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Abstract—Video holds significance in computer graphics appli-
cations. Because of the heterogeneous of digital devices, retargeting
videos becomes an essential function to enhance user viewing ex-
perience in such applications. In the research of video retargeting,
preserving the relevant visual content in videos, avoiding flicking,
and processing time are the vital challenges. Extending image retar-
geting techniques to the video domain is challenging due to the high
running time. Prior work of video retargeting mainly utilizes time-
consuming preprocessing to analyze frames. Plus, being tolerant of
different video content, avoiding important objects from shrinking,
and the ability to play with arbitrary ratios are the limitations that
need to be resolved in these systems requiring investigation. In this
paper, we present an end-to-end RETVI method to retarget videos
to arbitrary aspect ratios. We eliminate the computational bottle-
neck in the conventional approaches by designing RETVI with two
modules, content feature analyzer (CFA) and adaptive deforming
estimator (ADE). The extensive experiments and evaluations show
that our system outperforms previous work in quality and running
time.

Index Terms—Analyze video, deforming, grid movement, pixel
movement, RETVI, video retargeting.

I. INTRODUCTION

V IDEO is a widely used media form that holds significant
importance in computer graphics applications due to its

ability to convey motion, simulate reality, and engage viewers.
Because of the heterogeneous of digital devices, adapting videos
to different display size, resolution, or aspect ratios (referred
to as “Video Retargeting”) has become an essential function
in these applications. For example, video retargeting can be
employed to (1) adapt video content in real-time based on user
actions or analytical queries [4]; (2) ensure that the video content
is visually pleasing, legible, and seamlessly integrated with the
augment reality environment [5]; or (3) dynamically adjusts
the content of virtual reality (VR) videos to match the specific
characteristics of different VR headsets [6]. Additionally, resiz-
ing videos has become increasingly popular with the advent of
smartphones equipped with video capabilities and the rise of
social media platforms. Whether you choose a standard aspect
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Fig. 1. Comparison on running time (second) of the existing SOTA image
retargeting methods and our RETVI.

ratio for content to be streamed on a laptop or a cell phone, it is
crucial to ensure that the video presents clearly without unsightly
cropping, providing the best experience for your audience. By
leveraging video retargeting in these applications, it could ul-
timately enhance users overall viewing experience. To drive a
video to a target size, conventional video retargeting methods
require a time-consuming and expensive process to analyze
input videos prior to resizing. In contrast, we have developed
a deep learning-based framework allows for retargeting videos
to arbitrary aspect ratios in an end-to-end manner. Our approach
eliminates the computational bottleneck present in conventional
methods while delivering higher quality results.

Researchers explore the problems of video retargeting with
various approaches, including conventional and state-of-the-art
(SOTA) techniques. The retargeting image could be the back-
ground research of video domain. Several attempts have resolved
the image retargeting’s problem. Each method usually consists
of two main steps: (1) determining the importance of image
pixels by extracting an importance map and (2) performing an
image retargeting operator to obtain the retargeting image [7].
Deep learning-based techniques can produce good visual results.
However, it requires equipment with high computation power
and comprehensive datasets. We can see a comparison on the
running time of the most recent SOTA image retargeting systems
in Fig. 1. Extending a deep learning-based image retargeting
technique to the video is tough to operate.

Unlike retargeting images, working on the video domain is
more challenging. Along with preserving important content after
resizing sessions, producing temporally coherent retargeting
videos is also vital to judging the performance of such a video
retargeting system. Researchers have explored this research
domain in various ways [27], [33], [35], [50], [55]. However,
they share an identical workflow as those in the image domain.
They need to utilize some off-the-shelf content analysis, i.e.,
saliency map and segmentation, to pre-process video frames in
advance. This approach leads to two significant downfalls. First,
the quality of resized videos depends on the performance of these
auxiliary functions. This may not only downgrade the capability
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of the proposed method but also prevent the method from playing
with diverse video content. Second, analyzing video frames
is more expensive than single images. It may take minutes to
process on a single frame. Processing time is an important factor
when retargeting is used in services like video on demand or live
streams, especially when the ability to retarget videos with high
resolutions in real-time is required [21]. Therefore, using such
a time-consuming system to retarget video in the high demand
of the digital age could be impractical.

To this end, the challenges in video resizing are not only
retaining important content in such temporal coherent results
but also the demand for a scheme that can adapt to diverse
video content, tolerate various aspect ratios, and be fast in
running time. Motivated by this observation, we propose a novel
end-to-end framework, abbreviated as RETVI, to address the
above challenges. We aim to retarget videos to arbitrary aspect
ratios without using hand-craft pre-processing or image/video
retargeting annotations. Our designed framework attempts to
capture the critical information of video and preserve them after
retargeting session without distortion and shrinking artifacts.
Our essential contribution is reducing the running time cost to
process video retargeting in an end-to-end manner. To achieve
these, we design our framework consisting of a content feature
analyzer (CFA) and an adaptive deforming estimator (ADE). The
CFA is responsible for learning the content information of the
input frames. Analyzed features serve as guidance for deforming
the frame to a target size. In this manner, we propose a neural
network, which can be considered an alternative to the time-
consuming pre-processing in prior work. With the knowledge
learned from CFA and a given resizing ratio, our ADE module
tries to teach the network how to deform the input frame with
minimum distortion. We test the performance of our proposed
method through various videos. The experimental results and
evaluations demonstrate that our system outperforms previous
works in quality and running time.

In summary, our main contributions are as follows:
� We investigate a novel end-to-end video retargeting based

on high-level representation of video frames.
� We design a network that can effectively demonstrate the

important content of the video, which performs better the
expensive computation of the preprocessing in prior video
resizing systems.

� Our method can adapt to various video contents and arbi-
trary aspect ratios.

� End-to-end and fast running time enable our system to be
potentially embedded in other services or applications.

