding Morphing Patches

Given two polyhedral models, A and B, animators inter-
actively design correspondence by partitioning each poly-
hedron into the same number of regions, called morphing
patches. Each pair of morphing patches is denoted as
ðCA

i ; C
B
i Þ, where i is the corresponding patch index. To define

each pair of ðCA
i ; C

B
i Þ, animators must also specify the same

number of vertices (i.e., called extreme vertices [4]). These
selected vertices form corresponding point pairs in both
models. Theboundaryofamorphingpatch consists of several
consecutive chains. Each chain is obtained by computing a
shortest path between two consecutive selected vertices. Our
shortest path was computed using Dijkstra’s shortest path
algorithm, but with some restrictions. Animators can parti-
tion two polyhedral models into an arbitrary number of
morphing patches, but each patch cannot cross any other
patches. Praun et al. [15] proposed a nice method for
computing the shortest path method. This method can
avoid path boundary crossing and produce smooth
boundaries. For simplicity, we partition a given model into
patches, patch by patch. When finding a shortest path, we
will check if any edge will cross the boundaries or is
contained in other existing patches. If this is true, this edge
cannot be used to form the shortest path. Once the models
are partitioned into several corresponding morphing
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patches, the next step is to compute the corresponding
interior vertices of ðCA

i ; C
B
i Þ.

3.3 Embedding 3D Morphing Patches on Regular 2D
Polygons

In the following, the basic idea behind the proposed
relaxation method for computing 3D-to-2D embeddings
will be described. This initial approach requires several
iterations. It can be computationally expensive. Next, a
sparse linear system for our relaxation method is proposed.
In this manner, the embedding can be computed very fast.

Given a pair of 3D morphing patches ðCA
i ; C

B
i Þ defined

by n extreme vertices, each is embedded on an n-side
regular 2D polygon called Di (i.e., DA

i ;D
B
i ) using a

relaxation method. Each n-regular polygon is inscribed in
the unit circle and its center is at (0, 0). The relaxation
algorithm consists of three steps. First, the extreme vertices
of the morphing patches are mapped to the vertices of Di.
Next, each chain in the morphing patch is mapped to an
edge of Di. The 2D coordinates of the nonextreme vertices
along each chain must then be found. The 2D coordinates of
these nonextreme vertices are interpolated based on the arc
length of the chain. Third, a 2D mapping for the interior
vertices of CA

i and CB
i is computed by initially mapping

them to the center position (0, 0). These vertices are then
moved step by step using the following relaxation equation.
This process will continue until all of the interior points are
stable, i.e., not moved.

p0i ¼ ð1� �Þpi þ �

Pki
j¼1

ð!jpjÞ

Pki
j¼1

!j

: ð1Þ

In (1), there are several parameters defined as follows:

. pi is an interior vertex and its initial position is at
(0, 0). It represents the 2D mapping of a 3D vertex Pi

on a morphing patch.
. p0i is the new position of pi according to (1).
. pj is a 2D mapping of Pj. Pj is one of Pi’s neighbors

and ki is the number of neighbors of Pi in 3D.
. wj is a pulling weight for pj and � controls the

movement speed and its value is between 0 and 1.

A good embedding that preserves the aspect ratio of the
original triangle versus the mapped triangle and does not
cause too much distortion must be computed. To determine
wj, our idea is similar to Kanai et al.’s [11] weight formula
used in their harmonic mapping. However, we used a
different and a simpler formula. For example, in Fig. 1, pi is
labeled 0 and the weight of a pj labeled by 2 is computed
using the following equation:

w2 ¼ cot �1 þ cot �3: ð2Þ

In (2), �1 is the angle between edge21 and edge01 and �3 is
the angle between edge23 and edge03. These angles corre-
spond to the 3D edges of a morphing patch. In this manner,
all wj can be computed. In (2), the whole system is depicted
as a spring system. During iterations, pi is pulled by several
springs that are connected to all of its neighbors pj. The idea
behind (2) is that the long edges subtended to big angles are
given relatively small spring constants compared to short
edges that are subtended to small angles. Based on (1),
iteration methods can be used to find all pi. The iteration is
terminated when all pi are stable. However, in this manner,
the computation time is not predictable and could be
expensive. Therefore, pi will not be found using an iteration
method. It will be solved in the following manner:

