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Abstract-In a sort-last polygon rendering system, the efficiency of image composition is very important for achieving fast 
rendering. In this paper, the implementation of a sort-last rendering system on a general purpose multicomputer system is 
described. A two-phase sort-last-full image composition scheme is described first, and then many variants of it are presented for 2D 
mesh message-passing multicomputers, such as the Intel Delta and Paragon. All the proposed schemes are analyzed and 
experimentally evaluated on Caltech’s Intel Delta machine for our sort-last parallel polygon renderer. Experimental results show that 
sort-last-sparse strategies are better suited than sort-last-full schemes for software implementation on a general purpose 
multicomputer system. Further, interleaved composition regions perform better than coherent regions. In a large multicomputer 
system, performance can be improved by carefully scheduling the tasks of rendering and communication. Using 512 processors to 
render our test scenes, the peak rendering rate achieved on a 262,144 triangle dataset is close to 4.6 million triangles per second 
which is comparable to the speed of current state-of-the-art graphics workstations. 

Index Terms-Sort-last-full, sort-last-sparse, polygon rendering, image composition, message-passing multicomputer system. 
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1 INTRODUCTION 
OLYGON rendering (Z-buffer) provides faster rendering P speed, acceptable photorealism, and is supported by 

most commercial graphics workstations. A standard poly- 
gon rendering (Z-buffer) pipeline is shown in Fig. 1. There 
are two major processes occurring in this pipeline: namely, 
geometry (G) processing and rasterization (R) processing. 
Geometry processing starts by reading polygon primitives 
from an input database and then a modeling transforma- 
tion is performed on each primitive to place each primitive 
on the right position of 3D space. After this transformation, 
the vertices of the polygons are illuminated by different 
light sources, transformed from 3D world space to 2D 
screen space, and truncated by a clipping pyramid. Some 
polygons can be clipped out without the need for further 
processing because they lie completely outside the viewing 
frustum. In the rasterization process, the colors of each 
pixel are calculated from the set of shaded 2D polygon 
primitives. The polygons are first scan converted to pixel 
values and then a Z-buffer hidden surface elimination is 
performed to determine their visibility. 

Graphics rendering is computationally very intensive. 
With the massive volume of data being created by the sci- 
entists everywhere, there is a need to provide a faster ren- 
dering mechanism to visualize data. However, algorithmic 
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improvements in rendering alone cannot meet the growing 
needs of scientific visualization. Fortunately, graphics ren- 
dering presents rich parallelism which is highly suitable for 
parallelization. There are two main approaches to exploit- 
ing the parallelism present in graphics rendering, namely, 
object based parallelism and image screen parallelism. Sub- 
sets of graphics primitives to be rendered, or regions of 
screen, can be partitioned among many processors. The first 
form is termed as object parallelism and the second form is 
termed as image parallelism 121. By using parallel machines 
it is possible to significantly reduce the rendering time. 

Parallel rendering is very useful for other reasons as well 
[31. Scientific simulation datasets are generated on large par- 
allel computers and their sizes range from hundreds of mega- 
bytes to hundreds of gigabytes. By performing graphics ren- 
dering on the same parallel machine, massive data shipment, 
often across a network with limited bandwidth, is avoided 
between that parallel machine and a graphics workstations. As 
a result, researchers can generate and visualize larger datasets, 
for example, by performing simulation for more number of 
time steps. Therefore, scientific simulation can be analyzed 
and visualized in more details to explore new phenomena. 

There exist many parallel techniques for polygon ren- 
dering. Whitman’s book [4] surveys multiprocessor ren- 
dering methods. In this paper, we will only present the 
most significant and recent work using parallel computers 
in the following section. 

Geometry Transformation 

3D polygons ZD polygons pirds 

Fig. 1. Standard graphics pipeline. 
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2 RELATED WORK ON PARALLEL 
POLYGON RENDERING 

There are several techniques to parallelize a polygon ren- 
dering algorithm. A straightforward approach is to directly 
map each stage of the pipeline into hardware [5]. Many 
commercial graphics workstations are built this way. Mol- 
nar et al. [6] describe a framework for parallel polygon ren- 
dering where the sort and redistribution of data occurs 
when transforming 3D objects (polygons) to 2D screen 
space (pixels). They delineate three types of parallel ren- 
dering algorithms: sort-first, sort-middle (image-oriented) 
and sort-last (pixel-oriented) (see Fig. 2). 

randomly randomly randomly 
distributed distributed distributed 

Assemble final Sort(pri0ritize) at 
each pixel to form 

sort Last Sort First Sort Middle 
dynamic database screen-space 

redistribution subdivision 
image composition 

Fig. 2. Classification of parallel polygon rendering. 

In the sort-first algorithms, each polygon is first pre- 
processed to determine which screen region it will be pro- 
jected on. The primitive is then sent to the processor corre- 
sponding to this projected region, which performs all pipe- 
line operations on that polygon. There is limited interest in 
the sort-first algorithms, because they are very vulnerable 
to load imbalances, caused by both geometry and rasteriza- 
tion processing. However, for adaptive image-space parti- 
tion schemes, the information from a sort-last preprocess- 
ing pass can be used to alleviate some of the load imbal- 
ances [7], [8 ] .  In addition, the coherence occurring between 
two consecutive frames can be exploited to reduce the 
polygon redistribution communication cost. 

Most previous work focused on the sort-middle parallel 
algorithm. In this class of algorithms, each polygon’s ge- 
ometry transformation is first done locally, then the algo- 
rithm determines where the transformed polygon will be 
sent. The polygon redistribution is the main contributor to 
the communication cost. In the sort-middle algorithms, the 
geometry processing is generally balanced among the proc- 
essors, while the rasterization part often causes load imbal- 
ances due to the nonuniform distribution of polygons on 
the screen. 

Crockett et al. [9], proposed a sort-middle method on the 
Intel iPSC, which statically assigns consecutive scan-lines to 
processors. Many ways of overlapping the rendering exe- 
cution time with the polygon redistribution time were in- 
vestigated to reduce the overall communication cost. Also, 

they developed a performance model to determine the 
buffer size that minimizes the total communication over- 
head. No load balancing scheme was exploited in their 
scheme, and thus their parallel renderer incurs serious per- 
formance slowdown for nonuniform scenes. 

Whitman [lo1 and Roble [ll] investigated different 
adaptive screen division schemes to balance rasterization 
workloads. Both 1101 and 1111 complete the geometry trans- 
formations for all the polygons before starting to adaptively 
divide screen space (i.e., a global synchronization is re- 
quired). Therefore, the number of polygons belonging to 
each region can be known before splitting the screen. 

In Roble’s work, the screen is recursively partitioned 
until each processor has an even rasterization load to per- 
form. The number of polygons in a region is used as a heu- 
ristic to determine the amount of work in a region. This 
algorithm was implemented on an Intel iPSC hypercube. 
This method is good for smaller number of processors. 
However, when the number of processors increases and the 
assigned regions become small, the overhead in partition- 
ing can be significant. 

On the other hand, Whitman implemented his algorithm 
on a shared memory BBN TC2000 parallel computer. The 
load balancing is achieved by a task adaptive domain de- 
composition scheme which involves dynamic partitioning 
of rectangular pixel area tasks. The number of scanlines left 
to work is a heuristic for workload. When a processor fin- 
ishes its assigned scanlines, it will steal half the number of 
scanlines from the maximally loaded processor. As larger 
processor configurations are used, the author’s implemen- 
tation analysis indicates that load imbalance is the major 
cause of performance degradation. 