II. RELATED WORK

A. Image Retargeting

Image Retargeting has received much attention during the
last decade. Researchers approach this domain with different
techniques, from conventional to state-of-the-art. Most of the
classical image resizing algorithms [8], [12], [18], [19], [31],
[36] share an identical workflow with two steps. In the first step,
an importance map is generated via visual attention analysis
methods, like saliency detection. The main goal is to preserve the

regions with high importance as well as possible. In the second
step, an operator retargets the image [21]. Cropping, scaling,
warping, browsing, seam carving, or combining them are the
typical operators selected and used in these resizing algorithms.
Most recently, Kim et al. [22] investigated a novel approach,
a grid encoding model for image retargeting, which takes each
horizontal/vertical distance between two adjacent vertices as an
optimization variable. The results demonstrate that their method
consistently outperforms previous methods on qualitative and
quantitative perspectives [22].

With the revolution of deep learning technologies, several
works have applied these new techniques to resolve the prob-
lems in image retargeting [10], [30], [37], [47], [48], [57].
CarvingNet [47] uses an encoder-decoder CNN to develop an
importance map based on a learning model. WSSDCNN [10], a
network learns the image content via an attention map, guiding
pixel-wise mapping during retargeting. Cycle-IR [48] solves the
problem of image retargeting through unsupervised learning.
Conceptually, they build the network based on reverse mapping
from the retargeted images to the given input images. Formulat-
ing the multi-operator retargeting upon reinforcement learning
technique is a novel approach presented in SAMIR [57]. This
approach can produce results with lower computational costs.
Nevertheless, the running time is relatively high, and the results
still suffer from cropping seriously.

B. Video Retargeting

Preserving the relevant visual content in videos while avoiding
flicking is the most crucial challenge of video retargeting [21].
Using image retargeting techniques on individual video frames
does not provide satisfactory results as they might change en-
tirely different areas in adjacent frames [24]. Video retargeting
becomes an exciting research topic recently when the explosive
growth of social platforms and digital devices demands the
videos to be resized to display them nicely.

The early attempts to retarget videos use a straightforward
technique, cropping [9], [35], [53]. Later, researchers investigate
more algorithms to resolve the problems in this research domain.
Extending the typical techniques in image retargeting to video
is commonly used by researchers, particularly seam carving and
warping operators. Extending seam carving to video retarget-
ing might lead to high processing time. Therefore, researchers
in [14], [17], [50] focus on speeding up the processing time and
saving memory space when extending this technique to videos.
Applying warping to retargeting videos may cause undesirable
artifacts. It is because of a temporal motion of an image region
in one direction followed by motion in the opposite direction.
Therefore, warping-based research applied to videos focuses on
image stability and run-time performance [21]. Gallea et al. [15]
use a 2D grid for image retargeting and add a third dimension
to handle changes over time. The authors in [28], [51] extend
the axis-aligned image retargeting to video by computing the
deformation for selected keyframes and interpolating the other
frames. A contrasting approach to these extensions is introduced
by Lin et al. [33]. The authors use a uniform grid mesh for the
warping in this work. They focus on preserving the important
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Fig. 2. Left: the workflow of our RETVI in training and inference; right: visualization of the CFA and ADE modules.

objects in a video while warping the non-important regions in
a way similar to linear scaling [21]. The most recent work in
this research domain is introduced by Lee et al. [27], which
uses a deep neural network for video retargeting. Their concept
uses object detection to allocate the bounding boxes of the main
objects in a video. Then, the remaining background areas are
resized to preserve the content of the bounding boxes without
deformation. Along with retargeting traditional images/videos,
the research domain on stereo image/video retargeting also
receives attention. The studies proposed in [13], [32], [34], [45]
demonstrate that analyzing the importance in input is an essential
factor to gain good quality resized stereo images/videos.

The sharp contrast between our framework and theirs [27],
[33], [50], [55] is that we develop an end-to-end system for re-
targeting videos to arbitrary aspect ratios. Our proposed method
is faster than the conventional techniques, effectively preserving
important information in videos after retargeting session without
distortion or shrinking phenomenon, and tolerant to videos with
dense content and multiple moving objects alike.

III. METHODOLOGY

A. System Overview

We propose a novel framework RETVI for retargeting videos
to the arbitrary aspect ratio. Our approach is to retarget videos
without hand-craft pre-processing or image/video retargeting
annotations. We convert the video retargeting problem to an
unsupervised learning problem of conditional transformation
regression without explicitly computing a transformation. As
diagrammed in Fig. 2, a pair of video frames (Vo,Ve) is required
in the training process, in which Vo is the input video frame and
Ve is the extracted foreground of Vo. In the inference phase,
only the video with frames {Vo} is required as input in our
end-to-end retargeting process. In the following, in the context
that we do not need to differentiateVo andVe, we useV to denote
such an input frame in our system. Specifically, we model our
RETVI with two modules, a content feature analyzer (CFA) and
an adaptive deforming estimator (ADE). The specific procedure
is outlined in Fig. 2(b).

As named, the CFA is responsible for analyzing the input
content. It accepts video frames as the input. As a result,
CFA converts the input frames V to high-level representation.
Conceptually, ADE receives feature representation of V and a

random resizing ratio as inputs, and tries to teach the network
how to deform V with minimum distortion. Afterwards, we train
the network with the weighted sum of four loss functions. Once
trained, given a video and target size, our network can efficiently
and effectively produce the retargeting result in an end-to-end
manner. Instead of using an expensive pre-processing for visual
attention analysis as in the aforementioned conventional retar-
geting systems (e.g., saliency map, segmentation, optical flow),
we analyze the input frames by the CFA module. The features
obtained from CFA are more robust to noise and occlusions
than saliency maps or segmentations. This is because they rely
on higher-level features, such as shape, texture, and context,
which are less affected by noise and occlusions than low-level
features such as color or intensity. Besides, CFA can be more
computationally efficient and generalizable to new images once
trained.