Using (1), as pi is stable, ideally, p0i ¼ pi. Thus, we will
have the following:

p0i ¼ pi ¼ ð1� �Þpi þ �

Pki
j¼1

!jpj
� �

Pki
j¼1

!j

¼> pi ¼

Pki
j¼1

!jpj
� �

Pki
j¼1

!j

: ð3Þ

Therefore, assume that the number of pi is N . The following
linear system can then be used for the proposed relaxation
method.

p01 ¼ p1 ¼

Pk1
j¼1

!jpjð Þ
Pk1
j¼1

!j

p02 ¼ p2 ¼

Pk2
j¼1

!jpjð Þ
Pk2
j¼1

!j

..

.

p0N ¼ pN ¼

PkN
j¼1

!jpjð Þ
PkN
j¼1

!j

:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

Let �i ¼
Pki

j¼1 !j and i ¼ 1::N . The above linear system can

be represented in the following form:

Pk1
j¼1

!jpj
� �

¼ �1p1

Pk2
j¼1

!jpj
� �

¼ �2p2

..

.

PkN
j¼1

!jpj
� �

¼ �NpN:

ð5Þ

This linear system is not singular, so that it has a unique

solution. Furthermore, for each pi, the number of neighbors

is small compared to N . Therefore, it is a sparse system that

can be solved efficiently using a numerical method. For

example, a biconjugate gradient method [17] can be used to

solve this sparse system with a computational complexity of

approximately OðNÞ. The computational complexity of our

LEE AND HUANG: FAST AND INTUITIVE METAMORPHOSIS OF 3D POLYHEDRAL MODELS USING SMCC MESH MERGING SCHEME 87

Fig. 1. The definition of a pulling weight.



embedding scheme is comparable to [6], [11]. All three

schemes require solving a linear sparse system.
For example, in Fig. 2, the embedding results do not have

much area compression, although some still occurs. Kanai

et al. [11] use harmonic maps. They minimize the metric

distortion, preserve the aspect ratios of the triangle, and

introduce much area compression [14]. In [4], Gregory et al.

propose an area preserving heuristic to embed 3D poly-

hedra into 2D n-gon disks. This greedy heuristic works well

and improves over the harmonic map scheme. However,

the greater the number of polygons in the morphing patch,

the less successful this area preserving heuristic will be [18].
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Fig. 2. Embedding and warping. (a) The user picks five extreme vertices (i.e., blue dots) and two extra feature vertices (i.e., red dots). (b)

Embeddings without warping. (c) Embedding with warping using two extra features (i.e., red dots).



3.4 Aligning the Features and Foldover-Free
Warping

Given a pair of morphing patches ðCA
i ; C

B
i Þ, ðDA

i ;D
B
i Þ are

their corresponding 2D embeddings. Their extreme vertices
are automatically aligned by the user specifications. Using
this initial correspondence, we could directly overlay two
embeddings to get a merged embedding for morphing. For
example, in Fig. 2a, a corresponding morphing patch is
selected on two given models and the number of extreme
vertices is five. There are two extra vertex pairs ðA;BÞ and
ða; bÞ shown in both models, respectively. These extra
vertices represent eye corners. In Fig. 2b, we show both
ðDA

i ;D
B
i Þ after embedding. It is obvious that the vertex pairs

ðA;BÞ and ða; bÞ will not align if we directly overlay
ðDA

i ;D
B
i Þ. Therefore, to compute better correspondence, the

animators are required to specify several extra correspond-
ing features such as vertex pairs ðA;BÞ and ða; bÞ on both
ðDA

i ;D
B
i Þ. Then, a foldover-free warping function is

employed to align ðA;BÞ and ða; bÞ. The nonfeature points
will automatically be moved by the warping function. As in
[6], to minimize the distortion due to warping, these extra
corresponding feature points are moved linearly to a point
halfway between them and then warping is performed.