Ellsworth [12] proposed a method to balance rasteriza- 
tion workload for the current frame using information from 
the previous frame on the Intel Delta. Between two con- 
secutive frames, a processor is responsible for gathering 
load information, computing load assignments (done via a 
greedy multiple-bin-packing scheme) and broadcasting 
assignments to other processors. Ellsworth also proposed a 
two-step sending scheme to reduce the number of messages 
when a large number of processors are used. The rendering 
rate is also extremely enhanced by writing the code in as- 
sembly language by which special graphics instructions as 
well as dual-instruction mode can be well exploited on the 
Intel 860 processor. As a result, this renderer achieves a 
very high rendering rate. 

Another class of parallel rendering is the sort-last algo- 
rithm. Generally, this class of algorithms delay the data sort 
until the geometry processing and the rasterization of all 
polygons are completed. The polygons that constitute a 
scene are then evenly partitioned and each partition is as- 
signed to a processor. After each processor finishes ren- 
dering its allocated polygons, the subimages created by the 
processors are merged into the final image. There are sev- 
eral possible variants of it. For example, the sort can be per- 
formed on-the-fly as pixels are generated, or can be per- 
formed incrementally as one portion of the screen is ren- 
dered before proceeding to another. 

There were many previous efforts at the sort-last paral- 
lelism. A simple method is to order all N renderers to send 
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their subimages one by one to a destination composition 
processor. This technique was adopted in two commercial 
graphics architectures [131, [141. Molnar 1151 developed his 
high speed rendering system, called PixelFlow, using a 
pipeline style image composition scheme. In PixelFlow, 
there are N renderer processors. After all renderers finish 
their subimages, PixelFlow takes N - 1 pipeline steps to 
compose the subimages. The composed subimages at step Y 

will be forwarded by renderer Y to renderer Y + 1 to com- 
pose with the subimage created in renderer Y + 1. 

An alternative scheme is to compose the subimages in a 
balanced tree [161, [171, 1181. In the composition tree, all 
renderers are located at leaf nodes. The composition proce- 
dure moves from the leaves to the root. Each composer at 
level i will compose all subimages from its children nodes 
at level i + 1. More processors become idle as the composi- 
tion process proceeds to the root. Li and Miguet [191 pro- 
posed a different tree composition scheme on a transputer- 
based system, which can be reconfigured as a binary or 
ternary tree composition structure. Their polygon renderer 
was based on a scan-line Z-buffer scheme. Each processor 
performs both rendering and composition tasks. As ren- 
dering is completed, children nodes forward scan lines to 
their parent nodes, and parent nodes compose the incom- 
ing scan-line images. Both rendering and composition tasks 
are performed in a pipelined fashion along the tree. Finally, 
the root of the tree gathers the final composed image. The 
composition pipeline can be potentially slowed down by a 
few heavily loaded processors. The advantage of tree- 
merging schemes described above is that the completed 
image is available in its entirety at the root of the tree when 
the composing process completes. There is no need to 
gather subimages scattered among the processors. 

Recently, Cox and Hanrahan 1201 proposed a snooping 
protocol, adapted from the design of cache memory in 
tightly-coupled systems, to compose the subimages. Like 
Molnar’s pipeline composition network, the snooping pro- 
tocol requires N - 1 composition steps to combine all su- 
bimages from N renderers. However, in each step, one 
processor broadcasts only its ”active” pixels in its local Z- 
buffer to all other processors. A pixel location is ”active” at 
a given processor if at least one pixel has been rendered to 
it; otherwise it is ”inactive.” When other processors receive 
the broadcast, they will Z-buffer the local pixels, and the 
hidden pixels are deleted from the local active pixel list. 
Cox also developed a traffic model for this snooping 
scheme, and concluded that it can considerably reduce the 
composition data traffic. 

As mentioned above, most sort-last techniques send the 
entire local Z-buffer data in each composition step [15], [18]. 
Molnar et al. [61 termed these techniques as sort-last-full 
algorithms. In contrast, algorithms are termed sort-last- 
sparse, if only active pixels are sent, as in Cox’s snooping 
algorithm. They pointed out that the sort-last schemes need 
more sophisticated composition hardware or other schemes 
to reduce the large communication overhead, in particular, 
for supporting anti-aliasing by oversampling. Communica- 
tion is difficult to scale well as system size increases. 

Ma et al. [211 and Karia [22] described similar image 
composition techniques for parallel volume rendering. The 

so-called binary-swap composition technique was imple- 
mented on the fat-tree architecture of the CM5 [21]. Karia 
U11 implemented his scheme on the 2D mesh Fujitsu 
APlOOO parallel computer and termed it, the divide-and- 
conquer composition technique. Both techniques exploited 
bounding box optimization to speed up composition time 
and both are well suited for parallel polygon rendering (Z- 
buffer). Li et al.’s [25] perspective terrain renderer belongs 
to the sort-last-full class, and recently also used a binary- 
swap method in their implementation [26], but only 
merged the active pixels instead of a full image. 

Ortega et al. 1271 changed the standard graphics pipeline 
stages to fit the SPMD programming model on the CM-5. 
They used the virtual processor concept provided in the 
CM-5 to develop a data parallel polygon renderer. They 
achieved load balancing by continuously mapping the 
available data elements to the idle virtual processors. They 
also provided some rules to indicate if mapping is further 
required. Their polygon renderer belongs to the sort-last- 
sparse class. The individual pixels are routed to the right 
virtual processor which is in charge of that particular screen 
region. This routing is accomplished through the sendmax 
operator available on CM-5. Later, Hansen et al. also de- 
scribed this polygon renderer and the other two renderers, 
namely sphere renderer and volume renderer in [28]. On 
CM-5, they used the CMMD function CMMD-reduce-v, with 
a minimum operator, to compose all Z-buffers in logarithmic 
time for the sphere renderer. As for the volume renderer, 
they exploited binary-swap method for composing images. 

In the following sections, we will first outline our paral- 
lel polygon renderer built on the 2D mesh Intel Delta par- 
allel computer. Then we describe our sort-last-full image 
composition scheme and another well-known divide and 
conquer composition technique (binary-swap composition) 
proposed by Ma et al. [21] and Karia [22]. Our composition 
scheme extends recent advances in global communication 
algorithms proposed by Barnett et al. [291 for 2D mesh par- 
allel architectures. We experimentally evaluate both 
schemes and show that our scheme is generally superior to 
binary-swap composition technique on a 2D mesh parallel 
computer, such as the Intel Delta. There are several alterna- 
tives based upon our sort-last-full scheme and these are 
presented and experimentally evaluated. For our experi- 
ments, we used five scene models from the public domain 
dataset SPD [301, with sizes ranging from 150K to 500K tri- 
angles. Using 512 processors of the Delta, we achieved a 
peak rendering rate of about 4.6 million triangles per sec- 
ond on a 262,144 triangle dataset. Finally, some concluding 
remarks and future works are given. 