B. Network Architecture

1) Content Feature Analyzer: This module, dubbed as CFA,
shoulders the task of learning the contextual information of
frames during encoding them into latent space. This process
can be considered as an alternative to the time-consuming pre-
processing, i.e., saliency and segmentation, in those described
above conventional resizing systems. To define the important
regions in frames, such a well-known object detection also
could be used. Nonetheless, detection focuses on detecting the
bounding boxes surrounding the detected objects. Meanwhile,
we aim at estimating at the pixel level to capture more semantic
information in the frame rather than using the bounding boxes.
Consequently, we structure CFA such that it can produce pixel-
wise output of input frame from encoded features. We design
CFA with the inspiration from the U-Net model [41], which has
been a successful network in medical image segmentation. It is
later varied to be used in other applications, such as natural image
analysis, natural language processing, and image classification.
U-Net is shaped in various structures depending on the goal
of a particular application. Similarly, we design a variation of
this standard model to meet the purpose mentioned earlier. The
tweaks of our design are as follows.

Given a video frameV in sizeH ×W , we generate a pyramid
of spatial features from coarse to fine granularities through a
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so-called E-Blocks, which is structured by Conv3×3 → Nor-
malization → Tanh. Formally, the feature maps produced by an
E-Block is formulated as:

Ei = T (B(C3(Ei−1, κi))), (1)

here C3(.) performs the 3× 3 convolution, B(.) represents the
batch normalization, and T (.) indicates the Tanh activation
function. Ei is a matrix in RHi×Wi×κ with κi is the number
of kernels used in the ith E-Block, i = 1 . . . 7. The contrary
path is a symmetric form of those obtained from E-Blocks. It
is worth noting that we deepen the number of layers to seven
since we aim to detect both the more extensive features (i.e.,
the main objects in the foreground) and the more fine-grained
features (i.e., the small objects in the background). In the pure
UNet and its variants, skip connections play a crucial role in
facilitating information flow between different levels of the
network, enabling better feature propagation and learning. They
mostly use skip connections at every upsample layer. In contrast,
we employ the skip connections half-way, i.e., at layer 4 to
layer 7, as features are with more fine granularity dwell deeper
layers. This strategy could aid in discriminating objects from the
background regions or multiple objects distributed entire frame.
It eventually boosts the capability of the decoder. Specifically,
we embed an ED-Gate (G) at each skip connection to summarize
the fine features and construct the decoded features. The feature
maps at each symmetric layer are expressed as follows:

Di =

{
G(Ei,Di+1), if 4 ≤ i ≤ 6
Ω(Di+1), if 1 ≤ i < 4

, (2)

here Ω(.) represents for a so-called D-Block, which is formu-
lated as:

Ω(Fout) = R(B(CT (F in))), (3)

where R is the ReLu activation function, and CT (.) is the
transposed convolution operator. In essence, theCT (.) operation
forms the same connectivity as the normal convolution but in the
backward direction. Moreover, the weights in CT are learnable,
we accordingly do not need a pre-defined interpolation method.

In the ED-Gate, given two feature maps Fe and Fd, respec-
tively from encoding and decoding layers, Fe is first fed to a
CBR block, which is structured as Conv3×3 → Normalization
→ ReLu. It is then concatenated with Fd to result in the output
feature maps at a certain skip connection. Theoretically, the
output of an ED-Gate is expressed as:

Fg = CBR(Fe)� Fd, (4)

with � is the concatenation operation.
We can obtain certain advantages with the above design.

First, increasing the depth of layers can capture more complex
features in the image, which can lead to improve the accuracy
of understanding the image content. This is especially important
for analyzing the image having complex textures. Second, the
ED-Gate boosts that the information can flow more directly
between the encoder and decoder. Third, this design can help
improve the parameter efficiency of our model by allowing it to
capture more information with fewer parameters. This can help

Fig. 3. Workflow of our resizing strategy.

prevent overfitting and improve the generalization performance
of the model.

2) Adaptive Deforming Estimator: With the decoded feature
map D1 obtained from the CFA, the question here is how to
thread it to learn the appropriate deformation matrix. In other
words, we need to define a function f : Rh×w×k −→ RSh×Sw ,
where h,w, k is the height, width, and kernel size of D1.
The matrix H ∈ RSh×Sw is shaped in the same size with the
input frame, i.e., Sh × Sw. Finding the mapping function f
is a game that several prior work has challenged with, such
as, geometric warping with industrial style transfer [52], video
stabilization [56]. Optionally, depending on the goal of a certain
application, the function f is designed in different ways. In
our current application, we aim to estimate a deformation to
drive the input frame from a source size S to a target one T,
SSh×Sw −→ TTh×Tw , with minimum distortion and content
awareness. For this goal, we design the Adaptive Deforming
Estimator (ADE). In this stage, we consider the advantage of
both pixel-based and grid-based strategies when formulating the
function f . Pixel-based is simple and can be computationally
efficient. However, it can lead to loss the detail and resolu-
tion, particularly when downsampling an image. Meanwhile,
grid-based methods can preserve more detail and resolution in
the resized frame than pixel-based methods. However, it can
be more computationally expensive than pixel-based methods.
To alleviate the burden of the trade-offs between computational
efficiency and image quality, we devise an in-between strategy,
which can use the advantage of each method.

Now, we detail how we utilize feature maps D1 to deform
frames. The workflow of this phase is outlined in Fig. 3. First,
we transform D1 to 2D-grid form via an activation function:

Q =
1− e−2a

1 + e−2a
, (5)

here, a ∈ D1, a tensor with 16 channels; hence, Q ∈ R2×16×16.
Through equation (5), each element in the feature map D1 is
returned values in range (-1, 1), which indicates the fine features
of the input frame. To define the mapping value in Q to pixel in
V , we interpolate Q to a regular Sh × Sw grid pixel coordinate:
E = ∇b(Q), here ∇b denotes the upsampling operator with
bilinear mode. The resultant dense map E represents for the
information of the corresponding pixel in the input frame. As a
result, each pixel in E is also a grid cell, and we assume each of
them to be a seed. A seed s(cs, es) ∈ E has a coordinate cs(x, y)
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and energy es(x, y). The energy of a seed demonstrates how
important the pixel is. A pixel belonging to important regions
should have a smaller energy compared to those belonging to the
reverse one. In other words, pixels are with higher energy will
be more deformed than others. We call E an energy map, which
is considered as the guidance for the later deforming estimation.

