
202 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 2, NO 3, SEPTEMBER 1996

Tong-Yee Lee, C.S. Raghavendra, Senior Member, /€E€, and John B. Nicholas

Abstract-In a sort-last polygon rendering system, the efficiency of image composition is very important for achieving fast
rendering. In this paper, the implementation of a sort-last rendering system on a general purpose multicomputer system is
described. A two-phase sort-last-full image composition scheme is described first, and then many variants of it are presented for 2D
mesh message-passing multicomputers, such as the Intel Delta and Paragon. All the proposed schemes are analyzed and
experimentally evaluated on Caltech’s Intel Delta machine for our sort-last parallel polygon renderer. Experimental results show that
sort-last-sparse strategies are better suited than sort-last-full schemes for software implementation on a general purpose
multicomputer system. Further, interleaved composition regions perform better than coherent regions. In a large multicomputer
system, performance can be improved by carefully scheduling the tasks of rendering and communication. Using 512 processors to
render our test scenes, the peak rendering rate achieved on a 262,144 triangle dataset is close to 4.6 million triangles per second
which is comparable to the speed of current state-of-the-art graphics workstations.

Index Terms-Sort-last-full, sort-last-sparse, polygon rendering, image composition, message-passing multicomputer system.

4

1 INTRODUCTION
OLYGON rendering (Z-buffer) provides faster rendering P speed, acceptable photorealism, and is supported by

most commercial graphics workstations. A standard poly-
gon rendering (Z-buffer) pipeline is shown in Fig. 1. There
are two major processes occurring in this pipeline: namely,
geometry (G) processing and rasterization (R) processing.
Geometry processing starts by reading polygon primitives
from an input database and then a modeling transforma-
tion is performed on each primitive to place each primitive
on the right position of 3D space. After this transformation,
the vertices of the polygons are illuminated by different
light sources, transformed from 3D world space to 2D
screen space, and truncated by a clipping pyramid. Some
polygons can be clipped out without the need for further
processing because they lie completely outside the viewing
frustum. In the rasterization process, the colors of each
pixel are calculated from the set of shaded 2D polygon
primitives. The polygons are first scan converted to pixel
values and then a Z-buffer hidden surface elimination is
performed to determine their visibility.

Graphics rendering is computationally very intensive.
With the massive volume of data being created by the sci-
entists everywhere, there is a need to provide a faster ren-
dering mechanism to visualize data. However, algorithmic

0 T.-Y. Lee is with the Department of Information Management, Nantai

CS, Raghauendra is with the School of Electrical Engineering and Corn-

* E-mail: raghu@eecs.wsu.edu.
* J.B. Nicholas is wiih the Environmental Molecular Sciences Laboratory,

An earlier version of this paper appeared in the Proceedings of the Second Par-
allel Rendering Symposium, 2995.
For information on obtaining reprints of this article, please send e-mail to:
transucg@computer.org, and reference IEEECS Log Number V96024.

College, Tainan County, Taiwan, Republic of China.

puter Science, Washington State University, Pullman, WA 99164.

Pacific Northwest Laboratory, Richland, W A 99352.

improvements in rendering alone cannot meet the growing
needs of scientific visualization. Fortunately, graphics ren-
dering presents rich parallelism which is highly suitable for
parallelization. There are two main approaches to exploit-
ing the parallelism present in graphics rendering, namely,
object based parallelism and image screen parallelism. Sub-
sets of graphics primitives to be rendered, or regions of
screen, can be partitioned among many processors. The first
form is termed as object parallelism and the second form is
termed as image parallelism 121. By using parallel machines
it is possible to significantly reduce the rendering time.

Parallel rendering is very useful for other reasons as well
[31. Scientific simulation datasets are generated on large par-
allel computers and their sizes range from hundreds of mega-
bytes to hundreds of gigabytes. By performing graphics ren-
dering on the same parallel machine, massive data shipment,
often across a network with limited bandwidth, is avoided
between that parallel machine and a graphics workstations. As
a result, researchers can generate and visualize larger datasets,
for example, by performing simulation for more number of
time steps. Therefore, scientific simulation can be analyzed
and visualized in more details to explore new phenomena.

There exist many parallel techniques for polygon ren-
dering. Whitman’s book [4] surveys multiprocessor ren-
dering methods. In this paper, we will only present the
most significant and recent work using parallel computers
in the following section.

Geometry Transformation

3D polygons ZD polygons pirds

Fig. 1. Standard graphics pipeline.

1077-2626/96$05.00 01996 IEEE

mailto:raghu@eecs.wsu.edu
mailto:transucg@computer.org

LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS 203

2 RELATED WORK ON PARALLEL
POLYGON RENDERING

There are several techniques to parallelize a polygon ren-
dering algorithm. A straightforward approach is to directly
map each stage of the pipeline into hardware [5]. Many
commercial graphics workstations are built this way. Mol-
nar et al. [6] describe a framework for parallel polygon ren-
dering where the sort and redistribution of data occurs
when transforming 3D objects (polygons) to 2D screen
space (pixels). They delineate three types of parallel ren-
dering algorithms: sort-first, sort-middle (image-oriented)
and sort-last (pixel-oriented) (see Fig. 2).

randomly randomly randomly
distributed distributed distributed

Assemble final Sort(pri0ritize) at
each pixel to form

sort Last Sort First Sort Middle
dynamic database screen-space

redistribution subdivision
image composition

Fig. 2. Classification of parallel polygon rendering.

In the sort-first algorithms, each polygon is first pre-
processed to determine which screen region it will be pro-
jected on. The primitive is then sent to the processor corre-
sponding to this projected region, which performs all pipe-
line operations on that polygon. There is limited interest in
the sort-first algorithms, because they are very vulnerable
to load imbalances, caused by both geometry and rasteriza-
tion processing. However, for adaptive image-space parti-
tion schemes, the information from a sort-last preprocess-
ing pass can be used to alleviate some of the load imbal-
ances [7], [8] . In addition, the coherence occurring between
two consecutive frames can be exploited to reduce the
polygon redistribution communication cost.

Most previous work focused on the sort-middle parallel
algorithm. In this class of algorithms, each polygon’s ge-
ometry transformation is first done locally, then the algo-
rithm determines where the transformed polygon will be
sent. The polygon redistribution is the main contributor to
the communication cost. In the sort-middle algorithms, the
geometry processing is generally balanced among the proc-
essors, while the rasterization part often causes load imbal-
ances due to the nonuniform distribution of polygons on
the screen.

Crockett et al. [9], proposed a sort-middle method on the
Intel iPSC, which statically assigns consecutive scan-lines to
processors. Many ways of overlapping the rendering exe-
cution time with the polygon redistribution time were in-
vestigated to reduce the overall communication cost. Also,

they developed a performance model to determine the
buffer size that minimizes the total communication over-
head. No load balancing scheme was exploited in their
scheme, and thus their parallel renderer incurs serious per-
formance slowdown for nonuniform scenes.

Whitman [lo1 and Roble [ll] investigated different
adaptive screen division schemes to balance rasterization
workloads. Both 1101 and 1111 complete the geometry trans-
formations for all the polygons before starting to adaptively
divide screen space (i.e., a global synchronization is re-
quired). Therefore, the number of polygons belonging to
each region can be known before splitting the screen.

In Roble’s work, the screen is recursively partitioned
until each processor has an even rasterization load to per-
form. The number of polygons in a region is used as a heu-
ristic to determine the amount of work in a region. This
algorithm was implemented on an Intel iPSC hypercube.
This method is good for smaller number of processors.
However, when the number of processors increases and the
assigned regions become small, the overhead in partition-
ing can be significant.

On the other hand, Whitman implemented his algorithm
on a shared memory BBN TC2000 parallel computer. The
load balancing is achieved by a task adaptive domain de-
composition scheme which involves dynamic partitioning
of rectangular pixel area tasks. The number of scanlines left
to work is a heuristic for workload. When a processor fin-
ishes its assigned scanlines, it will steal half the number of
scanlines from the maximally loaded processor. As larger
processor configurations are used, the author’s implemen-
tation analysis indicates that load imbalance is the major
cause of performance degradation.

Ellsworth [12] proposed a method to balance rasteriza-
tion workload for the current frame using information from
the previous frame on the Intel Delta. Between two con-
secutive frames, a processor is responsible for gathering
load information, computing load assignments (done via a
greedy multiple-bin-packing scheme) and broadcasting
assignments to other processors. Ellsworth also proposed a
two-step sending scheme to reduce the number of messages
when a large number of processors are used. The rendering
rate is also extremely enhanced by writing the code in as-
sembly language by which special graphics instructions as
well as dual-instruction mode can be well exploited on the
Intel 860 processor. As a result, this renderer achieves a
very high rendering rate.