Our warping is simply computed as a weighted radial
basis function (RBF) sum. Suppose there are n extra feature
pairs. Because ðDA

i ;D
B
i Þ are both in 2D, the radial function R

consists of two components ðR1; R2Þ, where each compo-
nent has the following form:

RjðpÞ ¼
Xn
i¼1

ajigð p� pik kÞ; j ¼ 1; 2 ð6Þ

In (6), aji are coefficients to be computed, g is the radial
function, and pi is a feature point. For each given p, its new
position is computed by ðR1ðpÞ; R2ðpÞÞ using (6). In total,
there are 2n coefficients to compute. In the current
implementation, the radial basis function is a Gaussian
function:

gðtÞ ¼ e�
t2

�2 : ð7Þ

In (7), the variance � controls the degree of locality of the
transformation. In Fig. 2c, ðDA

i ;D
B
i Þ are shown warped

using two extra feature points. This result is better than that
in Fig. 2b. They can be overlaid now to produce a merged
embedding for morphing. Sometimes, the warping can lead
to a fold-over (self-intersections) on ðDA

i ;D
B
i Þ. Foldover-free

embeddings are necessary. To solve the foldover problem, a
check if self-intersections have occurred on ðDA

i ;D
B
i Þ is

made after warping. If self-intersections have occurred, (1)
is iterated instead of solving (5). Usually, a few iterations
are required to prevent self-intersections from occurring. In
the following, we show how to check if self-intersections
have occurred.

The inputs were genus 0 3D polyhedral models with a
1-ring structure. If there is no self-intersection on both
ðDA

i ;D
B
i Þ, each interior point of both embeddings must have

a complete 1-ring structure in 2D. If any interior point of an
embedding has an incomplete 1-ring structure, self-inter-
section has occurred. To check if a point has a complete
1-ring structure, the following is computed:

Z ¼ pa
! � pb

!
ð� : the righthand vector cross productÞ

complete; Z > 0

incomplete; Z <¼ 0:

�

ð8Þ
In (8), all nodes at p’s 1-ring structure are checked. If any

violation (i.e., Z <¼ 0) has occurred, an incomplete ring
structure in 2D will be found. Note that the vertices of a
triangle are in counterclockwise order. Fig. 3 is used to
illustrate (8). In Fig. 3a, before embedding, P (i.e., p’s
corresponding vertex in 3D) has a complete 1-ring structure.
After embedding and warping, a self-intersection occurs, as
shown in Fig. 3b. In this case, all nodes at p’s 1-ring
structure are checked, finding that (a, b) violates (8).

In the above procedure, a linear system for RBF is solved.
However, since only a few features were specified
compared to the number of interior vertices, the time
complexity can almost be ignored. Assume that we have n
interior vertices. O(n) time is required to execute (6) (i.e.,
warping) and (8) (i.e., self-intersection check). The align-
ment problem using radial basis functions for the scattered
data interpolation problem can also be found in [19], [20],
[21]. Recently, the very same problem also appears in
texture mapping with constraints and has received atten-
tion lately [22].