Given a target size T(Th, Tw), to construct the resizing form
(denoted as R) of frame V , instead of deforming V directly, we
make a tweak to manipulate this process. First, the energy of
seeds in E is extracted and re-formulated to define a matrix H,
in which value at coordinate (i, j) is a tuple with:{

Hij
x = esx ×�

Hij
y = esy ×�

(6)

here i = 0, . . . , Sh − 1; j = 0, . . . , Sw − 1; and

� =

{
(1− r)2 , if reducing

− (1− r)2 , if enlarging
(7)

where r = Tw

/
Sw, i.e., the resizing ratio. To make our model be

tolerant with arbitrary target sizes, r is randomized in the range
of [0.25, . . . , 1.25] in our training. The matrix H represents
the seed’s flow intensity when the current space is retargeted.
Thereafter, we initialize an empty pseudo frame p-V in the same
size with V . Then, we partition V and p-V into a regular grid of
size (Sh × Sw). Consequently, we deform p-V using the matrix
H, resulting in a deformed grid d-V . The coordinate of a cell in
d-V is defined as: (csx +Hij

x , c
s
y +Hij

y ). By applying different
deformation weights to the x-axis and y-axis separately, we can
achieve non-linear changes in the shape of the resized frames.
Once deforming p-V to d-V , we use d-V as a mapping to sample
pixel values fromV and generate resizing frameR. The frameR
is constructed by interpolating the pixel values according to d-V .
The matrix H is a learnable parameter, and R is optimized at
each iteration during training by four loss functions. The energy
es is contravariant with the pixel property at a particular seed.
That is, the more important the pixel is, the smaller the energy
is.

Our above tweak serves the following benefits. First, the
deformation is applied on the coordinate system itself, without
considering the content of the frame. Hence, it results in a smooth
and continuous transformation. Second, we have more control
over the transformation of the coordinate space. This allows us
to apply various aspect ratios on the deformation. Besides, by
formulating � during the training, the model can learn to adapt
to various resizing ratios under the control of loss functions.
As a result, we do not need to re-train the network whenever
it plays with a new target size. Also, such a time-consuming
pre-processing mentioned above is eliminated and videos are
retargeted in an end-to-end process.

C. Loss Function

Let the generator network be denoted by f parameterized by
weights μ, it transforms an input frame V ∈ RH×W×C into an
output deformation matrix H via the mapping H = fμ(V). Net-
work learning adjusts the parameters μ through minimizing four

loss functions Lcri, Lglo, Ltem, and Lfid. Each loss function
computes a scalar value L(.) measuring the difference between
the input frame and the retargeting frame corresponding to four
loss functions. The network is trained to minimize a weighted
combination of the loss function:

μ∗ = argmin
μ

EV [λcLcri + λgLglo + λtLtem + λfLfid] .

(8)
The parameters λc, λg , λt and λf are all set to 1 in our training.
In the following, we delve in detail the figuration of each
loss function. The ablated results on each component in our
optimization are presented in later Section IV-E.

Critical Region Loss (Lcri): In reconstructing the frame to a
new ratio, the goal is to recover the impaired frame to match the
pristine undistorted counterpart visually. Thus, we need to de-
sign the loss that would adhere to that goal. We are inspired by the
perceptual loss [20] to supervise feature changes. Perceptual loss
is expressed in various forms depending on specific application,
e.g., image style transfer, image restoration, image colorization.
Specifically, in our current application, we formulate this loss
to distinguish important objects in a frame and maintain their
proportional shape between the ground truth foreground and the
estimated foreground frame, written as:

Lcri =
∑
i

1

CiHiWi
‖ (Γ(Φi(Ve))− Γ(Φi(Re)) ‖22, (9)

where Γ is an off-the-shelf feature extractor. In our experiment,
we use VGG-19 as a feature extractor. However, other pre-
trained models, such as ResNet, could result in equivalent effect.
Φi(.) is the feature maps in the ith layer of the corresponding
input parameter Ve or Re. Here, Ve is annotated foreground of
the input frame Vo and Re is resized form of Ve. With this loss
function, the regions with low energy in the input frame can be
well preserved.

Global Integrity Loss (Lglo): In addition to the critical re-
gions, we also consider the overall presentation of the output
image. This objective function is particularly effective when the
content is dense and distributed entire frame. To preserve the
frame information as much as possible, making resized frames
more harmonious and natural, we rely on the advantage of an
image classification network (shortened by ICFNet). In a certain
ICFNet, for instance, VGG or ResNet, the architecture consists
of feature extraction blocks and ends with a fully connected
layer, which is then used for producing predictions. Inspired by
this, we formulate Lglo to define how the content of the input
frame is preserved in the retargeted one. Let denote x be the
one-dimensional latent vector of an input frame V after the fully
connected layer of the ICFNet. The probabilities in vector x for
all possible Nc classes is expressed as:

P (x|Nc) =
exp(x)∑Nc

j=1 exp(xj)
(10)

The objective of Lglo can be simplified as:

Lglo =‖ P (xo)− P (xr) ‖22), (11)

here P is defined by Eq.(10); arguments xo, xr are respectively
the latent vectors of Vo, Ro after feeding them to a ICFNet.
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In our experiment, the ICFNet we use is ResNet. Using VGG
models may also result in equivalent effect. With Eq.(11), we can
measure the different degree of the pair (xo, xr), i.e., defining
whether they are classified into the same classification. In this
way, the content information can be compared without being
limited by the size difference between frames Vo and Ro.