3 OVERVIEW OF OUR SORT-LAST 
RENDERING SYSTEM 

In our parallel renderer, each processor does both geometry 
transformation and rasterization. A global image composi- 
tion process is exploited to merge all subimages generated by 
the processors. In this section, we first discuss how the poly- 
gon dataset is partitioned and distributed among the proces- 
sors, then present some details of our polygon renderer. 
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3.1 Dataset Partition and Distribution 
The first step in our parallel rendering task is to partition 
the polygons in the scene and distribute them among proc- 
essors. Assuming that we have N processors and T triangles 
in a test scene, there are two common ways to assign TIN 
triangles to each processor: we can distribute triangles in an 
interleaved manner like [9] among the processors; or we 
can assign first TIN triangles to the first processor, the next 
TIN triangles on the second processor, etc. We call the first 
scheme interleaving assignment and the second group as- 
signment. In most databases like SPD, groups of triangles 
stored near each other generally lie near to each other in the 
scene as well. Therefore, group assignment tends to keep 
triangles near each other in the scene to appear in the same 
processor. In such situations, we are likely to use tight 
bounding box to contain assigned triangles. For image 
composition, tight bounding box will not cause too much 
redundancy in both communication and computation for 
the sort-last-full system. However, the highly localized dis- 
tribution of triangles in the screen space can cause load im- 
balances in rendering phase among the processors. Inter- 
leaving, on the other hand, is prone to make the distribu- 
tion of triangles on the screen similar for each processor 
and thus potentially evens out imbalances during the ren- 
dering phase. But, interleaving tends to make triangles near 
each other in the scene to appear in different processors and 
thus potentially leads to redundancy in composition time 
for the sort-last-full system. To take advantages of both 
schemes, the group interleaving is used in our implemen- 
tation to distribute triangles and is described below. 

For the group interleaving, the whole database is parti- 
tioned into a few larger groups first. In our implementation, 
each larger group contains 2,000 triangles for our test 
scenes. Then, this larger group of polygons are evenly par- 
titioned into N (0, 1, . . . N - 1) small groups and distributed 
among the processors as follows: Processor 0 reads a large 
group of polygons from the disk. Processor 0 keeps the 0th 
small group of polygons from it and forwards the rest to 
other processors. Processor P, picks up the ith contiguous 
small group. After reading a small group to its memory, 
processor 0 asynchronously reads the next large group 
from the disk and repeats the process until all polygons 
have been imported from the disk. At the end of this data 
distribution process, all small groups of polygons contained 
in a dataset are evenly distributed among processors in an 
interleaved manner. We term this data distribution process 
as “group interleaving.” In a later section, we will show its 
effect on the rendering performance. 

3.2 Our Polygon Renderer 
Many parallel renderers have been proposed in the past. 
Some were written in assembly language [12] and some 
pre-computed many parameters, such as normal vectors 
191, [121 and shading [9], for each triangle before rendering. 
These factors can affect the rendering performance signifi- 
cantly. To compare the performance of various schemes, we 
need to clearly indicate what we compute in our renderer. 
In our parallel renderer each processor creates a full screen 
image on its local Z-buffer memory and renders its as- 
signed polygons as follows: 

Rendering Loop 
~ O Y  each frame image do 
0.: compute view and transform matrices, and initialize Z- 

f o ~  all local polygons do 
1. : compute normal vector for current polygon. 
2 .  : do backface culling on this polygon. 
3 .  : do lighting on each vertex of polygon. 
4. : do perspective transformation. 
5. : do clipping. 
6. : do scan conversion. 
7. : Z-buffer this polygon. 
enddo 
8. : globally compose image.’ 
9. : clear Z-buffer. 
enddo 

In our implementation, we optimize for speed, therefore, 
we use simple Gouraud shading. In Gouraud shading, we 
use the colors of each vertex (computed in step 3) to line- 
arly interpolate the colors on the polygon in step 6. After 
each processor finishes rendering the local polygons, we do 
a global composition of all subimages to obtain the final 
image. Our resulting image has 512 x 512 resolution with- 
out anti-aliasing. All codes are written in the C language. 

buffer. 

4 PARALLEL COMPOSITION 
In the last section, we reviewed many previously proposed 
sort-last polygon rendering algorithms. In most algorithms 
[15], [16], [17], [18], [19], more and more processors become 
idle as the composition proceeds-a waste of computa- 
tional power. In contrast, Ma et al. [21], Karia [22], Witten- 
brink [23], and Wittenbrink and Harrington [241 presented 
the divide-and-conquer image composition techniques, 
where processors are kept busy as much as possible, to im- 
prove parallel volume rendering. The divide-and-conquer 
method (binary-swap) used in [21] and 1221, is well suited 
for parallel polygon rendering (Z-buffer). In this section, we 
describe the binary-swap technique, and propose another 
divide-and-conquer scheme. 

4.1 Composition by Binary-Swap (BS, Sort-Last-Full) 
The aim of the binary-swap (BS) composition is to exploit 
more parallelism in the composition stage and to keep 
every processor involved in all stages of the composition 
process. In the BS scheme, only half the image is swapped 
between a pair of processors and each processor pair com- 
poses the two opposite halves of subimages at each compo- 
sition stage. As the composition proceeds, the processors 
are responsible for smaller and smaller portions of image 
composition. In total, the BS composition requires log N 
composition stages, and each processor keeps a fraction 
(1/N) of the final image, where N is the number of proces- 
sors in use. 

Fig. 3 shows an example of BS using four processors. 
Each processor’s Z-buffer is divided into four disjoint areas 
Zoo, Z,,, Zlo, Zll, where Z.. = Zoo U Zol U Z,, U Zll. In the 

1. In some of our implementations, part of step 8 can be done inside the 
second for loop. 
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first stage, processor, 0 (Poo) sends its Z1* (i.e., Zlo U Zll) to 
its neighbor processor 1 (Pol) and receives a Z& from proc- 
essor 1. Conversely, processor 1 sends its Zo+ to processor 0 
and receives a Z;, from processor 0. Both processors com- 
plete this "send and receive" and then compose the re- 
ceived subimage with the local subimage. Meanwhile, 
processors 2 (PI,,) and 3 (Pll) do a similar exchange of su- 
bimages. ln the second stage, processor 0 (Poo) sends its 
local Z,, to processor 2 (P10) and receives Zoo from processor 
2, where this incoming Zoo was composed earlier by proces- 
sors 2 and 3 in stage 1. Processor 2 does the converse op- 
erations in the opposite direction. Similar subimage ex- 
changes and compositions occur between processors 1 and 
3. At the end of the composition phase, each processor 
holds a final composed subimage equivalent to (1 /N) of the 
final image. 

Processor 0 Processor 1 Processor 2 Processor 3 

Stage 1 
zo* 

z I* 

Z"" 

%I 

Stage 2 

Fig. 3. Binary-swap using four processors. 

4.2 Version 0: Composition by Parallel Pipeline 

In our parallel pipeline (PP) approach, the Z-buffer at each 
processor is divided into N (Zo, Z,  . . ., ZN-2, ZN-,) portions 
for subimages. Processors are organized on a circular ring 
and are denoted as Po, PI ..., PN-l. Pnext and Pprev for a 
processor P, will be P(l+l)modN and P(l-l)modN To circulate and 
compose the subimages along the ring using the following 
algorithm, N - 1 stages are necessary. 
Parallel Pipeline Composition 
for all processors d o  in parallel 
1. : set current composed area Bcuruent as Z, in processor P, 
2 . : f o r j = l  t o N - 1 d o  
3.  : Each processor sends Bcurrent to its Pnext processor 
4. : Each processor receives a Biurrent from its Ppyev processor 
5. : set k = (i - j )  mod N 
6. : Each processor composes its incoming BiUruent with its 

7. . set newly composed Zk as Bcuvvent 
e n d d o  
e n d d o  

The subimages are accumulated in a pipelined fashion 
along the ring, with each processor involved in each stage. 