3.5 Efficient Local Merging Using SMCC

Two embeddings ðDA
i ;D

B
i Þ are merged to produce a

common embedding that contains the faces, edges, and
vertices. The complexity of a brute-force merging algo-
rithm is Oðn2Þ, where n is the number of edges. This
naive approach globally checks all edges to find the
possible intersections. Motivated by simplicity and ro-
bustness, Gregory et al. [4] adopt this approach to check
all edge pairs for merging. In this paper, we present a
novel SMCC method for checking the edges locally and
efficiently computing the intersections. The complexity of
the proposed method is Oðnþ kÞ, where k is the number
of intersections. Additionally, a lookup table was created
to efficiently implement this method. The merging
problem is known as planar graph overlay in computa-
tional geometry and is solved in Oðnþ kÞ [23], [24].
However, embedding merging is very error-pone in
implementation. Our SMCC approach handles all degen-
erate cases with one simple data structure. It is easy to
use SMCC to perform merging. We should also mention
that Alexa [5] proposes an Oðnþ kÞ merging algorithm to
overlay two embeddings onto 3D spheres.
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Fig. 3. (a) prior to embedding and warping, P has a complete 1-ring

structure in 3D and (b) P has an incomplete 1-ring structure in 2D after

embedding and warping.



3.5.1 Classifying of the Corresponding Positions

The merging algorithm wants to overlay each edge se 2 DB
i

on DA
i , where s and e represent the starting and ending

points of a given edge. There is a special type of edge se and
its s point corresponds to an extreme vertex of DA

i . This
correspondence was established before embedding by the
animators. Edge-merging is performed starting from one of
these types of edges. Since DB

i is a connected planar graph,
we can traverse all of its remaining edges starting from any
se belonging to this special type and overlay all remaining
edges se 2 DB

i on DA
i edge by edge.

When an edge se 2 DB
i is overlaid on DA

i , this edge can
be split into several line segments by triangles TA 2 DA

i . An
example is shown in Fig. 4. In this example, the red-dots
represent the intersections created by merging. The position
of s on a triangle TA 2 DA

i can be three possibilities: s is on
the edge (i.e., EA) of TA (the first row in Fig. 5) or s is on the
vertex (i.e., V A) of TA (the second row in Fig. 5) or s is inside
TA (the last row in Fig. 5). If e is outside TA, the edge se is
split and the new intersection point becomes a new s. This
process will continue until we find a TA, where e is on the
edge of TA or e is on the vertex of TA or e is inside TA. Fig. 5
shows our classifications based on the positions of s and e

with respect to a given TA. The last row cases occur only
when s is the original starting point of an edge se 2 DB

i (i.e.,
not yet split) to be overlaid on DA

i .

3.5.2 Structures of Minimal Contour Coverage (SMCC)

In Fig. 5, the leftmost column shows three possible positions
for s on a given TA. Based on these three possibilities, three
kinds of SMCC are defined for s on a given TA in the
following (as shown in Fig. 6):

1. If s falls on a vertex PA 2 DA
i , its SMCC is PA’s

1-ring structure on DA
i .

2. If s falls on an edge EA 2 DA
i , its SMCC is a 4-sided

polygon containing EA on DA
i .

3. If s falls inside a triangle TA 2 DA
i , its SMCC is the

triangle TA.

During merging (i.e., edge splitting), if se intersects with

some edge EA 2 DA
i outside s’s SMCC, the edge se must

intersect with s’s SMCC (as shown in Fig. 7). The merging

(intersection) can be locally computed with s’s SMCC.
In Fig. 6, we show that each s is enclosed by its SMCC. In

case (1), all contour vertices of SMCC have edges to s. In

case (3), there is no edge between s and each SMCC contour

vertex. To easily compute the intersections, we assumed

that there is an imaginary line from s to each contour vertex

of its SMCC. With this arrangement, the intersection

computation can be classified under two conditions. The

first is called the area condition at which se is not coincident

with any imaginary line. If se is coincident with any

imaginary line, this is called the line condition (as shown in

Fig. 8). The intersection computation can then be evaluated

using the following:

M ¼ se
! � sa

!
; N ¼ se

! � sb
!
; where se

!
; sa
!
; and sb

!
2 R2

Area Condition; M < 0 and N > 0

Line Condition at sa; M ¼ 0

Line Condition at sb; N ¼ 0

Continue searching for

other ðsa; sbÞ pairs;
other:

8>>>>><
>>>>>:

ð9Þ

Based on the above classifications, different formulas

(i.e., (10) and (11)) can be used to determine whether se

intersects with S’s SMCC or not. The results from (10) and

(11) lead to different conditions, as shown in Fig. 9.