Temporal Consistency Loss (Ltem): Temporal consistency
should be specifically considered in our video retargeting task.
The temporal consistency loss is used for evaluating the coher-
ence between adjacent resized frames. To obtain this coherency,
several works in the video generation domain, such as video style
transfer, video stabilization, video segmentation, etc., usually
calculate the pixel correspondence between adjacent frames with
optical flows. However, the time cost of optical flow estimation
is expensive. It could affect the efficiency of the model. Besides,
in our video retargeting application, the sizes of the input and
retargeted frames are different, so finding the mapping optical
flows in this context is impractical. Instead, we base on the
knowledge of the correlations between the features of the ad-
jacent frames to infer the temporal consistency degree in the
retargeted videos. For any triplet of the adjacent frames with
the respective supper script t− 1, t, and t+ 1, the temporal
consistency loss is formulated as:

Ltem =
∑

‖ γ(Vo
t−1,Vo

t ,Vo
t+1)− γ(Ro

t−1,Ro
t ,Ro

t+1) ‖22
(12)

where γ(.) is to calculate the correlation of features between
adjacent frames. Assuming with a certain triplet of three adjacent
frames (Ft−1,Ft,Ft+1), γ(.) is expressed as:

γ(.) =

∑
(Γ(Φi(Ft−1))× Γ(Φi(Ft)))× Γ(Φi(Ft+1)))

HiWiCi
(13)

with Γ(.) and Φ(.) are defined in the same way with Eq.(9);
i ∈ [1 . . . 4]. Using the correlation of features between adjacent
frames could be more appropriate to maintain temporal coher-
ence than optical flow in video retargeting applications. Video
retargeting involves changing the resolution of a video, which
can cause distortion and loss of detail. To avoid these issues, it’s
important to maintain temporal coherence between frames, so
that the motion and appearance of objects in the video remain
consistent. Compared to other alternatives, such as optical flow,
our formulation is simplicity, robustness, and useful for our task
when changing the size.

Fidelity Loss (Lfid): Apart from minimizing geometry dis-
tortions, the quality of the resized frames is also a vital aspect
we take into account in our current application. The matrix
estimated by our network plays as the weight for deforming
frames. However, the retargeted results might be blurry due
to the relative coordinates we used to reconstruct the pixels
in the ADE module. To alleviate this phenomenon, we pro-
pose the fidelity loss. Our idea in this manner comes from the
concept of Generative Adversarial Networks (GANs). Unlike
the discriminator in such a GAN-based network which tries
to classify examples as either real (from the domain) or fake
(generated), our formulation aims to discriminate the fidelity
of retargeted frame to its corresponding input in terms of pixel
color value. We note here that withoutLfid, our network alone is

capable to estimate the deformation matrix efficiently. Besides,
our model is not supervised by the annotated retargeting data,
the optimization plays as auto-alignment manner. To this end,
we propose this loss to boost the performance of our model in
terms of “clean quality”.

A pair of frames (Vo,Ro) is taken as input in our formulation.
They are first fed to a so-called Fid-Disc to analyze them in fea-
ture space. Unlike other loss functions, Lcri, Lglo, Ltem, which
use an off-the-shelf feature extractor, we design a lightweight
module to configure Lfid. The Fid-Disc contains 6 CBR blocks,
as used in the ED-Gate, and 1 fully-connected hidden layer (64
channels). Accordingly, the fidelity loss is expressed as:

Lfid =
1

2

(
ξ(D(Vo), 1) + ξ(D(Ro), 0)

)
, (14)

where

ξ(.) = − 1

n

∑
((τ [i] ∗ log(η[i])) + (1− τ [i]) ∗ log(1− η[i])) .

(15)
Here, D is the Fid-Disc; η is the score output by D with the pa-
rameters Vo or Ro; and τ is the score we want it to discriminate,
i.e., τ ∈ {0, 1}. The training goal of D is to distinguish the input
frame from its resized frame by the ADE module. Our network
tries to generate a high score (i.e., close to 1) from D, so that the
output of ADE module can be closer to the quality of the input
frame.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We implement our RETVI in Pytorch [39]. All experiments
were performed on a PC equipped with Intel Core i7-770 CPU,
16 GB RAM and a GeForce RTX 2080 Ti GPU. We train
RETVI using batch size 2 within 150 epochs. The training takes
approximately 10 hours. For the loss function, we use Adam
optimizer [23] with a learning rate of 1× 10−3.

In terms of training data, we train our RETVI on DAVIS
dataset [40], which consists of 90 videos in size 854 × 480 with
single and multiple moving objects. In the dataset, each video has
a corresponding foreground annotation. We use it as Ve and the
original video asVo. Preparing training data by collecting videos
using existing tools/methods to segment foreground for them is
also an alternative. However, this way is not recommended since
the performance of the foreground extractor may cause occlusion
effect and make the accuracy of importance region unstable.

To produce final resizing frame R after sampling d-V to
input frame V , we reconstruct the content in a window (W) of
[(Sw

2 − Tw

2 ) : (Sw

2 + Tw

2 )]. Since our RETVI is trained to play
with arbitrary ratios while controlling several aspects of video
quality (such as global content, critical region content preserva-
tion, temporal coherence, etc.), the content after sampling may
not always fit with the window W. More specifically, when
resizing a frame of width Sw to a target width Tw, we try to
estimate matrix H such that the total movement of pixels is as
tight as possible to Tw. However, due to the trace-off in our
afore discussion, the total movement would be lightly greater
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Fig. 4. Performance of our method on different video contents by retargeting to ratio from 0.9 to 0.3 of width.

than Tw in some cases. As a result, cropping may occur. See
detail visualization in the supplementary file.

B. Our Results and Discussion

To demonstrate the abilities of our method, we test it on
various video contents. Fig. 4 exhibits the results of three
typical showcases in our experiments, each video has different
attributes. To be specific, the video “Dancing” is with people,
video “Talkshow” is with a single object and text attributes, and
the video “Packing gift” is with multiple objects distributed in
entire frame. Among the three videos, the video “Dancing” is
a camera-move-video. Readers are encouraged to explore our
project website1 to see more results. We can summarize the
aspects that enable our results to advance previous works as
follows.