(PP, Sort-Last-Full) 

local Z,  

At the end, each processor P ,  holds a fraction of the final 
image at partition z (,+l)modN Fig. 4 shows an example of our 
scheme using three processors. The Z-buffer in each proces- 
sor is divided into three disjoint parts, Z,, Z,, and Z,. In 
stage 1, processor Po sends its Zo to processor 1 and receives 
a Z; from processor P,. Processor P, composes Z; with its 

local Z2 to form a new Z2. In stage 2, processor Po sends its 
new Z2 to processor P ,  and receives a Z; from processor P2 
to compose with its local Z,. The resulting new Z, in proc- 
essor Po is a portion of the final image. Similar subimage 
exchanges and compositions occur in a pipelined fashion 
between processors P I  and P2. 

Processor 0 Processor 1 Processor 2 

Stage 2 

Fig. 4. Parallel pipeline using three processors (1 x 3) 

For 2D mesh parallel computers, like the Delta and 
Paragon, we logically group the 2D mesh (Y x c) into many 
sub-rings. In the first phase of our algorithm, the PP com- 
position is executed along one dimension, say within each 
column independently (as a sub-ring of r processors). On 
each processor, the local Z-buffer is divided into r equal 
subimages. It takes Y - 1 steps to circulate the subimages 
along the ring and to accumulate the result in a pipelined 
fashion to produce temporary subimages distributed 
among the processors. After the first phase, each processor 
holds a temporary subimage that contains the accumulated 
result along the entire column. In the second phase, a simi- 
lar composition process is repeated, but now along each 
row independently (as a subring of c processors) using the 
subimage that all of the processors in that row share in 
common as the entire image. At the end of the second 
phase, the image has been composed, with the final image 
being distributed among all N processors. In total, our algo- 
rithm takes Y + c - 2 steps to form a final image on the 2D 
mesh parallel computers. 

4.3 Analysis and Experimental Evaluation 
Before we evaluate both the BS and PP parallel image compo- 
sition techniques, we need to point out that similar techniques 
have been used for global vector combining [29]. Barnett et al. 
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[29] named their techniques recursive-halving (similar to the 
BS) and a bucket scheme (similar to the PP). Here, we experi- 
mentally evaluate both schemes on the 2D mesh, assuming 
that a full image data of Z, is sent in each stage. 

In both schemes, the amount of data transferred per 
processor is approximately the same (about and Z is 
the size of image screen). This differentiates between the BS 
and PP methods from the balanced tree algorithms. The 
tree algorithms require processors to send an amount of 
data equal to a full Z or many times Z [15], [ H I .  We note 
that the BS takes optimal (i.e., log N) stages in composition 
and the PP takes more stages (i.e., Y + c - 2). However, in 
the BS, there will be many number of messages contending 
for a single network communication link on a mesh- 
connected architecture. Unlike in hypercubes, the BS cannot 
avoid contention in 2D mesh because there are not enough 
communication links. With image resolution ranging from 
64 x 64 (low resolution) to 1,024 x 1,024 (high resolution), a 
full image might take 32K to 8M bytes. When this amount 
of or larger messages transfer on the links or more proces- 
sors are used, the saturation on the links will degrade BS's 
communication performance severely. In contrast, larger 
startup costs (i.e., Y + c - 2 steps) in PP becomes less signifi- 
cant within or beyond this range of image resolutions. 

Next, we experimentally evaluate the above observation 
and show that the PP scheme is better than the BS scheme, 
using different resolutions and mesh sizes, even though the PP 
needs more composition stages. In our implementation, each 
pixel value is eight bytes long and consists of a float z depth 
value (4 bytes) and a color quadruple (red, green, blue, a l p h ;  4 
bytes). In practice, we found that the bandwidth of communi- 
cation network in y direction is greater than that in x direction 
on the Delta. Therefore, we prefer performing composition in 
the y direction first for larger data (i.e., 5) and then the x di- 
rection (i.e., ). We performed our experiments for different 
mesh sizes and image resolutions ranging from 64 x 64 to 512 
x 512. Fig. 5 shows the composition timings for different image 
resolutions using mesh sizes of 16 x 32 and 4 x 4. This figure 
clearly indicates that the PP performs better than the BS. For 
the PP, performance ranges from 0.02 to 0.55 seconds per im- 
age. In comparison, the BS scheme requires 0.03 to 1.7 seconds 
for the same size of images. The BS scheme performs well only 
at lower resolution (i.e., less than 64 x 64) images. 

On the Delta, we can simply model the communication 
cost to send and receive a message of L bytes between two 
processors at any distance by a! + pdL, where a is the startup 
latency per message, pd is the transfer time per byte in the d 
direction (i.e., x or y). The cost of PP is defined as follows: 

Assuming p, = py, the typical values reported in [31] are 
a = 157,~  seconds and p, = 0.21,~ seconds. As described 
above, each pixel contains 8 byte value, for which we 
measured y =  0.58,~ seconds per pixel, where it includes a 
depth comparison and a 4 byte color quadruple assign- 
ment. Table 1 shows composition timings for rendering a 
512 x 512 image size using different numbers of processors. 
This table shows that the cost of PP is independent of the 

1.8, I 

mesh size 4 x 4 , BS - - - - 
mesh size 16 x 32, PP -'-*-*- 

1 2  mesh size 4 x 4 , PP -0-o-o- 'i 
"' 1 
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Fig. 5. Composition timings for rendering different image sizes using 
16 x 32 and 4 x 4 mesh sizes. 

number of processors and the predicted values from (1) 
accurately match our experimental results. For example, un- 
der 512 processors, our experimental timing is about 0.59 sec- 
onds and the prediction of (1)is 0.58 seconds. Therefore, (1) can 
provide a good prediction for the PP scheme and an upper 
bound for other sort-last-sparse implementation based on PP. 

TABLE 1 
THE IMAGE COMPOSITION TIMINGS (SECONDS) AT 512 ' 512 

RESOLUTION FOR BS, PP, AND THE PREDICTED VALUES BY (1) 

4.4 Version 1 : Optimization Using a Bounding Box 

In this subsection, we will present a scheme termed PPB in 
which several bounding boxes are used to optimize image 
composition. In the BS scheme, each processor is responsi- 
ble for large image areas in the early stages; however, pixels 
are sparse in these areas. This sparsity in composition area 
decreases as the composition proceeds, since more processors 
contribute to each area. On the other hand, in the PP method, 
since each composed area is bounded by O(Z/u)  in the first Y 
- 1 stages and by O(Z/N)  in the last c - 1 stages, the sparsity 
at each stage is relatively less than that for the BS scheme. 

We can avoid sending "inactive" pixels if we can look up 
an arbitrary active pixel very quickly, and determine the 
amount of active pixels on the fly. Special memory access 
hardware is usually necessary for this purpose [20]. Ma et 
al. [21] suggested using a bounding box at each composi- 
tion stage to include all active pixel areas. Each processor 
binary-swaps pixels only within this box. This technique 
works very well for volume rendering, since local su- 
bimages are rendered from a block of continuous voxel 
data. In the PP scheme, the local Z-buffer is divided into 
many fixed portions (i.e., Z / Y  or Z / N ) .  In our implemen- 
tation, we used a single bounding box for each portion at 
each composition stage. For example, in Fig. 6, our im- 
plementation used two smaller bounding boxes for these 
two disjoint parts (Z, and Z,) and empty bounding boxes 
for Z1 and Z2. We call this implementation PPB scheme. 