1. Area Condition:
Let V ¼ sþ t�se

!
and suppose V is on the ab,

therefore, aV
!

� ab
!

¼ 0. Then,

aV
!

¼ sþ t�se
! � a ¼ as

! þ t�se
!
:

Therefore, aV
!

� ab
!

¼ ðas! þ t�se
!Þ � ab

!
¼ 0 and we let

Z1 ¼ as
! � ab

!
Z2 ¼ se

! � ab
!

t ¼ Z1=Z2: ð10Þ

2. Line Condition (aasume coincident with sa):
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Fig. 5. The classifications based on the positions of s and e with respect to a given TA.



L1 ¼ se
!

��� ��� L2 ¼ sa
!

��� ��� t ¼ L1=L2: ð11Þ

Based on the analysis of Fig. 9b, we can replace Fig. 5
with Fig. 9b. Fig. 9b can provide us a lookup table to
efficiently implement our merging algorithm.

The merging algorithm must establish the SMCC
structure prior to proceeding with the local merging. Fig. 6
shows how an SMCC structure is defined. In our design,
once a new intersection occurs, the SMCC can be
immediately established for further potential merging. For
example, in Fig. 10, an edge AB 2 DB

i and A’s SMCC was
created using Fig. 6. Using Fig. 9b, we find that AB
intersects with A’s SMCC at C. C’s SMCC is created next
using Fig. 6 again. Again, with the help of Fig. 9b, the edge
CB intersects with C’s SMCC at D. In this manner, the
above steps are repeated until B is reached. B’s SMCC does
not need to be created if B is the starting point of the other
edge (i.e., not yet overlaid) from DB

i . During merging, the s
point is changed from A, C, D, E to F and the e point is
always B. As discussed in Section 3.5.1, the local merging
from an extreme vertex is the starting point. The SMCC of
an extreme vertex is its 1-ring structure and this is known in
advance. The subsequent SMCC for merging can therefore
be found immediately using Fig. 6. Given two embeddings
ðDA

i ;D
B
i Þ in Fig. 11, a complete sequence of overlays DB

i on
DA

i is shown using the proposed method.

3.5.3 Analysis

Assume that there are two embeddings ðDA
i ;D

B
i Þ with m

and n edges. n edges of DB
i must be overlaid onto DA

i and
k intersections are created after the overlay. To travel all
edges of DB

i starting at edge se with s corresponding to an
extreme vertex of DA

i , OðnÞ time is required. The merge
(intersection) time is in proportion to the number of SMCCs
used to locally compute the intersections. For all n edges of

DB
i , n times are required to use SMCC for the s points. If

any edge se requires splitting (i.e., the e point is outside s’s

SMCC), the intersection point will become a new s point

and this s must use SMCC again for further intersection. If

the total number of intersections is k, the number of times

SMCC is used to locally compute the intersections is

bounded by k. Our merging cost is therefore Oðnþ kÞ time.

3.6 Retriangulate the Merged Embeddings

Once the merging is completed, a nontriangulated planar

graph is called DM . In order to retriangulate DM is

produced, additional edges must be inserted to retriangu-

late DM . For simplicity, our approach is very straightfor-

ward and described as follows: For each point PM on DM ,

the algorithm must connect the neighboring points of PM to

establish the 1-ring cyclic structure. This structure can easily

be constructed by finding cycles with connectedness using

the smallest interior angles, as in [4] (as shown in Fig. 12).