We can alleviate the shrinking phenomenon of important
objects when reducing sizes effectively. This aspect is gained
by benefiting from the CFA module and the critical region loss
(Lcri). We observe that this phenomenon often involves reducing
videos to a considerably smaller size, i.e., less than 0.6 of width.
In the demonstration of Fig. 4, we put the results generated by
linear scaling to facilitate inferring the quality of our results.
It can be seen the dancers (video “Dancing”), the lady (video
“Talkshow”), and the gift-box shape (video “Packing gift”) are
preserved quite well without shrinking artifacts. It is obvious to

1http://graphics.csie.ncku.edu.tw/RETVI

observe the video “Talkshow”, the shape of the lady is shrunk
and the text is distorted when the video is reduced to 0.3 of
width by linear scaling. However, they still appear in a visually
pleasing manner in our results.

Being tolerated of various video contents and arbitrary aspect
ratios without suffering from distortion could be an advantage
of our work. As can be seen in Fig. 4, the important contents in
three sample videos are not damaged when the resizing ratios
varies from 0.9 to 0.3. Particularly in the video “Packing gift”,
it is such a challenging video since the important contents are
dense and distributed in entire frame. Thanks to the performance
of our CFA module, our network can fully understand such dense
content. Besides, with the aid from global integrity loss Lglo, all
information of this challenging video is preserved harmoniously
and integratively with the source.

Being extendable to image retargeting is a plus of our pro-
posed system. Several deep learning-based algorithms have been
investigated to resize image recently. Detail comparisons with
these methods are presented in the supplementary file. Here,
we exhibit the typical cases mentioned as the challenge in this
research domain to demonstrate the capability of our RETVI.
The research by Tang et al. [49] concludes that not all images can
be equally resized. This property is defined via a retargetability
score, ranged from 0 to 1. They show that the images with
low retargetability scores are difficult to preserve visually and
semantically important content after resizing. For this challenge,
we test our RETVI on the images with different retargetability
levels. Fig. 5 presents two samples, one is with medium level
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Fig. 5. Our method challenges on images with different retargetability levels. The input images and results by F-MultiOp and AAD are quoted from the source
paper [49].

TABLE I
COMPARISON ON EXECUTION TIME PER FRAME

(score: 0.57), and the other is with low retargetability (score:
0.1). As shown in the figure, in image (a), the compared method
F-MultiOp generates result with serious cropping (i.e., the hand
and the mug). In image (b), the shape of the main object (i.e., the
clock) is distorted by deformation in AAD [38]. In contrast, these
phenomena do not occur in our results. Our RETVI produces
plausible results in both cases. The results of this experiment
demonstrate that our method is potentially used for retargeting
images with various image content.

Finally, running time could be an essential advantage of
our method over prior work. Table I reports the running time
(excluding video reading/writing) that our RETVI competes
with a conventional video resizing system [33]. We run two
methodologies on the same PC configuration, as reported in
Section IV-A. An input video consisting of 144 frames in size of
1280× 720 is retargeted to 50% of the width in this experiment.
As can be seen, in Lin et al. [33], a time-consuming process falls
in generating the saliency map and segmentation, approximately
more than 1 minute. And the optimization in the retargeting
phase spends about 1.32 seconds. As a result, this conventional
system spends minutes to retarget a frame. Meanwhile, our
proposed method is an end-to-end system, which only needs
approximately 2.3 seconds to resize a video with 144 frames
(i.e., 0.016 seconds per frame). It’s worth noting that it could be
unfair when comparing the running time between a conventional
system versus a deep learning-based one since our RETVI also
uses significant cost for training process. Nonetheless, the time
cost for training our RETVI is 10 hours, which is such a relatively
normal training time for a deep learning model. The workflow
and cost make the system [33] cumbersome to be incorporated
in demanding services/devices. On contrary, the advantage of
running time of RETVI once trained reveals that it is feasible to
embed our scheme into a resizing application/service.

Potential Application: With the abilities of our method in the
above discussion, we can apply it to resize videos to make them
perform well in the 9:16 aspect ratio. This aspect ratio became
popular when smartphones were created with video capabilities.
For example, the optimal measure for an Instagram story is

Fig. 6. Our RETVI (the first row) competes with Adobe Express (the second
row) on resizing video to 9:16 aspect ratio.

1080px by 1920px, which means its ratio is 9:16. The same
goes for other popular social platforms, e.g., Facebook Reels,
Youtube Short videos, Tiktok, Instagram story, etc. Several
existing commercial applications, Adobe Express [2], Veed [3],
and Flexier [1] have been providing streamers with a function
to edit the ratio of their videos before uploading. Nevertheless,
these applications share an identical technique, i.e., a window of
size 9:16 is allocated at the middle of video and they manually
crop two sides of the video. Therefore, they can keep the ratio
of object in the same as in the input video. Yet, in the cases that
videos with multiple objects, retaining the important objects in
a 9:16 ratio is challenging. We provide a showcase in Fig. 6,
in which we compare with Adobe Express. As can be seen, our
system does not crop out the tasteful content in this example. The
shape of objects may be smaller than those by Adobe Express,
but it can capture the tasteful moment on each frame and make
it visually pleasing. The visual video can be seen here.2

To be specific, in order to change a video to a tall one, we
apply a parameter to control the movement weight in equation
(6). As a result, this equation becomes:{

Hij
x = esx ×�× ϑ

Hij
y = esy ×�× ϑ

(16)

here, ϑ is a constant greater than 1. This parameter can be
adjusted by users such that the preserved content in the tall video
can catch the user’s expectation. This extension enables users to
have more predictable results when editing videos with multiple

2[Online]. Available: http://graphics.csie.ncku.edu.tw/RETVI/Compare-
Adobe.mp4
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Fig. 7. Predictable results for tall video.

objects to 9:16 aspect ratio. We provide the results generated by
different values of ϑ in Fig. 7. As can be seen, varying value of
ϑ yields different retargeting results. Since the estimated values
in matrix H is capable to avoid distortion, a constant ϑ produces
linear increasement. The bigger ϑ can retain object in the tight
ratio with those in the input video, but it may not retain much
content as the smaller ϑ. Depending on what users interest to
preserve, ϑ can be adjusted to achieve the expected results.