Another class of parallel rendering is the sort-last algo-
rithm. Generally, this class of algorithms delay the data sort
until the geometry processing and the rasterization of all
polygons are completed. The polygons that constitute a
scene are then evenly partitioned and each partition is as-
signed to a processor. After each processor finishes ren-
dering its allocated polygons, the subimages created by the
processors are merged into the final image. There are sev-
eral possible variants of it. For example, the sort can be per-
formed on-the-fly as pixels are generated, or can be per-
formed incrementally as one portion of the screen is ren-
dered before proceeding to another.

There were many previous efforts at the sort-last paral-
lelism. A simple method is to order all N renderers to send

204 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 3, SEPTEMBER 1996

their subimages one by one to a destination composition
processor. This technique was adopted in two commercial
graphics architectures [131, [141. Molnar 1151 developed his
high speed rendering system, called PixelFlow, using a
pipeline style image composition scheme. In PixelFlow,
there are N renderer processors. After all renderers finish
their subimages, PixelFlow takes N - 1 pipeline steps to
compose the subimages. The composed subimages at step Y

will be forwarded by renderer Y to renderer Y + 1 to com-
pose with the subimage created in renderer Y + 1.

An alternative scheme is to compose the subimages in a
balanced tree [161, [171, 1181. In the composition tree, all
renderers are located at leaf nodes. The composition proce-
dure moves from the leaves to the root. Each composer at
level i will compose all subimages from its children nodes
at level i + 1. More processors become idle as the composi-
tion process proceeds to the root. Li and Miguet [191 pro-
posed a different tree composition scheme on a transputer-
based system, which can be reconfigured as a binary or
ternary tree composition structure. Their polygon renderer
was based on a scan-line Z-buffer scheme. Each processor
performs both rendering and composition tasks. As ren-
dering is completed, children nodes forward scan lines to
their parent nodes, and parent nodes compose the incom-
ing scan-line images. Both rendering and composition tasks
are performed in a pipelined fashion along the tree. Finally,
the root of the tree gathers the final composed image. The
composition pipeline can be potentially slowed down by a
few heavily loaded processors. The advantage of tree-
merging schemes described above is that the completed
image is available in its entirety at the root of the tree when
the composing process completes. There is no need to
gather subimages scattered among the processors.

Recently, Cox and Hanrahan 1201 proposed a snooping
protocol, adapted from the design of cache memory in
tightly-coupled systems, to compose the subimages. Like
Molnar’s pipeline composition network, the snooping pro-
tocol requires N - 1 composition steps to combine all su-
bimages from N renderers. However, in each step, one
processor broadcasts only its ”active” pixels in its local Z-
buffer to all other processors. A pixel location is ”active” at
a given processor if at least one pixel has been rendered to
it; otherwise it is ”inactive.” When other processors receive
the broadcast, they will Z-buffer the local pixels, and the
hidden pixels are deleted from the local active pixel list.
Cox also developed a traffic model for this snooping
scheme, and concluded that it can considerably reduce the
composition data traffic.

As mentioned above, most sort-last techniques send the
entire local Z-buffer data in each composition step [15], [18].
Molnar et al. [61 termed these techniques as sort-last-full
algorithms. In contrast, algorithms are termed sort-last-
sparse, if only active pixels are sent, as in Cox’s snooping
algorithm. They pointed out that the sort-last schemes need
more sophisticated composition hardware or other schemes
to reduce the large communication overhead, in particular,
for supporting anti-aliasing by oversampling. Communica-
tion is difficult to scale well as system size increases.

Ma et al. [211 and Karia [22] described similar image
composition techniques for parallel volume rendering. The

so-called binary-swap composition technique was imple-
mented on the fat-tree architecture of the CM5 [21]. Karia
U11 implemented his scheme on the 2D mesh Fujitsu
APlOOO parallel computer and termed it, the divide-and-
conquer composition technique. Both techniques exploited
bounding box optimization to speed up composition time
and both are well suited for parallel polygon rendering (Z-
buffer). Li et al.’s [25] perspective terrain renderer belongs
to the sort-last-full class, and recently also used a binary-
swap method in their implementation [26], but only
merged the active pixels instead of a full image.

Ortega et al. 1271 changed the standard graphics pipeline
stages to fit the SPMD programming model on the CM-5.
They used the virtual processor concept provided in the
CM-5 to develop a data parallel polygon renderer. They
achieved load balancing by continuously mapping the
available data elements to the idle virtual processors. They
also provided some rules to indicate if mapping is further
required. Their polygon renderer belongs to the sort-last-
sparse class. The individual pixels are routed to the right
virtual processor which is in charge of that particular screen
region. This routing is accomplished through the sendmax
operator available on CM-5. Later, Hansen et al. also de-
scribed this polygon renderer and the other two renderers,
namely sphere renderer and volume renderer in [28]. On
CM-5, they used the CMMD function CMMD-reduce-v, with
a minimum operator, to compose all Z-buffers in logarithmic
time for the sphere renderer. As for the volume renderer,
they exploited binary-swap method for composing images.

In the following sections, we will first outline our paral-
lel polygon renderer built on the 2D mesh Intel Delta par-
allel computer. Then we describe our sort-last-full image
composition scheme and another well-known divide and
conquer composition technique (binary-swap composition)
proposed by Ma et al. [21] and Karia [22]. Our composition
scheme extends recent advances in global communication
algorithms proposed by Barnett et al. [291 for 2D mesh par-
allel architectures. We experimentally evaluate both
schemes and show that our scheme is generally superior to
binary-swap composition technique on a 2D mesh parallel
computer, such as the Intel Delta. There are several alterna-
tives based upon our sort-last-full scheme and these are
presented and experimentally evaluated. For our experi-
ments, we used five scene models from the public domain
dataset SPD [301, with sizes ranging from 150K to 500K tri-
angles. Using 512 processors of the Delta, we achieved a
peak rendering rate of about 4.6 million triangles per sec-
ond on a 262,144 triangle dataset. Finally, some concluding
remarks and future works are given.

3 OVERVIEW OF OUR SORT-LAST
RENDERING SYSTEM

In our parallel renderer, each processor does both geometry
transformation and rasterization. A global image composi-
tion process is exploited to merge all subimages generated by
the processors. In this section, we first discuss how the poly-
gon dataset is partitioned and distributed among the proces-
sors, then present some details of our polygon renderer.

LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS 205

3.1 Dataset Partition and Distribution
The first step in our parallel rendering task is to partition
the polygons in the scene and distribute them among proc-
essors. Assuming that we have N processors and T triangles
in a test scene, there are two common ways to assign TIN
triangles to each processor: we can distribute triangles in an
interleaved manner like [9] among the processors; or we
can assign first TIN triangles to the first processor, the next
TIN triangles on the second processor, etc. We call the first
scheme interleaving assignment and the second group as-
signment. In most databases like SPD, groups of triangles
stored near each other generally lie near to each other in the
scene as well. Therefore, group assignment tends to keep
triangles near each other in the scene to appear in the same
processor. In such situations, we are likely to use tight
bounding box to contain assigned triangles. For image
composition, tight bounding box will not cause too much
redundancy in both communication and computation for
the sort-last-full system. However, the highly localized dis-
tribution of triangles in the screen space can cause load im-
balances in rendering phase among the processors. Inter-
leaving, on the other hand, is prone to make the distribu-
tion of triangles on the screen similar for each processor
and thus potentially evens out imbalances during the ren-
dering phase. But, interleaving tends to make triangles near
each other in the scene to appear in different processors and
thus potentially leads to redundancy in composition time
for the sort-last-full system. To take advantages of both
schemes, the group interleaving is used in our implemen-
tation to distribute triangles and is described below.

For the group interleaving, the whole database is parti-
tioned into a few larger groups first. In our implementation,
each larger group contains 2,000 triangles for our test
scenes. Then, this larger group of polygons are evenly par-
titioned into N (0, 1, . . . N - 1) small groups and distributed
among the processors as follows: Processor 0 reads a large
group of polygons from the disk. Processor 0 keeps the 0th
small group of polygons from it and forwards the rest to
other processors. Processor P, picks up the ith contiguous
small group. After reading a small group to its memory,
processor 0 asynchronously reads the next large group
from the disk and repeats the process until all polygons
have been imported from the disk. At the end of this data
distribution process, all small groups of polygons contained
in a dataset are evenly distributed among processors in an
interleaved manner. We term this data distribution process
as “group interleaving.” In a later section, we will show its
effect on the rendering performance.