3.7 Reconstructing the Source Models and
Interpolation

Once the preceding steps are completed, a complete
correspondence between the two models is established.
Our merging algorithm produces new points in 2D due to
the intersections. The corresponding 3D points for these
new points must be found in both models. The barycentric
representation of a new point is computed on the basis of
three old points in 2D. The barycentric representation is
then used to interpolate the positions of these three old
points in 3D. These old points are referred to as the original
vertices on the input models. In this manner, the 3D position
of a new point is determined. Similarly, for a new point, its
other attributes, such as the color and texture coordinates,
can be interpolated if required.
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Fig. 6. There are three kinds of SMCC for s (red-dot) on DA
i : (1) 1-ring,

(2) 4-sided polygon, and (3) a triangle. Fig. 7. The merging (intersection) can be locally computed with s’s

SMCC.

Fig. 8. There are two kinds of the local intersection computations.



Once the above step is finished, the morphing sequence
can easily be generated by linearly moving each vertex from
its position in model A to the corresponding position in
model B in terms of the time t. Other authors have
mentioned that this kind of linear interpolation produces
satisfying results in most cases. However, in some special
cases, self-intersections can occur. Gregory et al. [4]
proposed a user-specified morphing trajectory using cubic
spline curves as an alternative to linear interpolation. This
simple alternative can be included in the near future.

4 EXPERIMENTAL RESULTS

Digital video clips of all morphs used in this paper can be
found at http://couger.csie.ncku.edu.tw/~vr/fast_
morph.html. The friendly GUIs in our system are also
demonstrated on this Web site.

4.1 Performance Evaluation and Morphing
Examples

In Fig. 13, an example of morphing a baby’s head into a
man’s head is shown. In this example, the number of

morphing patches is four and each patch is illustrated using
a different color. There are seven extra feature points (i.e.,
four eye corners, one nose tip, two mouth corners) used for
warping. Fig. 13c shows some timing information and the
geometric information for two models in this experiment.
The times are average execution times. Our algorithm was
performed on a PC with a Pentium III 800 and 128MB. Note
that our code was not fully optimized and more improve-
ments can be done. All tasks were computed very fast
compared with other recently reported timing information
in [4], [5]. Some experimental comparisons are made at the
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Fig. 9. Local merging condition classification conditions. (a) The results from (10) and (11). (b) Local merging condition table. This table corresponds

to different kinds of SMCC defined in Fig. 6 (the first row: a 4-sided polygon, the second row: a 1-ring structure, and the third row: a triangle).

Fig. 10. The merging of AB can be completed step by step.

Fig. 11. An example of merging is completed using our algorithm step by

step.



end of this section. Other interesting examples are shown in

Figs. 14a-b, Figs. 14c-d, and 15.

4.2 Comparison with Other Related Work

Recall that our work is closest in spirit to Gregory et al.’s [4]

work and Alexa’s work [5]. The former was evaluated on an

SGI Onyx 2 and the latter on a SUN Ultra 10. We tested our

method on a PC with a Pentium III 800 and 128MB. In [4],
there is no detailed timing given for each task. Roughly,
their algorithm takes about 1.5 minutes to compute merged
embedding for models with a number of triangles ranging
from 5,000 to 8,000. Alexa’s work [5] embeds each model on
a 3D sphere and computes the merged embedding on this
sphere. To experimentally compare this work with ours, we
decomposed the model into a large patch and a small patch
using our algorithm and evaluated the performance for the
large patch only. Note that the timing spent on a small
patch was very small and can be ignored in this experiment.
This evaluation is shown in Fig. 16.

Two performance tables reported in [5] for several
models were used for the performance comparison. See
Tables 1 and 2.

In Fig. 16, the sum of the vertices for the cow and the pig
was 6,487. The number of triangles for the cow and the pig
was 12,967. Our example roughly corresponds to the Pig-
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Fig. 12. PM ’s 1-ring cyclic structure established by inserting several
edges.

Fig. 13. Morphs between the models of a baby’s head into a man’s head. After merging, both models have 9,154 vertices and 20,127 triangles. (a)

The input models are decomposed into four morphing patches. (b) A morphing sequence from a baby’s head into a man’s head. (c) Timing

information for morphs between a baby’s head into a man’s head.