C. Evaluation Metrics

To evaluate the performance of the proposed method, we
use four metrics. First, we estimate the distortion degree of
retargeted videos. Second, we measure the stability of the re-
targeted videos. Third, we use an image quality measurement
to evaluate the performance of our method on a benchmark
image retargeting dataset. And for the last metric, we base
on human visual perception. In this evaluation session, we
use a set of nine videos and an image dataset. We collect
videos data from Youtube such that the videos have diverse
content, e.g., single-moving objects, multiple-moving objects,
complex backgrounds, or important content distributed in the
entire frame. Four of them are the camera-move-videos, and the
remainders are object-move-videos. Since few methods focus on
retargeting videos, particularly deep learning-based approach,
the competitor we quantitatively compare is a typical video
resizing system Lin et al. [33]. Moreover, the source code of
this work is provided by the authors, hence it is reliable to use
and fair for comparison/evaluation. The image dataset we use in
our assessment is RetargetMe [43], which consists of 80 images.
We evaluate the image data in comparison with four recent SOTA
image resizing methodologies.

1) Video quality measurement: As the ground truth for video
retargeting is not available, it is challenging to define the quality
of videos after retargeting process. Therefore, in this regards,
we elaborate as follows.

We first adopt the bidirectional similarity measure [46] to
evaluate the quality on single video frame. Simakov et al. [46]
propose this measurement to describe the coherence and com-
pleteness between input and output images [29]. It is widely used
for quantitative analysis retargeting results in several works.
Given a video withn frames, we have two sets: a set of the source
video frames Vs = {F s

1 , . . . , F
s
n} and the other is those retar-

geted by a certain video retargeting methodVt = {F t
1 , . . . , F

t
n}.

TABLE II
ANALYSIS ON THE QUALITY OF VIDEO RESULTS

On each pair (F s
k , F

t
k), the error of F t

k over F s
k is expressed as:

Ek(F
s
k , F

t
k) =

1

N

( ∑
p⊂F s

k

min
q⊂F t

k

δ(p, q) +
∑
q⊂F t

k

min
p⊂F s

k

δ(q, p)

)
,

(17)
where k ∈ [1 . . . n], N is the number of patches on F s

k and
F t
k; δ(.) is defined by sum of squared distance of two patches.

Afterwards, we calculate the mean (ME) of Ek to define the
error degree of a retargeted video. The lower is better.

2) Video stability measurement: To measure the stability of
resized videos without annotated data, we estimate the differ-
ences of adjacent frames in the retargeted video and compare
them against those in the source one. This concept is used in var-
ious video generation applications, e.g., video stylization [11],
[25], video resequencing [26]. The calculation is based on the
fact that the source videos are temporally coherent, and the
retargeted results are rendered from the same frame set with
them but in different ratios. We, therefore, treat the value in the
source as the ground truth to judge the stability degree of the
resulting videos. Accordingly, a generated video with a score
that is tightly asymptotic to the ground truth would be in good
stability.

Given a video with frame set V = {Ft}, t ∈ [1 . . . n], n is the
total frames of V , the difference degree of two adjacent frames
is formulated as:

Dt→t−1 =
1

100
×

∣∣Ft − Ft−1

∣∣
H ×W

, (18)

where H and W are the height and width of frames in set V .∣∣Ft − Ft−1

∣∣ returns a residual of two frames, which can be seen
in the supplementary. Accordingly, the stability of the video is:

STB =
1

n

n∑
t=1

Dt→t−1. (19)

For this metric, the lower score represents a better stability.
In Table II, we analyze the quantitative evaluation and com-

parison using the above two metrics, ME and STB. With
nine videos we prepared, we used Lin et al. [33]’s method and
our RETVI to generate results. As can be seen, our method
achieves a lower distortion on average compared to Lin’s. The
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Fig. 8. Analysis of human perception on group G-1 (a) and group G-2 (b). (c)
is the comparison on ARS score.

highest ME in our results is 3.17; two videos have relatively
low distortion (i.e., video #4 and video #9). Inferring to Lin’s
results, the distortion level in theirs is higher than ours in most
cases. The lowest ME of their results is reported at 2.97, which
is higher than our average score. This analysis reveals that the
retargeting results generated by our system are less distorted
than Lin et al. [33]. In terms of stability, Lin’s method and our
RETVI have comparable scores. However, we can see that their
values of STB of the camera-move-videos are relatively higher
than those of the reverse cases. The analysis results reveal that
our model is stable when working on diverse input videos.

3) Image quality measurement: Although our focus is not
retargeting images, as mentioned above, our method effectively
applies to single images. To quantitatively evaluate this perfor-
mance, we adopt the Aspect ratio similarity (ARS) [54]. This
algorithm evaluates the visual quality of retargeted images by
exploiting the local block changes with a visual importance pool-
ing strategy. The ARS score represents the geometric changes
during retargeting [54]. For this metric, all of the images in
the RetargetMe are used. We compare the results of these im-
ages generated by our method against a typical conventional
method, multi-operator [42], and three deep learning-based
techniques [10], [48], [57]. The results of multi-operator [42]
are encompassed in the RetargetMe dataset, while those of
WSSDCNN [10], Cycle-IR [48], and SAMIR [57] are generated
from the source code released by the authors.

The quantitative comparison of the ARS score is shown
in Fig. 8(c). As can be seen, our RETVI achieves a higher
score comparing all the competitors. Although the deviation
is not significant, it is sufficient to demonstrate our method’s
performance. It is because the RetargetMe dataset encompasses
challenging images. A good performance on this dataset could
be assessed as a reliable method.