3.2 Our Polygon Renderer
Many parallel renderers have been proposed in the past.
Some were written in assembly language [12] and some
pre-computed many parameters, such as normal vectors
191, [121 and shading [9], for each triangle before rendering.
These factors can affect the rendering performance signifi-
cantly. To compare the performance of various schemes, we
need to clearly indicate what we compute in our renderer.
In our parallel renderer each processor creates a full screen
image on its local Z-buffer memory and renders its as-
signed polygons as follows:

Rendering Loop
~ O Y each frame image do
0.: compute view and transform matrices, and initialize Z-

f o ~ all local polygons do
1. : compute normal vector for current polygon.
2 . : do backface culling on this polygon.
3 . : do lighting on each vertex of polygon.
4. : do perspective transformation.
5. : do clipping.
6. : do scan conversion.
7. : Z-buffer this polygon.
enddo
8. : globally compose image.’
9. : clear Z-buffer.
enddo

In our implementation, we optimize for speed, therefore,
we use simple Gouraud shading. In Gouraud shading, we
use the colors of each vertex (computed in step 3) to line-
arly interpolate the colors on the polygon in step 6. After
each processor finishes rendering the local polygons, we do
a global composition of all subimages to obtain the final
image. Our resulting image has 512 x 512 resolution with-
out anti-aliasing. All codes are written in the C language.

buffer.

4 PARALLEL COMPOSITION
In the last section, we reviewed many previously proposed
sort-last polygon rendering algorithms. In most algorithms
[15], [16], [17], [18], [19], more and more processors become
idle as the composition proceeds-a waste of computa-
tional power. In contrast, Ma et al. [21], Karia [22], Witten-
brink [23], and Wittenbrink and Harrington [241 presented
the divide-and-conquer image composition techniques,
where processors are kept busy as much as possible, to im-
prove parallel volume rendering. The divide-and-conquer
method (binary-swap) used in [21] and 1221, is well suited
for parallel polygon rendering (Z-buffer). In this section, we
describe the binary-swap technique, and propose another
divide-and-conquer scheme.

4.1 Composition by Binary-Swap (BS, Sort-Last-Full)
The aim of the binary-swap (BS) composition is to exploit
more parallelism in the composition stage and to keep
every processor involved in all stages of the composition
process. In the BS scheme, only half the image is swapped
between a pair of processors and each processor pair com-
poses the two opposite halves of subimages at each compo-
sition stage. As the composition proceeds, the processors
are responsible for smaller and smaller portions of image
composition. In total, the BS composition requires log N
composition stages, and each processor keeps a fraction
(1/N) of the final image, where N is the number of proces-
sors in use.

Fig. 3 shows an example of BS using four processors.
Each processor’s Z-buffer is divided into four disjoint areas
Zoo, Z,,, Zlo, Zll, where Z.. = Zoo U Zol U Z,, U Zll. In the

1. In some of our implementations, part of step 8 can be done inside the
second for loop.

206 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 2, NO 3, SEPTEMBER 1996

first stage, processor, 0 (Poo) sends its Z1* (i.e., Zlo U Zll) to
its neighbor processor 1 (Pol) and receives a Z& from proc-
essor 1. Conversely, processor 1 sends its Zo+ to processor 0
and receives a Z;, from processor 0. Both processors com-
plete this "send and receive" and then compose the re-
ceived subimage with the local subimage. Meanwhile,
processors 2 (PI,,) and 3 (Pll) do a similar exchange of su-
bimages. ln the second stage, processor 0 (Poo) sends its
local Z,, to processor 2 (P10) and receives Zoo from processor
2, where this incoming Zoo was composed earlier by proces-
sors 2 and 3 in stage 1. Processor 2 does the converse op-
erations in the opposite direction. Similar subimage ex-
changes and compositions occur between processors 1 and
3. At the end of the composition phase, each processor
holds a final composed subimage equivalent to (1 /N) of the
final image.

Processor 0 Processor 1 Processor 2 Processor 3

Stage 1
zo*

z I*

Z""

%I

Stage 2

Fig. 3. Binary-swap using four processors.

4.2 Version 0: Composition by Parallel Pipeline

In our parallel pipeline (PP) approach, the Z-buffer at each
processor is divided into N (Zo, Z, . . ., ZN-2, ZN-,) portions
for subimages. Processors are organized on a circular ring
and are denoted as Po, PI ..., PN-l. Pnext and Pprev for a
processor P, will be P(l+l)modN and P(l-l)modN To circulate and
compose the subimages along the ring using the following
algorithm, N - 1 stages are necessary.
Parallel Pipeline Composition
for all processors d o in parallel
1. : set current composed area Bcuruent as Z, in processor P,
2 . : f o r j = l t o N - 1 d o
3. : Each processor sends Bcurrent to its Pnext processor
4. : Each processor receives a Biurrent from its Ppyev processor
5. : set k = (i - j) mod N
6. : Each processor composes its incoming BiUruent with its

7. . set newly composed Zk as Bcuvvent
e n d d o
e n d d o

The subimages are accumulated in a pipelined fashion
along the ring, with each processor involved in each stage.

(PP, Sort-Last-Full)

local Z,

At the end, each processor P , holds a fraction of the final
image at partition z (,+l)modN Fig. 4 shows an example of our
scheme using three processors. The Z-buffer in each proces-
sor is divided into three disjoint parts, Z,, Z,, and Z,. In
stage 1, processor Po sends its Zo to processor 1 and receives
a Z; from processor P,. Processor P, composes Z; with its

local Z2 to form a new Z2. In stage 2, processor Po sends its
new Z2 to processor P , and receives a Z; from processor P2
to compose with its local Z,. The resulting new Z, in proc-
essor Po is a portion of the final image. Similar subimage
exchanges and compositions occur in a pipelined fashion
between processors P I and P2.

Processor 0 Processor 1 Processor 2

Stage 2

Fig. 4. Parallel pipeline using three processors (1 x 3)

For 2D mesh parallel computers, like the Delta and
Paragon, we logically group the 2D mesh (Y x c) into many
sub-rings. In the first phase of our algorithm, the PP com-
position is executed along one dimension, say within each
column independently (as a sub-ring of r processors). On
each processor, the local Z-buffer is divided into r equal
subimages. It takes Y - 1 steps to circulate the subimages
along the ring and to accumulate the result in a pipelined
fashion to produce temporary subimages distributed
among the processors. After the first phase, each processor
holds a temporary subimage that contains the accumulated
result along the entire column. In the second phase, a simi-
lar composition process is repeated, but now along each
row independently (as a subring of c processors) using the
subimage that all of the processors in that row share in
common as the entire image. At the end of the second
phase, the image has been composed, with the final image
being distributed among all N processors. In total, our algo-
rithm takes Y + c - 2 steps to form a final image on the 2D
mesh parallel computers.

4.3 Analysis and Experimental Evaluation
Before we evaluate both the BS and PP parallel image compo-
sition techniques, we need to point out that similar techniques
have been used for global vector combining [29]. Barnett et al.

LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS 207

[29] named their techniques recursive-halving (similar to the
BS) and a bucket scheme (similar to the PP). Here, we experi-
mentally evaluate both schemes on the 2D mesh, assuming
that a full image data of Z, is sent in each stage.

In both schemes, the amount of data transferred per
processor is approximately the same (about and Z is
the size of image screen). This differentiates between the BS
and PP methods from the balanced tree algorithms. The
tree algorithms require processors to send an amount of
data equal to a full Z or many times Z [15], [H I . We note
that the BS takes optimal (i.e., log N) stages in composition
and the PP takes more stages (i.e., Y + c - 2). However, in
the BS, there will be many number of messages contending
for a single network communication link on a mesh-
connected architecture. Unlike in hypercubes, the BS cannot
avoid contention in 2D mesh because there are not enough
communication links. With image resolution ranging from
64 x 64 (low resolution) to 1,024 x 1,024 (high resolution), a
full image might take 32K to 8M bytes. When this amount
of or larger messages transfer on the links or more proces-
sors are used, the saturation on the links will degrade BS's
communication performance severely. In contrast, larger
startup costs (i.e., Y + c - 2 steps) in PP becomes less signifi-
cant within or beyond this range of image resolutions.