(PPB, Sort-Last-Full) 
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I I \ I ~ T W O  compact bounding boxes 

Fig. 6. More compact bounding boxes for different areas in the parallel 
pipeline method. 

In general, a bounding box is not a single contiguous 
block of memory; rather, it is composed of several smaller 
contiguous strips of pixels, one strip for each scanline 
which intersects a bounding box. To communicate the con- 
tents of the bounding box to another processor, additional 
overhead in data copying or setup is required. These extra 
costs include copying the contents of the bounding box into 
a contiguous buffer and handling of multiple composition 
buffers. Later, we will experimentally show that these costs 
do not offset the performance with bounding box optimi- 
zation, but yield better rendering rate than PP does. 

4.5 Version 2: Direct Pixel Forwarding 
(DPF, Sort-Last-Sparse) 

For the PP with the bounding box, the subimages are accu- 
mulated along each dimension of the 2D mesh. The size of 
the bounding box can grow gradually, while its upper bound 
is O(Z/r) or O(Z/N). Here, we present a direct pixel for- 
warding (DPF) scheme without sending sparse pixels. In the 
DPF, a processor at each stage directly sends a subimage Z, to 
that processor where the final Z,  is stored. The sending se- 
quence is ordered to avoid link contention. The DPF com- 
poses the subimages using the following algorithm. 
Direct Pixel Forwarding Composition 
for all processor P,s do in parallel 
1. :for j = 1 to N- 1 do 
2. . Each P, sends its Z(l+]+l)modN to processor P(z+l)modN 
3. : Each P, receives a Z;l+l)modN from processor P(l-])modN 

4. : Compose the local Z(2+l)mocw with the incoming Z;,+l)modN 
enddo 
enddo 

In the DPF scheme, each processor keeps a fraction of the 
Z-buffer and maintains many active pixel queues for pixel 
forwarding. When an “active” pixel does not belong to the 
local Z-buffer, this ”active” pixel information including x, y 
coordinates, color quadruple, and z depth value will be 
inserted into the corresponding pixel queue. In each com- 
position stage, the processor sends one active pixel queue 
out to the corresponding processor for composition. Fig. 7 
shows an example of the DPF using 1 x 4 processors. In 
stage 1, processor Po sends its active pixel information 10- 
cated in Z, to processor PI and receives one pixel informa- 

tion containing Z; from processor P,. Processor Po com- 
poses Z; and its local Z,. In stage 2, Po sends its 2, to proc- 
essor P, and receives a Z; from P,. In stage 3, Po sends its Zo 
to processor P, and receives a Z; from PI. Similarly, the 
active pixel information exchanges and compositions occur 
in this fashion for processors PI, P,, and P,. 

2 3  i: j stage 1 - 
stage 2 

inn 

Fig. 7. Direct pixel forwarding composition using four processors (1 x 4). 

Again, for 2D mesh parallel architectures, we logically 
group the 2D mesh (Y x c) into many sub-rings. In the first 
phase, the DPF is executed along the y dimension which 
takes Y - 1 steps. It takes another c - 1 steps along the x di- 
mension in the second phase. A variant of the DPF is that 
we can limit the length of any active pixel queue, and if any 
active queue is full, during rendering, we can send out the 
active pixels asynchronously to reduce the amount of active 
pixels to be transferred before the first phase. This variant 
will be described in detail in a later section. In fact, accord- 
ing to Cox and Hanrahan’s [20] and Tay’s results [32], the 
probability that local pixel depth exceeds 1 is small. There- 
fore, we can safely send pixels out in the first phase because 
the local Z-buffering will not reduce data traffic very much. 
On the other hand, as processors receive active pixel infor- 
mation from other processors during rendering time or in 
the first phase, we need to Z-buffer them and cannot send 
data out until the second phase starts. This intermediate Z- 
buffering can reduce some data traffic occurring in the sec- 
ond phase. An example of the intermediate Z-buffering is 
shown in Fig. 8. In this example, processors Po, P,, and P, 
send A, B, and C numbers of pixels, respectively, to PI after 
the first phase. The number of final composed pixels (A, B, 
C, and D) is at most equal to their summation, and is al- 
ways expected to be less due to the overlapping of some Z 
values. The more processors that contribute to the com- 
posed area, the higher the probability that pixel depth ex- 
ceeds one. Therefore, in the second phase, the amount of 
data transferred can be reduced. The amount of reduction is 
dependent on the average original pixel depth. 
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Fig. 8. The effect of intermediate Z-buffering on data traffic. 

There is a sort of unifying principle that's shared be- 
tween the DPF and Ellsworth's two-step sending idea [12]. 
In both cases, the buffered data goes to an intermediate 
node before being forwarded to its final destination, and in 
both cases the communication complexity is reduced by not 
sending the data directly to its final destination. However, 
there are several major differences between these two tech- 
niques. First, we are sending buffers of pixels instead of 
sending buffers of triangles as Ellsworth did in his sort- 
middle renderer. Second, our composition steps are along 
rows and then along columns, whereas his were between 
rectangular regions of processors and then within regions. 
Third, in his two-step sending method, the polygons are 
sent twice, instead of once, before they reach the final des- 
tinations. This means the number of polygons transmitted 
is doubled. However, as described above, the intermediate 
Z-buffering in our DPF scheme can reduce some data traffic 
occurring in the second phase. So, the number of pixels 
transmitted can be less than a factor of two. 

4.6 Version 3: DPF with Static Load Balancing 

In the DPF scheme, data exchanges and pixel composi- 
tions can be unbalanced due to uneven active pixel distri- 
bution. We can alleviate this problem to some extent by 
using a static load balancing and we call this the DPFL 
scheme. In the first phase, we can assign horizontal lines 
among the processors in an interleaved fashion. This is 
followed by assigning vertical lines among the processors 
in the second phase. In a 16 x 32 2D mesh Delta and for a 
512 x 512 or higher resolution images, the number of 
processors in each dimension is not high, and thus proc- 
essors have enough interleaved lines to even out the im- 
balances in each phase. From our experience, we only re- 
quire interleaving the scan-lines in the first phase. Two 
phase interleaving does not make much difference in the 
speed of composition. Use of interleaving to provide load 
balancing in the sort-last-sparse strategies like the DPFL 
scheme has been mentioned in the literature [61. In a later 
section, experimental results will show that the inter- 
leaved composition regions perform better than coherent 
regions (consecutive scanlines) in our implementation. 