Horse case (the sum of vertices is 6,418) in Table 1. The
merging algorithm proposed by [5] takes 4.2 seconds, while
our merging algorithm only takes about 1 second. The
embedding time is shown in Table 2. For the pig and piglet
models, the embedding required about 277.9 and 113.1
seconds, respectively. However, our method required less
than 2 seconds. In this respect, our method performed
significantly better than [5]. Another work [6] was evalu-
ated on an SGI Onyx 2 with R10000 processor. Unfortu-
nately, [6] does not provide detailed timing information for
each task. For the most complex example with 11,464
triangles, the embedding could be computed in less than
5 seconds. The merging took less than 3 seconds. As shown
in Section 4.1, both embedding and merging were com-
puted very quickly (in less than 1 or 2 seconds). The
performance of our method was comparable to [6] or even
much better than [4], [5], the state-of-the-art.

Finally, we comment on these related works in term of
computational complexity. For mesh embedding, the
proposed method and work in [6] require solving a linear
sparse system. A biconjugate gradient method [17] can be
used to solve this sparse system with a computational
complexity of approximately OðNÞ. Alexa [5] embeds
polyhedral on the unit sphere that implies nonlinear
constraints, while the embedding in the plane such as our
method and [6] is a linear problem. Therefore, Alexa [5]
introduces a relaxation method for embedding. This
method applies an iterative approach to find the solution.

Generally, an iterative approach is time consuming in
execution and sometimes it is not predictable if the
termination condition is not reached quickly. For example,
in Table 2, both Pig and Piglet models are similar in their
geometrical complexity. However, their embedding times
are significantly different.

For embedding merging, our work and Alexa’s work [5]
are computed in Oðnþ kÞ. Gregory et al. [4] use an Oðn2Þ
approach. Zöckler et al. [6] do not detail their merging
scheme and mention that their merging method is
suggested by [11], [25]. The merging in [11], [25] can be
performed in Oðn lognÞwith a spatial data structure such as
quad-tree.

5 CONCLUSION AND FUTURE WORK

We presented techniques for computing shape transitions
between polygonal 3D objects. These techniques were
proven to be fast and intuitive methods for 3D polygon
morphing. The proposed embedding and merging methods
performed well and are comparable to [6] or better than the-
state-of-the-art [4], [5]. Both evaluated examples were
computed very fast (less than 1 or 2 seconds). There are
several opportunities for further work expanding on the
method we propose. For example, linear interpolation can
be replaced with other alternatives to avoid self-intersec-
tion. The merged embedding usually has about 3 to 8 times
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Fig. 14. Morphs between the models of a cow and a pig. After merging, both models have 25,816 vertices and 57,844 triangles. (a) Both a cow and

pig were decomposed into two morphing patches. (b) A morphing sequence from a cow into a pig.



as many triangles and vertices as the input models. We plan

to design a new 3D morphing method that does not require

embedding merging. The morphed shapes in this extended

method will be able to automatically adjust the required

number of triangles and vertices. In addition, the retrian-

gulation of the merged embeddings should better take the

original geometries into account to avoid possibly unsatis-

factory results.
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Fig. 14 (continued). (c) Embedding results with warping. There are two embeddings (i.e., two morphing patches) per each model. (d) Timing

information about morphs between a cow and a pig.
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Fig. 15. Morphs between the models of the baby and the pig. After merging, both models have 20,458 vertices and 40,883 triangles. (a) Both the

baby and pig were decomposed into five morphing patches. Note that, in this example, the extra features points used in warping are shown. (b) A

morphing sequence from a baby into a pig. (c) Timing information for morphing from the baby into a pig.

TABLE 1
The Merging Algorithm Performance Proposed by [5]

The timing information is given in the upper triangle matrix. The number
of vertices in the merged model is given in the lower triangle matrix.

TABLE 2
The Performance of the EmbeddingAlgorithm Proposed by [5]
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