Next, we experimentally evaluate the above observation
and show that the PP scheme is better than the BS scheme,
using different resolutions and mesh sizes, even though the PP
needs more composition stages. In our implementation, each
pixel value is eight bytes long and consists of a float z depth
value (4 bytes) and a color quadruple (red, green, blue, a l p h ; 4
bytes). In practice, we found that the bandwidth of communi-
cation network in y direction is greater than that in x direction
on the Delta. Therefore, we prefer performing composition in
the y direction first for larger data (i.e., 5) and then the x di-
rection (i.e.,). We performed our experiments for different
mesh sizes and image resolutions ranging from 64 x 64 to 512
x 512. Fig. 5 shows the composition timings for different image
resolutions using mesh sizes of 16 x 32 and 4 x 4. This figure
clearly indicates that the PP performs better than the BS. For
the PP, performance ranges from 0.02 to 0.55 seconds per im-
age. In comparison, the BS scheme requires 0.03 to 1.7 seconds
for the same size of images. The BS scheme performs well only
at lower resolution (i.e., less than 64 x 64) images.

On the Delta, we can simply model the communication
cost to send and receive a message of L bytes between two
processors at any distance by a! + pdL, where a is the startup
latency per message, pd is the transfer time per byte in the d
direction (i.e., x or y). The cost of PP is defined as follows:

Assuming p, = py, the typical values reported in [31] are
a = 157,~ seconds and p, = 0.21,~ seconds. As described
above, each pixel contains 8 byte value, for which we
measured y = 0.58,~ seconds per pixel, where it includes a
depth comparison and a 4 byte color quadruple assign-
ment. Table 1 shows composition timings for rendering a
512 x 512 image size using different numbers of processors.
This table shows that the cost of PP is independent of the

1.8, I

mesh size 4 x 4 , BS - - - -
mesh size 16 x 32, PP -'-*-*-

1 2 mesh size 4 x 4 , PP -0-o-o- 'i
"' 1

0.61 A i

~~ ~

50 300 350 400 450 500 550

Fig. 5. Composition timings for rendering different image sizes using
16 x 32 and 4 x 4 mesh sizes.

number of processors and the predicted values from (1)
accurately match our experimental results. For example, un-
der 512 processors, our experimental timing is about 0.59 sec-
onds and the prediction of (1)is 0.58 seconds. Therefore, (1) can
provide a good prediction for the PP scheme and an upper
bound for other sort-last-sparse implementation based on PP.

TABLE 1
THE IMAGE COMPOSITION TIMINGS (SECONDS) AT 512 ' 512

RESOLUTION FOR BS, PP, AND THE PREDICTED VALUES BY (1)

4.4 Version 1 : Optimization Using a Bounding Box

In this subsection, we will present a scheme termed PPB in
which several bounding boxes are used to optimize image
composition. In the BS scheme, each processor is responsi-
ble for large image areas in the early stages; however, pixels
are sparse in these areas. This sparsity in composition area
decreases as the composition proceeds, since more processors
contribute to each area. On the other hand, in the PP method,
since each composed area is bounded by O(Z/u) in the first Y
- 1 stages and by O(Z/N) in the last c - 1 stages, the sparsity
at each stage is relatively less than that for the BS scheme.

We can avoid sending "inactive" pixels if we can look up
an arbitrary active pixel very quickly, and determine the
amount of active pixels on the fly. Special memory access
hardware is usually necessary for this purpose [20]. Ma et
al. [21] suggested using a bounding box at each composi-
tion stage to include all active pixel areas. Each processor
binary-swaps pixels only within this box. This technique
works very well for volume rendering, since local su-
bimages are rendered from a block of continuous voxel
data. In the PP scheme, the local Z-buffer is divided into
many fixed portions (i.e., Z / Y or Z / N) . In our implemen-
tation, we used a single bounding box for each portion at
each composition stage. For example, in Fig. 6, our im-
plementation used two smaller bounding boxes for these
two disjoint parts (Z, and Z,) and empty bounding boxes
for Z1 and Z2. We call this implementation PPB scheme.

(PPB, Sort-Last-Full)

208 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 3, SEPTEMBER 1996

I I \ I ~ T W O compact bounding boxes

Fig. 6. More compact bounding boxes for different areas in the parallel
pipeline method.

In general, a bounding box is not a single contiguous
block of memory; rather, it is composed of several smaller
contiguous strips of pixels, one strip for each scanline
which intersects a bounding box. To communicate the con-
tents of the bounding box to another processor, additional
overhead in data copying or setup is required. These extra
costs include copying the contents of the bounding box into
a contiguous buffer and handling of multiple composition
buffers. Later, we will experimentally show that these costs
do not offset the performance with bounding box optimi-
zation, but yield better rendering rate than PP does.

4.5 Version 2: Direct Pixel Forwarding
(DPF, Sort-Last-Sparse)

For the PP with the bounding box, the subimages are accu-
mulated along each dimension of the 2D mesh. The size of
the bounding box can grow gradually, while its upper bound
is O(Z/r) or O(Z/N). Here, we present a direct pixel for-
warding (DPF) scheme without sending sparse pixels. In the
DPF, a processor at each stage directly sends a subimage Z, to
that processor where the final Z, is stored. The sending se-
quence is ordered to avoid link contention. The DPF com-
poses the subimages using the following algorithm.
Direct Pixel Forwarding Composition
for all processor P,s do in parallel
1. :for j = 1 to N- 1 do
2. . Each P, sends its Z(l+]+l)modN to processor P(z+l)modN
3. : Each P, receives a Z;l+l)modN from processor P(l-])modN

4. : Compose the local Z(2+l)mocw with the incoming Z;,+l)modN
enddo
enddo

In the DPF scheme, each processor keeps a fraction of the
Z-buffer and maintains many active pixel queues for pixel
forwarding. When an “active” pixel does not belong to the
local Z-buffer, this ”active” pixel information including x, y
coordinates, color quadruple, and z depth value will be
inserted into the corresponding pixel queue. In each com-
position stage, the processor sends one active pixel queue
out to the corresponding processor for composition. Fig. 7
shows an example of the DPF using 1 x 4 processors. In
stage 1, processor Po sends its active pixel information 10-
cated in Z, to processor PI and receives one pixel informa-

tion containing Z; from processor P,. Processor Po com-
poses Z; and its local Z,. In stage 2, Po sends its 2, to proc-
essor P, and receives a Z; from P,. In stage 3, Po sends its Zo
to processor P, and receives a Z; from PI. Similarly, the
active pixel information exchanges and compositions occur
in this fashion for processors PI, P,, and P,.

2 3 i: j stage 1 -
stage 2

inn

Fig. 7. Direct pixel forwarding composition using four processors (1 x 4).

Again, for 2D mesh parallel architectures, we logically
group the 2D mesh (Y x c) into many sub-rings. In the first
phase, the DPF is executed along the y dimension which
takes Y - 1 steps. It takes another c - 1 steps along the x di-
mension in the second phase. A variant of the DPF is that
we can limit the length of any active pixel queue, and if any
active queue is full, during rendering, we can send out the
active pixels asynchronously to reduce the amount of active
pixels to be transferred before the first phase. This variant
will be described in detail in a later section. In fact, accord-
ing to Cox and Hanrahan’s [20] and Tay’s results [32], the
probability that local pixel depth exceeds 1 is small. There-
fore, we can safely send pixels out in the first phase because
the local Z-buffering will not reduce data traffic very much.
On the other hand, as processors receive active pixel infor-
mation from other processors during rendering time or in
the first phase, we need to Z-buffer them and cannot send
data out until the second phase starts. This intermediate Z-
buffering can reduce some data traffic occurring in the sec-
ond phase. An example of the intermediate Z-buffering is
shown in Fig. 8. In this example, processors Po, P,, and P,
send A, B, and C numbers of pixels, respectively, to PI after
the first phase. The number of final composed pixels (A, B,
C, and D) is at most equal to their summation, and is al-
ways expected to be less due to the overlapping of some Z
values. The more processors that contribute to the com-
posed area, the higher the probability that pixel depth ex-
ceeds one. Therefore, in the second phase, the amount of
data transferred can be reduced. The amount of reduction is
dependent on the average original pixel depth.

LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS 209

A A B A/ '\ C

@ @
I

Fig. 8. The effect of intermediate Z-buffering on data traffic.