(DPFL, Sort-Last-Sparse) 

4.7 Version 4: DPF with Task Scheduling 

In this subsection, we present a sort-last-sparse rendering 
scheme termed DPFS (DPF with task scheduling between 
communication and rendering work) with an attempt to re- 
duce the communication time. The task scheduling scheme 
presented here is similar to that in 191. We separated the ren- 
dering computation completely from the global pixel compo- 
sition in earlier schemes. Pixel merging cannot begin until 
each processor has rendered all local polygons. For large 
system, such a disjoint approach leads to large messages 
must be sent at about the same time. This will likely leads to 
high communication overhead [9]. To reduce message sizes, 
we can schedule both communication and rendering work by 
overlapping them as was done in [9]. In addition, all earlier 
schemes under utilize the communication links on the Delta. 
Each phase of earlier versions exploits communication l i nks  
only in one direction (x or y dimension separately). Based on 
the above observations, the scheme termed DPFS is proposed 
and a pseudocode version of it is described as follows: 
DPFS 
while (local triangles are not yet rendered) 
{ 
select a local triangle; 
render it into the A-type or the B-type buffers if its 
rendered pixels are outside local processor's 
assigned region, and send buffer if full; 
if incoming messages exist 
for each incoming message 
( 
if message needed to be forwarded in the second phase of 
the DPF 
then unpack this message into the B-type buffers; 
else Z-buffer this message with local region; 
1 
1 
flush all A-type buffers to other processors in the order of 
DPF's first phase; 
while (the A-type messages remain to arrive from other 
processors) 
{ 
if message needed to be forwarded in the second phase of 
the DPF 
then unpack this message into the B-type buffers; 
else Z-buffer this message with local region; 
I 
flush all B-type buffers to other processors in the order of 
DPF's second phase; 
while (the B-type messages remain to arrive from other 
processors) 
{ 

Z-buffer this message with local region; 
1 
synchronize; /* make sure all processors finish this frame "/ 

In the DPFS scheme, there are two types of message 
buffers which consist of (r - 1) A-type message buffers and 
(c - 1) B-type message buffers. The A-type message buffers 

(Sort-Last-Sparse) 
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store both pixel values and (x, y) coordinates of correspond- 
ing regions in the first phase of the DPF scheme, and the B- 
type message buffers are in charge of the second phase. In the 
first while loop, the rendered pixels of each local triangle can 
be temporarily stored either in the A-type buffers (i.e., these 
pixels do not belong to local processor’s region in the first 
phase of the DPF) or in the B-type buffers (i.e., these pixels do 
not belong to local processor’s region in the second phase of 
the DPF) or can be Z-buffered in local processor’s assigned 
portion of the final image. We implement our scheme by 
asynchronous routines for message send and receive, and 
these can be used to overlap message transfers with both 
triangle rendering and pixel merging computations. We can 
find these overlappings within these three while loops. For 
example, in the second while loop, if there are still A-type 
messages remaining we post an asynchronous receive at once 
after a message is received, and then deal with this incoming 
message. Therefore, by tlus means, we hope to overlap com- 
munication time with computation as much as possible. 
These overlappings do not exist in the earlier schemes. Since 
both the A-type (traveling in the y dimension) and the B-type 
(traveling in the x dimension) messages can coexist within 
the first two while loops, we can exploit communication links 
of 2D mesh as much as possible. Unlike the previous ver- 
sions, groups of pixel message are sent asynchronously and 
are not delayed until the end; therefore, shorter messages are 
needed to be flushed (i.e., network congestion can be less). 

We do not leave the first while loop until all local trian- 
gles are rendered. After this stage, we flush each A-type 
message with a flag indicating it is the last A-type message 
from a sender to other receivers. Similarly, we flush all B- 
type messages with flags after the second while loop. To 
exit the second and third while loops, we must guarantee 
that all last A-type (exits from the second) and B-type (exits 
from the third) messages have arrived from other senders. 
This arrangement ensures that the third loop can start only 
after the exit from the second loop. It means that each proces- 
sor must completely finish its image composition in the y 
dimension in the second loop before ending the composition 
in the x dimension. There is no A-type message arriving in 
the third loop, but both the A-type and the B-type messages 
can arrive in the first two loops. In all, each processor needs 
to receive Y - 1 number of the A-type last messages and c - 1 
number of the B-type last messages, respectively. 

5 PERFORMANCE EVALUATION 
AND EXPERIMENTAL RESULTS 

To perform our experiments, we used five datasets from 
Eric Haines’s SPD database [30]. Table 2 shows the sizes 
of the different datasets in our tests. These datasets repre- 
sent different object distributions in the image screen with 
sizes ranging from 150K triangles to 500K triangles. Figs. 
9, 10, 11, 12, 13 show the rendering results for the five 
scenes. In our implementation, each large group consists 
of 2,000 triangles and the data for each triangle is 48 bytes. 
The rendering rate measured here does not count the time 
neither to save computed pixels nor to reconstruct the 
final image and to input data from disk. Similar meas- 
urements were performed in 191, [121. 

Fig. 9. Teapot. 

Fig. 10. Lattice. 

Fig. 11. Tetra. 

Fig. 12. Tree. 

Fig. 13. Mountain. 
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Scene Number of Triangles 

Mountain 524,288 (512K) 
Tree 425,776 (416K) 
Tetra 262,144 (256K) 
Lattice 235,200 (230K) 
Teapot 159,600 (155K) 

TABLE 2 
NUMBER OF TRIANGLES AND DATA SIZE 

OF THE FIVE TEST SCENES 

Size of 
Dataset 

24.0 Mbytes 
19.5 Mbytes 
12.0 Mbytes 
10.7 Mbytes 
7.3 Mbytes 

m 
e 
a - 

+ 
0, 

E 8 -  

B 
1 

a 6 -  

d 4 -  

D 

2 -  

TABLE 3 
SOME SCENE STATISTICS OF FIVE TEST SCENES 

IN 20 ZOOM-IN SEQUENCES 

Scene 
Mountain 0.35 to 2.15 

0.04 to 1.30 
Tetra 0.12 to 1.01 
Lattice 0.14to 1.50 

0.08 to 0.90 

Mountain 

Lattice - o ~ o ~ 

Teapot - - - - -  

These five scenes were run on different number of proc- 
essors, rendering the image screen at 512 x 512 resolution 
without anti-aliasing. Each scene was illuminated by a sin- 
gle light source and shaded by Gouraud shading. The re- 
ported timing was obtained by averaging the rendering 
times for 20 frames. We controlled the viewpoint to allow 
”zoom-in” effect in these 20 frames. The purpose of this is 
to represent a more general image distribution. In our 
evaluation, we start by rendering an image whose objects 
are projected close to the center of the screen, and continu- 
ously zoom-in until objects show in most areas of the 
screen. The different image distributions give a fair com- 
parison study. Similar measurements were performed in 
[12]. In addition, some scene statistics of five test scenes in 
these 20 frames is given in Table 3, and the Appendix 
shows some of the ”zoom-in” sequences to show what was 
actually rendered (”Teapot” scene, for example). In Table 3, 
the range in depth complexity is for the scenes as the view 
was zoomed. The triangle sizes for the ”zoom-in” se- 
quences of each scene range from subpixel size to 3.5 pixels 
on the average. Note that we handle subpixel sized trian- 
gles by discarding them in our implementation. 

Fig. 14 and Fig. 15 show the rendering rates of the PP 
scheme and the PPB scheme. The rendering rate increases as 
more processors are used. Using 512 processors to render five 
test scenes, the PP scheme achieves 0.25 - 0.8 million trian- 
gles/sec. On the other hand, the PPB scheme achieves 0.5 - 
1.3 triangles/sec. Without bounding box optimization, the ren- 
dering rate of the PP scheme is slowed down by 20% - 50%, due 
to the differing distributions of sparse pixels in different 
scenes. Therefore, it is very important to take advantage of 
sparse pixels to achieve high rendering rate. Using bounding 
box optimization, many pixels are deleted at earlier stages. 
Thus, we get a better rendering rate. Using 16 x 32 proces- 
sors, the PPB peak performance is about 1.3 million trian- 
gles/sec for the ”Tree” scene while our lowest performance is 
about 500 K triangles/sec for the ”Teapot” scene. The ren- 
dering rate for the other scenes is about 1 million trian- 
gles/sec. We note that additional costs described previously 
in PPB scheme are less significant compared with perform- 
ance improvement obtained by the use of bounding box. 