There is a sort of unifying principle that's shared be-
tween the DPF and Ellsworth's two-step sending idea [12].
In both cases, the buffered data goes to an intermediate
node before being forwarded to its final destination, and in
both cases the communication complexity is reduced by not
sending the data directly to its final destination. However,
there are several major differences between these two tech-
niques. First, we are sending buffers of pixels instead of
sending buffers of triangles as Ellsworth did in his sort-
middle renderer. Second, our composition steps are along
rows and then along columns, whereas his were between
rectangular regions of processors and then within regions.
Third, in his two-step sending method, the polygons are
sent twice, instead of once, before they reach the final des-
tinations. This means the number of polygons transmitted
is doubled. However, as described above, the intermediate
Z-buffering in our DPF scheme can reduce some data traffic
occurring in the second phase. So, the number of pixels
transmitted can be less than a factor of two.

4.6 Version 3: DPF with Static Load Balancing

In the DPF scheme, data exchanges and pixel composi-
tions can be unbalanced due to uneven active pixel distri-
bution. We can alleviate this problem to some extent by
using a static load balancing and we call this the DPFL
scheme. In the first phase, we can assign horizontal lines
among the processors in an interleaved fashion. This is
followed by assigning vertical lines among the processors
in the second phase. In a 16 x 32 2D mesh Delta and for a
512 x 512 or higher resolution images, the number of
processors in each dimension is not high, and thus proc-
essors have enough interleaved lines to even out the im-
balances in each phase. From our experience, we only re-
quire interleaving the scan-lines in the first phase. Two
phase interleaving does not make much difference in the
speed of composition. Use of interleaving to provide load
balancing in the sort-last-sparse strategies like the DPFL
scheme has been mentioned in the literature [61. In a later
section, experimental results will show that the inter-
leaved composition regions perform better than coherent
regions (consecutive scanlines) in our implementation.

(DPFL, Sort-Last-Sparse)

4.7 Version 4: DPF with Task Scheduling

In this subsection, we present a sort-last-sparse rendering
scheme termed DPFS (DPF with task scheduling between
communication and rendering work) with an attempt to re-
duce the communication time. The task scheduling scheme
presented here is similar to that in 191. We separated the ren-
dering computation completely from the global pixel compo-
sition in earlier schemes. Pixel merging cannot begin until
each processor has rendered all local polygons. For large
system, such a disjoint approach leads to large messages
must be sent at about the same time. This will likely leads to
high communication overhead [9]. To reduce message sizes,
we can schedule both communication and rendering work by
overlapping them as was done in [9]. In addition, all earlier
schemes under utilize the communication links on the Delta.
Each phase of earlier versions exploits communication l i nks
only in one direction (x or y dimension separately). Based on
the above observations, the scheme termed DPFS is proposed
and a pseudocode version of it is described as follows:
DPFS
while (local triangles are not yet rendered)
{
select a local triangle;
render it into the A-type or the B-type buffers if its
rendered pixels are outside local processor's
assigned region, and send buffer if full;
if incoming messages exist
for each incoming message
(
if message needed to be forwarded in the second phase of
the DPF
then unpack this message into the B-type buffers;
else Z-buffer this message with local region;
1
1
flush all A-type buffers to other processors in the order of
DPF's first phase;
while (the A-type messages remain to arrive from other
processors)
{
if message needed to be forwarded in the second phase of
the DPF
then unpack this message into the B-type buffers;
else Z-buffer this message with local region;
I
flush all B-type buffers to other processors in the order of
DPF's second phase;
while (the B-type messages remain to arrive from other
processors)
{

Z-buffer this message with local region;
1
synchronize; /* make sure all processors finish this frame "/

In the DPFS scheme, there are two types of message
buffers which consist of (r - 1) A-type message buffers and
(c - 1) B-type message buffers. The A-type message buffers

(Sort-Last-Sparse)

21 0 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO 3, SEPTEMBER 1996

store both pixel values and (x, y) coordinates of correspond-
ing regions in the first phase of the DPF scheme, and the B-
type message buffers are in charge of the second phase. In the
first while loop, the rendered pixels of each local triangle can
be temporarily stored either in the A-type buffers (i.e., these
pixels do not belong to local processor’s region in the first
phase of the DPF) or in the B-type buffers (i.e., these pixels do
not belong to local processor’s region in the second phase of
the DPF) or can be Z-buffered in local processor’s assigned
portion of the final image. We implement our scheme by
asynchronous routines for message send and receive, and
these can be used to overlap message transfers with both
triangle rendering and pixel merging computations. We can
find these overlappings within these three while loops. For
example, in the second while loop, if there are still A-type
messages remaining we post an asynchronous receive at once
after a message is received, and then deal with this incoming
message. Therefore, by tlus means, we hope to overlap com-
munication time with computation as much as possible.
These overlappings do not exist in the earlier schemes. Since
both the A-type (traveling in the y dimension) and the B-type
(traveling in the x dimension) messages can coexist within
the first two while loops, we can exploit communication links
of 2D mesh as much as possible. Unlike the previous ver-
sions, groups of pixel message are sent asynchronously and
are not delayed until the end; therefore, shorter messages are
needed to be flushed (i.e., network congestion can be less).

We do not leave the first while loop until all local trian-
gles are rendered. After this stage, we flush each A-type
message with a flag indicating it is the last A-type message
from a sender to other receivers. Similarly, we flush all B-
type messages with flags after the second while loop. To
exit the second and third while loops, we must guarantee
that all last A-type (exits from the second) and B-type (exits
from the third) messages have arrived from other senders.
This arrangement ensures that the third loop can start only
after the exit from the second loop. It means that each proces-
sor must completely finish its image composition in the y
dimension in the second loop before ending the composition
in the x dimension. There is no A-type message arriving in
the third loop, but both the A-type and the B-type messages
can arrive in the first two loops. In all, each processor needs
to receive Y - 1 number of the A-type last messages and c - 1
number of the B-type last messages, respectively.

5 PERFORMANCE EVALUATION
AND EXPERIMENTAL RESULTS

To perform our experiments, we used five datasets from
Eric Haines’s SPD database [30]. Table 2 shows the sizes
of the different datasets in our tests. These datasets repre-
sent different object distributions in the image screen with
sizes ranging from 150K triangles to 500K triangles. Figs.
9, 10, 11, 12, 13 show the rendering results for the five
scenes. In our implementation, each large group consists
of 2,000 triangles and the data for each triangle is 48 bytes.
The rendering rate measured here does not count the time
neither to save computed pixels nor to reconstruct the
final image and to input data from disk. Similar meas-
urements were performed in 191, [121.

Fig. 9. Teapot.

Fig. 10. Lattice.

Fig. 11. Tetra.

Fig. 12. Tree.

Fig. 13. Mountain.

21 1 LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS

Scene Number of Triangles

Mountain 524,288 (512K)
Tree 425,776 (416K)
Tetra 262,144 (256K)
Lattice 235,200 (230K)
Teapot 159,600 (155K)

TABLE 2
NUMBER OF TRIANGLES AND DATA SIZE

OF THE FIVE TEST SCENES

Size of
Dataset

24.0 Mbytes
19.5 Mbytes
12.0 Mbytes
10.7 Mbytes
7.3 Mbytes

m
e
a -

+
0,

E 8 -

B
1

a 6 -

d 4 -

D

2 -

TABLE 3
SOME SCENE STATISTICS OF FIVE TEST SCENES

IN 20 ZOOM-IN SEQUENCES

Scene
Mountain 0.35 to 2.15

0.04 to 1.30
Tetra 0.12 to 1.01
Lattice 0.14to 1.50

0.08 to 0.90

Mountain

Lattice - o ~ o ~

Teapot - - - - -

These five scenes were run on different number of proc-
essors, rendering the image screen at 512 x 512 resolution
without anti-aliasing. Each scene was illuminated by a sin-
gle light source and shaded by Gouraud shading. The re-
ported timing was obtained by averaging the rendering
times for 20 frames. We controlled the viewpoint to allow
”zoom-in” effect in these 20 frames. The purpose of this is
to represent a more general image distribution. In our
evaluation, we start by rendering an image whose objects
are projected close to the center of the screen, and continu-
ously zoom-in until objects show in most areas of the
screen. The different image distributions give a fair com-
parison study. Similar measurements were performed in
[12]. In addition, some scene statistics of five test scenes in
these 20 frames is given in Table 3, and the Appendix
shows some of the ”zoom-in” sequences to show what was
actually rendered (”Teapot” scene, for example). In Table 3,
the range in depth complexity is for the scenes as the view
was zoomed. The triangle sizes for the ”zoom-in” se-
quences of each scene range from subpixel size to 3.5 pixels
on the average. Note that we handle subpixel sized trian-
gles by discarding them in our implementation.

Fig. 14 and Fig. 15 show the rendering rates of the PP
scheme and the PPB scheme. The rendering rate increases as
more processors are used. Using 512 processors to render five
test scenes, the PP scheme achieves 0.25 - 0.8 million trian-
gles/sec. On the other hand, the PPB scheme achieves 0.5 -
1.3 triangles/sec. Without bounding box optimization, the ren-
dering rate of the PP scheme is slowed down by 20% - 50%, due
to the differing distributions of sparse pixels in different
scenes. Therefore, it is very important to take advantage of
sparse pixels to achieve high rendering rate. Using bounding
box optimization, many pixels are deleted at earlier stages.
Thus, we get a better rendering rate. Using 16 x 32 proces-
sors, the PPB peak performance is about 1.3 million trian-
gles/sec for the ”Tree” scene while our lowest performance is
about 500 K triangles/sec for the ”Teapot” scene. The ren-
dering rate for the other scenes is about 1 million trian-
gles/sec. We note that additional costs described previously
in PPB scheme are less significant compared with perform-
ance improvement obtained by the use of bounding box.

Tree: - * - * -

Mountain:

Lattice: - o - 0 -

Tetra ; - + ~ +

Tree: - * - * -

Mountain:

Lattice: - o - 0 -

Tetra ; - + ~ +

_ _ - - -

0 ‘ I
1 oo IO’ 1 o2 1 o3

Fig. 14. The rendering rates for five test scenes using different num-
bers of processors and the PP scheme.

Number of processors

lo5

/m
14

12 I / I
Tree - * - * - 2 1 0 I

I I
Y o 0 IO’ 1 o2 1 o3

Fig. 15. The PPB rendering rate for five test scenes using different
numbers of processors.

Number of processors

Fig. 16 and Fig. 17 show rendering rates for the other
two versions: DPF and DPFL. For the DPFL, the composi-
tion speed is also slightly improved by the static load bal-
ancing and thus yields better rendering rate. Using 512
processors for five test scenes, the DPF scheme achieves
2.5 - 4.0 million triangles/sec and the DPFL scheme
achieves 2.8 - 4.0 million triangles/sec respectively. These
two performance graphs (Fig. 16 and Fig. 17) show that our
performance is much better than those of earlier versions.
This superior performance is obtained from significant im-
provement in the composition speed. Fig. 17 shows that the
performance does not drop off for up to 512 processors.
However, we can expect the performance to begin to de-
cline beyond 512 processors. As the rendering time ap-
proaches zero, the total time is dominated by the composi-
tion time, which will gradually increase with increase in
number of processors and finally slow down the overall

212 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 3, SEPTEMBER 1996

4-

rendering rate. Furthermore, since the composition time
remains constant, our rendering rate wouId be better for the
same size image if we had a larger number of triangles:
there would he more rendering computation, with the same
composition cost. The rendering rates for the "Tree" and
the "Mountain" scenes are better than those of the other
three scenes. In the "Tree" scene, we achieve high peak per-
formance due to large number of "inactive" pixels. As
mentioned earlier, there is some similarity between DPF
scheme and Ellsworth's work [12]. He achieved a peak ren-
dering rate of about 2.8 million triangles per second on a
806,640 triangle dataset using 256 processors. In most cases,
the resulting performance on his test scenes begins to de-
cline after 128 or 256 processors. For both DPF and DPFL
schemes, the rendering rate do not decline for up to 512
processors on our test scenes.

1

3 -
A

W
-(?
3 2.51
c

.5

.g

3

P
2

a, 2 -

cn

Z 1.5-

1 -

0.5 ~

0 ' J
loo 10' 1 o2 1 o3

Number of processors

Fig. 16. The rendering rate for five test scenes using different numbers
of processors and the DPF scheme.

I"

Tree : - * - * -

Mountain.

Lattice : - o - o -

Tetra : - + - + -

Teapot -------

0 '
1 oo 1 o1 lo2

Number of processors

Fig. 17. The rendering rate for five test scenes using different numbers
of processors and the DPFL scheme.

x lo6
I

1 oo 1 o1 1 o2
Number of processors

3

Fig. 18. The rendering rates for five test scenes using different num-
bers of processors and the DPFS scheme.

F
Tree: -*-*-

Mountain:

Lattice: -0-0-

Tetra -+-+-
Teapot: -----

1 o1 1 o2 1 o3
Number of processors

Fig. 19. The rendering rates for five test scenes using different num-
bers of processors and the DPFSL scheme.

For the DPFS implementation, the sizes of both the A-
type and the B-type message buffers are fixed at 4K bytes
after several tests on five test scenes to tradeoff the exces-
sive memory usage and message latency. In the first while
loop, we need to switch between the rendering pipeline and
message handling when a message arrives. After some
number of n triangles are rendered, we check to see if any A
or B-type message has arrived from other processors, using
msgdoneO on the Delta. Each msgdone0 can add extra Zp
seconds to the overall cost on the Delta. The question arises
as to what should be the appropriate value of n. Our ex-
periments show that it does not make much difference after
a certain fixed value. The main concern in choosing n is to
avoid very small values, in order to reduce the overhead
generated from lots of calls to msgdone0, which checks for
incoming pixel message. In our current implementation, we

LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS 21 3

TABLE 4
COMPARISON BETWEEN THE DPF AND THE DPFS SCHEMES,

AND THE DPFL AND THE DPFSL SCHEMES FOR THE “TEAPOT” SCENE

TABLE 5
THE COMPARISON IN RENDERING RATE BETWEEN THE DPFL

AND THE DPFSL SCHEMES FOR FIVE TEST SCENES

used a value of 30 for n. In the future, we would like to de-
velop some performance model like Crockett and Orloff‘s
work [91 and base on it to automatically determine the size
of buffers and the value of n. We implement another vari-
ant of DPFS scheme termed DPFSL with static load bal-
ancing by assigning horizontal lines among the processors
in an interleaved fashion. Fig. 18 and Fig. 19 show render-
ing rates for both DPFS and DPFSL. Both DPFS and DPFSL
schemes achieve the best rendering rate on ”Tree” scene at
about 4.5 million triangles per second using 512 processors.

Table 4 shows the total rendering time comparison be-
tween DPF and DPFS, and DPFL and DPFSL for the
“Teapot” scene. For large systems, DPFS outperforms DPF,
and DPFSL outperforms DPFL significantly. For example,
using 512 processors, DPFSL achieves performance gain by
about 31% over DPFL. While load balancing is quite im-
portant for better composition performance, we see that
DPFS scheme performs better than DPFL using both 256
and 512 processors. In large systems, communication over-
head is more dominant on performance than pixel compo-
sition computation. On the other hand, for small systems,
both DPFS and DPFSL are slightly slowed down (at most
5%) for the ”Teapot” scene using eight processors. This is
due to extra overheads incurred in three while loops. These
include buffer management, message detection, breaking of
rendering pipeline by inserting message handling code in
the first while loop and so on. In the case of small systems,
the saving of message communication time cannot offset
these factors and results in slight slow-down in perform-
ance. Table 5 shows similar behavior in rendering rate
comparison. Therefore, our results indicate that task sched-
uling between communication and rendering work is quite
important to achieve better performance on large systems.

Table 5 shows that DPFSL consistently performs better
than DPFL for large systems. DPFSL achieves a rendering
rate of 3.5 to 4.6 million triangles/sec using 512 processors.
In comparison with DPFL, we gain one half to one million
triangles/sec in rendering rate. For example, replacing
DPFL with DPFSL, the performance of rendering ”Tetra”
scene changes from 3.4 to 4.6 million triangles/sec (i.e., per-
formance gain of 13% to 30%). Surprisingly, unlike earlier
versions, the performance of five test scenes do not vary sig-
nificantly. Again, the rendering performance do not drop off
for up to 512 processors in both DPFS and DPFSL schemes.

Tables 6 and 7 show the time breakdown of our renderer
for the ”Teapot” and ”Tree” scenes using four different
composition schemes. We divide the total rendering time
into two main parts: rendering time (Rend) that consists of
exact rendering time and pre-processing time for composi-
tion, and the composition (Comp) time. From both tables,
we see that the rendering time decreases slightly linearly as
the number of processors are increased for both scenes.
Among these six versions, PP scheme needs least rendering
time, since it needs less preprocessing time for composition.
In each version of composition (except DPFS and DPFSL),
the composition times for both scenes are almost constant,
regardless of the number of processors. For both DPFS and
DPFSL, the overlap between communication and rendering
work causes the difference in composition time using dif-
ferent number of processors.