Tree: - * - * - 

Mountain: ....... 

Lattice: - o - 0 - 

Tetra ; - + ~ + 

Tree: - * - * - 

Mountain: ....... 

Lattice: - o - 0 - 

Tetra ; - + ~ + 

_ _ - - -  

0 ‘  I 
1 oo IO’ 1 o2 1 o3 

Fig. 14. The rendering rates for five test scenes using different num- 
bers of processors and the PP scheme. 
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Fig. 15. The PPB rendering rate for five test scenes using different 
numbers of processors. 

Number of processors 

Fig. 16 and Fig. 17 show rendering rates for the other 
two versions: DPF and DPFL. For the DPFL, the composi- 
tion speed is also slightly improved by the static load bal- 
ancing and thus yields better rendering rate. Using 512 
processors for five test scenes, the DPF scheme achieves 
2.5 - 4.0 million triangles/sec and the DPFL scheme 
achieves 2.8 - 4.0 million triangles/sec respectively. These 
two performance graphs (Fig. 16 and Fig. 17) show that our 
performance is much better than those of earlier versions. 
This superior performance is obtained from significant im- 
provement in the composition speed. Fig. 17 shows that the 
performance does not drop off for up to 512 processors. 
However, we can expect the performance to begin to de- 
cline beyond 512 processors. As the rendering time ap- 
proaches zero, the total time is dominated by the composi- 
tion time, which will gradually increase with increase in 
number of processors and finally slow down the overall 
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4- 

rendering rate. Furthermore, since the composition time 
remains constant, our rendering rate wouId be better for the 
same size image if we had a larger number of triangles: 
there would he more rendering computation, with the same 
composition cost. The rendering rates for the "Tree" and 
the "Mountain" scenes are better than those of the other 
three scenes. In the "Tree" scene, we achieve high peak per- 
formance due to large number of "inactive" pixels. As 
mentioned earlier, there is some similarity between DPF 
scheme and Ellsworth's work [12]. He achieved a peak ren- 
dering rate of about 2.8 million triangles per second on a 
806,640 triangle dataset using 256 processors. In most cases, 
the resulting performance on his test scenes begins to de- 
cline after 128 or 256 processors. For both DPF and DPFL 
schemes, the rendering rate do not decline for up to 512 
processors on our test scenes. 

1 
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Fig. 16. The rendering rate for five test scenes using different numbers 
of processors and the DPF scheme. 
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Fig. 17. The rendering rate for five test scenes using different numbers 
of processors and the DPFL scheme. 
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Fig. 18. The rendering rates for five test scenes using different num- 
bers of processors and the DPFS scheme. 
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Fig. 19. The rendering rates for five test scenes using different num- 
bers of processors and the DPFSL scheme. 

For the DPFS implementation, the sizes of both the A- 
type and the B-type message buffers are fixed at 4K bytes 
after several tests on five test scenes to tradeoff the exces- 
sive memory usage and message latency. In the first while 
loop, we need to switch between the rendering pipeline and 
message handling when a message arrives. After some 
number of n triangles are rendered, we check to see if any A 
or B-type message has arrived from other processors, using 
msgdoneO on the Delta. Each msgdone0 can add extra Zp 
seconds to the overall cost on the Delta. The question arises 
as to what should be the appropriate value of n. Our ex- 
periments show that it does not make much difference after 
a certain fixed value. The main concern in choosing n is to 
avoid very small values, in order to reduce the overhead 
generated from lots of calls to msgdone0, which checks for 
incoming pixel message. In our current implementation, we 
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TABLE 4 
COMPARISON BETWEEN THE DPF AND THE DPFS SCHEMES, 

AND THE DPFL AND THE DPFSL SCHEMES FOR THE “TEAPOT” SCENE 

TABLE 5 
THE COMPARISON IN RENDERING RATE BETWEEN THE DPFL 

AND THE DPFSL SCHEMES FOR FIVE TEST SCENES 

used a value of 30 for n. In the future, we would like to de- 
velop some performance model like Crockett and Orloff‘s 
work [91 and base on it to automatically determine the size 
of buffers and the value of n. We implement another vari- 
ant of DPFS scheme termed DPFSL with static load bal- 
ancing by assigning horizontal lines among the processors 
in an interleaved fashion. Fig. 18 and Fig. 19 show render- 
ing rates for both DPFS and DPFSL. Both DPFS and DPFSL 
schemes achieve the best rendering rate on ”Tree” scene at 
about 4.5 million triangles per second using 512 processors. 

Table 4 shows the total rendering time comparison be- 
tween DPF and DPFS, and DPFL and DPFSL for the 
“Teapot” scene. For large systems, DPFS outperforms DPF, 
and DPFSL outperforms DPFL significantly. For example, 
using 512 processors, DPFSL achieves performance gain by 
about 31% over DPFL. While load balancing is quite im- 
portant for better composition performance, we see that 
DPFS scheme performs better than DPFL using both 256 
and 512 processors. In large systems, communication over- 
head is more dominant on performance than pixel compo- 
sition computation. On the other hand, for small systems, 
both DPFS and DPFSL are slightly slowed down (at most 
5%) for the ”Teapot” scene using eight processors. This is 
due to extra overheads incurred in three while loops. These 
include buffer management, message detection, breaking of 
rendering pipeline by inserting message handling code in 
the first while loop and so on. In the case of small systems, 
the saving of message communication time cannot offset 
these factors and results in slight slow-down in perform- 
ance. Table 5 shows similar behavior in rendering rate 
comparison. Therefore, our results indicate that task sched- 
uling between communication and rendering work is quite 
important to achieve better performance on large systems. 

Table 5 shows that DPFSL consistently performs better 
than DPFL for large systems. DPFSL achieves a rendering 
rate of 3.5 to 4.6 million triangles/sec using 512 processors. 
In comparison with DPFL, we gain one half to one million 
triangles/sec in rendering rate. For example, replacing 
DPFL with DPFSL, the performance of rendering ”Tetra” 
scene changes from 3.4 to 4.6 million triangles/sec (i.e., per- 
formance gain of 13% to 30%). Surprisingly, unlike earlier 
versions, the performance of five test scenes do not vary sig- 
nificantly. Again, the rendering performance do not drop off 
for up to 512 processors in both DPFS and DPFSL schemes. 

Tables 6 and 7 show the time breakdown of our renderer 
for the ”Teapot” and ”Tree” scenes using four different 
composition schemes. We divide the total rendering time 
into two main parts: rendering time (Rend) that consists of 
exact rendering time and pre-processing time for composi- 
tion, and the composition (Comp) time. From both tables, 
we see that the rendering time decreases slightly linearly as 
the number of processors are increased for both scenes. 
Among these six versions, PP scheme needs least rendering 
time, since it needs less preprocessing time for composition. 
In each version of composition (except DPFS and DPFSL), 
the composition times for both scenes are almost constant, 
regardless of the number of processors. For both DPFS and 
DPFSL, the overlap between communication and rendering 
work causes the difference in composition time using dif- 
ferent number of processors. 