Table 8 shows the speedup and efficiency for DPFSL
scheme. Both values are based on the times obtained from
the minimum configuration that test scene can fit in. For
example, it needs eight processors to hold all test scenes in
DPFSL implementation. The DPFSL scheme scales well first

214

I ,

Rend
Comp
Total
PPR

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 3, SEPTEMBER 1996

1.214 0.601 0.306 0.154 0.088 0.055 0.038
0.534 0.574 0.578 0.579 0.578 0.580 0.587
1.748 0.175 0.884 0.733 0.666 0.635 0.625

TABLE 6
THE TIME (IN SECONDS) FOR THE “TEAPOT” SCENE

#prom I 8 I 16 I 32 I 64 I 128 I 256 I 512 11
PP I

I I Y

Rend
Comp
Total
DPF

~~

1.395 0.705 0.367 0.196 0.107 0.066 0.045
0.186 0.228 0.254 0.279 0.282 0.286 0.293
1.581 0.933 0.621 0.475 0.389 0.352 0.338

I, I

Rend
Comp
Total
DPFL

1.360 0.691 0.354 0.179 0.092 0.049 0.024
0.101 0.087 0.070 0.062 0.058 0.069 0.094
1.461 0.778 0.424 0.241 0.150 0.118 0.118

TABLE 7
THE TIME (IN SECONDS) FOR THE “TREE” SCENE

#procs I 16 I 32 I 64 I 128 I 256 I 512 11
PP I
Rend
Comp
Total
PPB

1433 0710 0368 0198 0113 0085

2006 1285 0944 0776 0693 0668
0573 0575 0576 0578 0580 0583

Rend
Comp
Total
DPF

with about 98% efficiency, but decreases to about 50%
(”Tree” scene) at the largest configuration of the Delta. As
the size of the machine increases, one of the reasons for
decreasing efficiency is that rendering load becomes un-
even among the processors when fewer triangles are
computed on each processor. The major cause is that
composition time does not scale with increasing number
of processors. With the increase in the number of proces-
sors, the composition time of each scene is almost kept
constant while the rendering time decreases, and when
composition time becomes dominant or comparable to
rendering time, the efficiency will decrease.

1.588 0.812 0.416 0.221 0.120 0.061
0.161 0.173 0.205 0.208 0.224 0.252
1.749 0.985 0.621 0.429 0.344 0.313

Table 9 shows the effects of the group interleaving data
distribution on rendering performance using PPB scheme.
We experimentally compared rendering rates using inter-
leaving per-primitive and group interleaving data distribu-
tion and our results show that the latter can lead to better
rendering performance for the PPB scheme. For SPD data-
base, the sizes of triangles contained in each scene are quite
similar, and thus group interleaving does not incur too
much load imbalances in rendering part as simple inter-
leaving does. However, group interleaving tends to result in
tighter bounding boxes for the sort-last-full system as dis-
cussed in an earlier section. Therefore, for our test scenes,

21 5 LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS

#procs
Lattice
Int.
Group Int.
Tetra

TABLE 8
THE SPEEDUP AND EFFICIENCY DATA USING THE DPFSL SCHEME

#procs I 8 1 16 I 32 I 64 I 128 I 256 I 512 U
Sneedun I

16 I 32 I 64 I 128 I 256 I 512 1
146,605 I 263,367 I 428,025 I 614,500 I 768,501 1 878,431
195,454 I 336,000 I 528,361 I 707,687 I 818,798 I 879,745

~.

Int. I 106,271 I 189,828 I 314,415 I 463,233 I 641,252 I 711,574
Group Int. I 170,511 I 290,496 I 445,974 I 606,463 I 728,076 I 809,336

group interleaving works better than per-primitive inter-
leaving. The group interleaving technique needs to be inves-
tigated further. For example, we can address questions like
what’s the optimal size for a group? How does this behavior
depend on the ordering of primitives in the input data set?

As mentioned earlier in this section, we do not count the
time to reconstruct the final image in our rendering rate
measurement as was done in 191, 1121. In the case that we
need to assemble image fragments scattered among the
processors into a finished image, we achieve this by per-
forming DPF-like scheme (message sending only but no
message composition) in reverse order. Take Fig. 7, for ex-
ample, in the end of composition stage, processor P, will hold
Z(z+l)modN. As the image gathering starts, PI, P,, and P3 all send
their portion of subimage to Po. For 2D mesh architecture, we
perform similar routine in the x dimension first and then in
the y dimension. The cost of gathering 512 x 512 resolution
image using different number of processors is given in Ta-
ble 10. The cost of image reconstruction varies from 0.051 to
0.082 seconds for different number of processors. For small
systems, this overhead will not affect the overall rendering
rate too much (less than 10% on five test scenes). But for
large systems, it can even slowdown the rendering rate by
about a factor of two (take ”Teapot” scene for example).

TABLE 10
THE IMAGE RECONSTRUCTION TIMINGS (SECONDS) AT 51 2 X 51 2

RESOLUTION USING DIFFERENT NUMBER OF PROCESSORS

#procs I 16 1 32 I 64 I 128 I 256 I 512
Gathering I 0.051 I 0.054 I 0.062 I 0.074 I 0.080 I 0.082

6 CONCLUSIONS AND FUTURE WORK

In this paper, a sort-last parallel polygon rendering system
is described for use on a 2D mesh connected multicomputer
system. We implemented a family of image composition
schemes for the sort-last rendering system. We start from a
sort-last-full image composition scheme, termed PP, and

present many variants of it to provide very fast pixel com-
position. All proposed schemes consist of two phases on a
2D mesh architecture (i.e., Y x c processors). In the first
phase, our schemes are executed along the y dimension
which needs Y - 1 steps. It takes another c - 1 steps along
the x dimension in the second phase. These alternatives of
the PP include bounding box optimization (sort-last-full,
PPB)), sort-last-sparse (coherent regions and interleaved
composition regions, DPF and DPFL)) and task scheduling
between communication and rendering (DPFS and DPFSL).

We experimentally compared all proposed methods on
Caltech‘s Intel Delta, a 512 processor multicomputer sys-
tem. The exceptionally superior performance of the DPFS
and the DPFSL schemes provides evidence that sort-last-
sparse strategies are better suited for software implementa-
tion on general purpose multiprocessor systems. Our ex-
perimental results show that schemes based on interleaved
composition regions perform better schemes with coherent
regions. In large systems, scheduling the tasks of rendering
and communication can improve the sort-last-sparse
schemes significantly while incurring small overheads in
buffer management. We also evaluated a well-known bi-
nary-swap composition scheme (sort-last-full) and showed
that binary-swap could not perform better than the PP
(sort-last-full) on the 2D mesh Intel Delta. We used five
public domain datasets to evaluate our implementation.
With 512 x 512 resolution image, our final version, DPFSL,
achieved the peak performance close to 4.6 million triangles
per second which is higher than any other multicomputer
implementation known to the authors.

There is scope for further work in several directions.
First, we plan to accommodate features such as anti-
aliasing and transparency. Second, we will find suitable
load balancing scheme to even out load imbalances in-
curred in the rendering part. In sort-last class schemes, load
balancing can become an important issue as the sizes of
polygons have large disparities. Such datasets are common
in scientific applications with nonuniform grids: grid cell

21 6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 3, SEPTEMBER 1996

sizes may vary over several orders of magnitude, and poly-
gons derived from these grid cells exhibit similar variations
in size. Third, our composition scheme can be exploited for
parallel volume rendering problem and will be experimen-
tally evaluated in the near future.

APPENDIX

ACKNOWLEDGMENTS
This research was performed in part using the Intel Touch-
stone Delta System operated by California Institute of
Technology on behalf of the Concurrent Supercomputing
Consortium. Access to this facility was provided by Pacific
Northwest Laboratory (PNL), a multiprogram laboratory
operated for the US. Department of Energy by Battelle
Memorial Institute under Contract DE-AC06-76RLO 1830.
We would also like to give our special thanks to anony-
mous reviewers for useful comments on our composition
scheme. This research is supported by the Boeing Centen-
nial Chair Professor funds.

REFERENCES
T.-Y. Lee, C.S. Raghavendra, and J.B. Nicholas, ”Image Composi-
tion Methods for Sort-Last Polygon Rendering on 2D Mesh Ar-
chitectures,” Proc. 1995 Parallel Rendering Symp., ACM, pp. 55-62,
Oct. 1995.
S. Molnar and H. Fuchs, ”Advanced Raster Graphics Architec-
ture,” Computer Graphics: Principles and Practice, second edition,
T.D. Folev et al., eds., PD. 855-923 Readinz, Mass.: Addison-

I I

Wesley, 1’990.
T W. Crockett, ”Desien Considerations for Parallel Graphics Li-
braries,” Proc. Intel SGercomputer Users Group, pp. 3-14, JGne 1994.
S. Whitman, Multiprocessor Methods for Computer Graphics Render-
ing. Wellesley, Mass.: AK Peters, Ltd., 1992.
J. Clark, “The Geometry Engine: A VLSI Geometry System for
Graphics,” Computer Graphics, vol. 16, no. 3, pp. 127-133, July 1982.
S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, ”A Sorting Classi-
fication of Parallel Rendering,” I E E E Computer Graphics and Appli-
cations, vol. 14, no. 4, pp. 23-32, July 1994.
C. Mueller, ”The Sort-First Rendering Architecture for High Per-
formance Graphics,” Proc. 2995 Symp. Interactive 3 0 Graphics, pp. 75-
84, ACM SIGGRAPH, Apr. 1995.
M. Cox, ”Algorithms for Parallel Rendering,” PhD dissertation,
Dept. of Computer Science, Princeton Univ., May 1995.
T.W. Crockett and T. Orloff, ”Parallel Polygon Rendering for
Message-Passing Architectures,” IEEE Parallel nnd Distributed
Technology, pp. 17-28, Summer 1994.
S. Whitman, ”Dynamic Load Balancing for Parallel Polygon Ren-
dering,” IEEE Computer Gruphics and Applications, vol. 14, no. 4, , .

pp. 4r-48, July 1994:
D. Roble. “A Load-Balanced Parallel Scanline Z-buffer Aleorithm
for the iPSC Hypercube,” Proc. First Int’l Conf. Pixim 88, i p . 177-
192, Editions Hermes, Paris, 1988.
D. Ellsworth, “A New Algorithm for Interactive Graphics on Multi-
computers,” I E E E Computer Graphics and Applications, vol. 14, no. 4,

Kubota Pacific Computer, Denali Technical Overview, version
1.0, Mar. 1993.
Evans and Sutherland Computer Corporation, Freedom Series
Technical Report, Oct. 1992.
S. Molnar, ”Image-Composition Architectures for Real-time Im-
age Generation,” PhD dissertation, Univ. of North Carolina at
Chapel Hill, Oct. 1991.
D. Fussel and B.D. Rathi, ”A VLSI-Oriented Architecture for Real-
time Raster Display of Shaded Polygons,” Proc. Graphics Interface

C.D. Shaw, ”A VLSI Architecture for Image Composition,” Ad-
vanced in Graphics Hardwave 111, pp. 183-199, Springer-Verlag, 1988.
R. Heiland, ”Object-Oriented Parallel Polygon Rendering,” Proc.
Gviz ’94, pp. 19-26, Richland, Wash., Tri-Cities ACM-SIGGRAPH
chapter, Sept. 1994.
J. Li and S. Miguet, ”Z-buffer on a Transputer-Based Machine,”
Proc. Sixth Distributed Memory Computing Conf., pp. 315-322, IEEE,
1991.
M. Cox and P. Hanrahan, “A Distributed Snooping Algorithm for
Pixel Merging,” IEEE Parallel and Distributed Technology, pp. 30-36,
Summer 1994.
K. Ma, J.S. Painter, and M.F. Krogh, “Parallel Volume Rendering
Using Binary Swap Composition,” I E E E Computer Graphics and
Application, vol. 14, no. 4, pp. 59-67, July 1994.
R. J. Karia, ”Load Balancing of Parallel Volume Rendering with
Scattered Decomposition,” Proc. Scalable High Performance Com-
puting Conf., May 1994.
C.M. Wittenbrink, ”Designing Optimal Parallel Volume Render-
ing Algorithms,” PhD dissertation, Univ. of Washington, June
1993.
C.M. Wittenbrink and M. Harrington, “A Scalable MIMD Volume
Rendering Algorithms,” Proc. Eighth Int’l Parallel Processing Symp.,
pp. 916-920, Cancun, Mexico, Apr. 1994.
P. Li and D.W. Curkendall, ”Parallel Three Dimensional Perspec-
tive Rendering,“ Proc. Second European Wovkshop Parallel Comput-
ing, pp. 320-331, Mar. 1992.
P. Li, W.H. Duquette, and D.W. Curkendall, ”Remote Interactive
Visualization and Analysis (RIVA) Using Parallel Supercomput-
ers,” PYOC. 2995 Parallel Rendering Symp., pp. 71-78, ACM, Oct. 1995.
F. Ortega, C. Hansen, and J. Ahrens, ”Fast Data-Parallel Polygon
Rendering,” Proc. Supevcomputing ’93, pp. 709-78, IEEE, 1993.

pp. 33-40, July 1994.

’82, pp. 373-380.

LEE ET AL.: IMAGE COMPOSITION SCHEMES FOR SORT-LAST POLYGON RENDERING ON 2D MESH MULTICOMPUTERS 21 7

[28] C D Hansen, M Krogh, and W White, ”Massively Parallel Visu- C.S. Raghavendra received the BSc (Hons)
alization: Parallel Rendering,” Proc. Seventh S I A M Conf Parallel physics degree from Bangalore University in 1973
Processing for Scientific Computing, pp. 790-795, SIAM, Feb 1995. and the BE and ME degrees in electronics and

1291 M Barnett, R Littlefield, DG. Payne, and R van de Geijn, communication from the Indian Institute of Sci-
”Global Combine on Mesh Architectures with Wormhole Rout- ence, Bangalore, in 1976 and 1978, respectively
ing,” Proc Seventh Int’l Pavallel Processing Symp., Apr. 1993. He received the PhD degree in computer science

[30] E Haines, ”A Proposal for Standard Graphics Environments,” from the University of California at Los Angeles in
I E E E Computer Graphics and Application, pp. 3-5, July 1987. 1982 From September 1982 to December 1991,

[31] R. Littlefield, ”Charactenzing and Tuning Communications Per- he was a member of the faculty of the Electrical
formance on the Touchstone Delta and iPSC/860,” Proc 1992 Ann Engineering-Systems Department at the Univer-
Conf Intel Supercomputer Users Group, pp 309-313, Oct 1992 sity of Southern California, Los Angeles He is

[321 Y c Tay, ”A Performance Analysis of Object-Parallel Rendering currently the Boeing Centennial Chair Professor of Computer Engi-
and Composition,” Research Report no 569, Dept of Mathemat- neering at the School of Electrical Engineering and Computer Science
ics, National Univ of Singapore, May 1993 at Washington State University, Pullman. His research interests are

high speed networks, parallel processing, fault tolerant computing, and
distributed systems. Dr. Raghavendra was a recipient of the Presiden-
tial Young Investigator Award in 1985. He IS a senior member of the
IEEE.

Tong-Yee Lee received his BS in Computer
engineering from Tatung Institute of Technology
in Taipei, Taiwan, in 1988, his MS in computer
engineering from National Taiwan University in
1990, and his PhD in computer engineering John B. Nicholas turned to the sciences after a
from Washington State University, Pullman, in career as a professional musician. He received
May 1995 He is an associate professor in the his BS in biochemistry from Illinois Benedictive
Department of Information Management at College in 1986 and his PhD in physical chem-
Nantai College, Tainan County, Taiwan, Repub- istry from the University of Illinois at Chicago
Iic of China, Prior to joining the PhD program at under the direction of Anton J Hopfinger He is
Washington State University in 1992, he worked currently a senior research scientist at Pacific

for Hitron Technology in 1990 and Tatung in 1991, both in Taipei, Tai- Northwest Laboratory, where his research fo-
wan. He has collaborated with the Institute of Computer and Informa- cuses on the theoretical study of heterogeneous
tion Engineering at national Sun Yat-Sen University in Koushung, Tai- catalysis and high-performance computations
wan. He leads a team in distributed systems and computer graphics at chemistry methodology development
Nantai College. His research interests include parallel rendering de- Dr. Nicholas IS the author or coauthor of 30 papers and has made
sign, computer graphics, visualization, VirtUal reality, parallel process- numerous presentations at national and international meetings. He is
ing, distributed systems, multimedia networking, heterogeneous com- a member of the American Chemical Society and the American Geo-
puting, and collaborative framework design. physical Union