Table 8 shows the speedup and efficiency for DPFSL 
scheme. Both values are based on the times obtained from 
the minimum configuration that test scene can fit in. For 
example, it needs eight processors to hold all test scenes in 
DPFSL implementation. The DPFSL scheme scales well first 
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Rend 
Comp 
Total 
PPR 
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1.214 0.601 0.306 0.154 0.088 0.055 0.038 
0.534 0.574 0.578 0.579 0.578 0.580 0.587 
1.748 0.175 0.884 0.733 0.666 0.635 0.625 

TABLE 6 
THE TIME (IN SECONDS) FOR THE “TEAPOT” SCENE 

#prom I 8 I 16 I 32 I 64 I 128 I 256 I 512 11 
PP I 

I I Y  

Rend 
Comp 
Total 
DPF 

~~ 

1.395 0.705 0.367 0.196 0.107 0.066 0.045 
0.186 0.228 0.254 0.279 0.282 0.286 0.293 
1.581 0.933 0.621 0.475 0.389 0.352 0.338 

I, I 

Rend 
Comp 
Total 
DPFL 

1.360 0.691 0.354 0.179 0.092 0.049 0.024 
0.101 0.087 0.070 0.062 0.058 0.069 0.094 
1.461 0.778 0.424 0.241 0.150 0.118 0.118 

TABLE 7 
THE TIME (IN SECONDS) FOR THE “TREE” SCENE 

#procs I 16 I 32 I 64 I 128 I 256 I 512 11 
PP I 
Rend 
Comp 
Total 
PPB 

1433 0710 0368 0198 0113 0085 

2006 1285 0944 0776 0693 0668 
0573 0575 0576 0578 0580  0583 

Rend 
Comp 
Total 
DPF 

with about 98% efficiency, but decreases to about 50% 
(”Tree” scene) at the largest configuration of the Delta. As 
the size of the machine increases, one of the reasons for 
decreasing efficiency is that rendering load becomes un- 
even among the processors when fewer triangles are 
computed on each processor. The major cause is that 
composition time does not scale with increasing number 
of processors. With the increase in the number of proces- 
sors, the composition time of each scene is almost kept 
constant while the rendering time decreases, and when 
composition time becomes dominant or comparable to 
rendering time, the efficiency will decrease. 

1.588 0.812 0.416 0.221 0.120 0.061 
0.161 0.173 0.205 0.208 0.224 0.252 
1.749 0.985 0.621 0.429 0.344 0.313 

Table 9 shows the effects of the group interleaving data 
distribution on rendering performance using PPB scheme. 
We experimentally compared rendering rates using inter- 
leaving per-primitive and group interleaving data distribu- 
tion and our results show that the latter can lead to better 
rendering performance for the PPB scheme. For SPD data- 
base, the sizes of triangles contained in each scene are quite 
similar, and thus group interleaving does not incur too 
much load imbalances in rendering part as simple inter- 
leaving does. However, group interleaving tends to result in 
tighter bounding boxes for the sort-last-full system as dis- 
cussed in an earlier section. Therefore, for our test scenes, 
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#procs 
Lattice 
Int. 
Group Int. 
Tetra 

TABLE 8 
THE SPEEDUP AND EFFICIENCY DATA USING THE DPFSL SCHEME 

#procs I 8 1  16 I 32 I 64  I 128 I 256 I 512 U 
Sneedun I 

16 I 32 I 64 I 128 I 256 I 512 1 
146,605 I 263,367 I 428,025 I 614,500 I 768,501 1 878,431 
195,454 I 336,000 I 528,361 I 707,687 I 818,798 I 879,745 

~. 

Int. I 106,271 I 189,828 I 314,415 I 463,233 I 641,252 I 711,574 
Group Int. I 170,511 I 290,496 I 445,974 I 606,463 I 728,076 I 809,336 

group interleaving works better than per-primitive inter- 
leaving. The group interleaving technique needs to be inves- 
tigated further. For example, we can address questions like 
what’s the optimal size for a group? How does this behavior 
depend on the ordering of primitives in the input data set? 

As mentioned earlier in this section, we do not count the 
time to reconstruct the final image in our rendering rate 
measurement as was done in 191, 1121. In the case that we 
need to assemble image fragments scattered among the 
processors into a finished image, we achieve this by per- 
forming DPF-like scheme (message sending only but no 
message composition) in reverse order. Take Fig. 7, for ex- 
ample, in the end of composition stage, processor P, will hold 
Z(z+l)modN. As the image gathering starts, PI, P,, and P3 all send 
their portion of subimage to Po. For 2D mesh architecture, we 
perform similar routine in the x dimension first and then in 
the y dimension. The cost of gathering 512 x 512 resolution 
image using different number of processors is given in Ta- 
ble 10. The cost of image reconstruction varies from 0.051 to 
0.082 seconds for different number of processors. For small 
systems, this overhead will not affect the overall rendering 
rate too much (less than 10% on five test scenes). But for 
large systems, it can even slowdown the rendering rate by 
about a factor of two (take ”Teapot” scene for example). 

TABLE 10 
THE IMAGE RECONSTRUCTION TIMINGS (SECONDS) AT 51 2 X 51 2 

RESOLUTION USING DIFFERENT NUMBER OF PROCESSORS 

#procs I 16 1 32 I 64 I 128 I 256 I 512 
Gathering I 0.051 I 0.054 I 0.062 I 0.074 I 0.080 I 0.082 

6 CONCLUSIONS AND FUTURE WORK 

In this paper, a sort-last parallel polygon rendering system 
is described for use on a 2D mesh connected multicomputer 
system. We implemented a family of image composition 
schemes for the sort-last rendering system. We start from a 
sort-last-full image composition scheme, termed PP, and 

present many variants of it to provide very fast pixel com- 
position. All proposed schemes consist of two phases on a 
2D mesh architecture (i.e., Y x c processors). In the first 
phase, our schemes are executed along the y dimension 
which needs Y - 1 steps. It takes another c - 1 steps along 
the x dimension in the second phase. These alternatives of 
the PP include bounding box optimization (sort-last-full, 
PPB)), sort-last-sparse (coherent regions and interleaved 
composition regions, DPF and DPFL)) and task scheduling 
between communication and rendering (DPFS and DPFSL). 

We experimentally compared all proposed methods on 
Caltech‘s Intel Delta, a 512 processor multicomputer sys- 
tem. The exceptionally superior performance of the DPFS 
and the DPFSL schemes provides evidence that sort-last- 
sparse strategies are better suited for software implementa- 
tion on general purpose multiprocessor systems. Our ex- 
perimental results show that schemes based on interleaved 
composition regions perform better schemes with coherent 
regions. In large systems, scheduling the tasks of rendering 
and communication can improve the sort-last-sparse 
schemes significantly while incurring small overheads in 
buffer management. We also evaluated a well-known bi- 
nary-swap composition scheme (sort-last-full) and showed 
that binary-swap could not perform better than the PP 
(sort-last-full) on the 2D mesh Intel Delta. We used five 
public domain datasets to evaluate our implementation. 
With 512 x 512 resolution image, our final version, DPFSL, 
achieved the peak performance close to 4.6 million triangles 
per second which is higher than any other multicomputer 
implementation known to the authors. 

There is scope for further work in several directions. 
First, we plan to accommodate features such as anti- 
aliasing and transparency. Second, we will find suitable 
load balancing scheme to even out load imbalances in- 
curred in the rendering part. In sort-last class schemes, load 
balancing can become an important issue as the sizes of 
polygons have large disparities. Such datasets are common 
in scientific applications with nonuniform grids: grid cell 
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sizes may vary over several orders of magnitude, and poly- 
gons derived from these grid cells exhibit similar variations 
in size. Third, our composition scheme can be exploited for 
parallel volume rendering problem and will be experimen- 
tally evaluated in the near future. 
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