4) User study: We further estimate the performance of our
RETVI based on human visual perception. We conduct a user
study on two groups. In one group (G-1), we recruit 13 users
(nine of them with graphics-related backgrounds). For the other
(G-2), we invite nine users who are either tiktokers or senior
users on the existing social platforms. In G-1, we use nine videos
mentioned in evaluations E.1, E.2 to generate results retargeting
to a half size of width by our RETVI and Lin et al. [33]. In
G-2, we prepare five videos (two with a single object and three
with multiple objects) and resize them to the 9:16 aspect ratio by
Adobe Express [2] and our RETVI. In both groups, participants
are shown two retargeted videos at one time and asked to choose
the one they prefer. We receive 117 responses on G-1 and 45

Fig. 9. Comparison with Lin et al. [33].

responses on G-2. We then compute the percentage of votes for
each video.

Fig. 8(a)-(b) shows the statistics of users’ preferences. It
can be seen that our method receives majority votes from the
participants in G-1 and G-2 alike. There are two cases in G-1
(e.g., vid#2 and #6), in which users judge Lin’s results are better
than ours. However, the difference is not significant (0.08 and
0.14, respectively), and the score of our RETVI is relatively
higher in the remaining seven cases (77.78% in total showcases).
The data in G-2 reveals that users prefer the tall videos by Adobe
Express to ours if the videos have a single object. Yet, our RETVI
wins Adobe Express in cases with multiple objects.

D. Visual Comparisons to Prior Work

Fig. 9 visualizes the comparison between our results and Lin
et al. [33]’s. The visual results reveal that Lin’s results suffer
from some shortcomings. First, several noticeable artifacts occur
in the main object and line structure of the background region
(highlighted by yellow rectangles). The reason is that their
scheme relies on a saliency map [16] to estimate the movement
weight of quad vertices. As a result, if the content frame is dense,
the saliency method may not be tolerated to analyze the frame
effectively. For example, the shape of the lady in frame #30 and
frame #87 is plausible, but the door is shrunk significantly. It
is even smaller than linear scaling. Besides, in frame #199, the
line structure of the door appears quite well, but the head of the
lady is distorted. In contrast, our method produces more visually
pleasing results without these distortions. Second, the generated
video by Lin et al. [33] in this case still has the noticeable flicking
artifact. See the video here3 for better visualization.

In Fig. 10, we provide a visual comparison with Lin et al.
[27], an object detection approach for retargeting video. As can
be observed, there is no artifact or distortion in their results and
ours alike. The noticeable point here is the ratio of objects in
the retargeted frames. With the goal that the contents inside the
bounding boxes must remain intact in the retargeted frame, Lin
et al. [27] do a good job, but their appearance is in a close ratio
with those in the input frames. For example, visually inspecting
this figure, the background contents (e.g., the door on the left,

3[Online]. Available: http://graphics.csie.ncku.edu.tw/RETVI/CompareLin.
mp4
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Fig. 10. Comparison between our results (b) with Lin et al. [27] (c). Results
in (c) are quoted from the source paper [27].

Fig. 11. Grad-Cam visualization (b-2, c-2) and energy map (b-1, c-1) of our
CFA module (c- columns) versus the standard UNet (b- columns).

the wall on the right, or the plants) are scaled up when the width
increases in this experiment. However, the shape of the lady is
hard to recognize the changes in the ratio over the source frame.
These may reduce the harmonization of the results. In contrast,
our method does not suffer as they do. Our results are more
harmonious in both background contents and important objects.
The visual video can be seen here.4

Apart from the above comparisons with video retargeting
methodologies, we further discuss the ability of our method via
visual comparison with four recent state-of-the-art image retar-
geting systems, WSSDCNN [10], SAMIR [57], grid encoding
model [22] and Cycle-IR [48]. Detail of discussion and visu-
alization on this comparison is presented in the supplementary
file.

E. Ablation Study

1) Verify the effectiveness of CFA module: The CFA module
is proposed to alternate the time-consuming preprocessing phase
in such a conventional video retargeting system. The CFA is
structured as an improvement from a plain UNet design. Our
proposed CFA can capture more fine-grained feature, which
is an essential key for our retargeting system to tolerate with
diverse content videos. We demonstrate the effectiveness of CFA
module by removing it from our training and train our RETVI
with the plain UNet [41]. We show these ablation analyses in
Fig. 11, in which the visualization of Grad-CAMs [44] and
energy maps are obtained from our network with and without
the CFA module. The results reveal that with the CFA module,
our network has much larger attended regions. This enables

4[Online]. Available: http://graphics.csie.ncku.edu.tw/RETVI/CompareLee.
mp4

Fig. 12. Ablated results for loss function. The resized results (second row) in
this experiment are resized to ratio 0.7.

our RETVI to play with more complex video contents without
suffering from distortion and linear-like appearance.

2) Study on the impact of loss functions: Performance of our
RETVI is affected by the optimization of the loss functions.
Here, we discuss the impact of each component we configured
in the objective function. To verify this, we remove in turn each
loss function in Eq. (8) from our training. The ablated results are
presented in Fig. 12. It is obvious that without each component in
the total loss function, it is challenging to obtain ideal retargeting
results. To be specific, we can see that without the guidance
of Lcri, the important region in the frame is damaged. On the
one hand, the object in the foreground is shrunk linearly, on
the other hand, the background captured as critical region by
our CFA is distorted. We also discuss the effect of the global
loss Lglo in Fig. 12(b). Without Lglo, we fail to preserve the
initiative of the content frame. Meanwhile, removingLfid could
yield resizing form without damaging the content but blurry
effect is a negative side. The full configuration facilitates our
model producing visual pleasing result. Also, the absence of
Ltem causes serious flickering artifact in the generated videos.
The aid of this loss in our objective serves resulting videos in
good stability. See the ablated result of Ltem here.5

Limitation: In the cases that the input videos are the landscape
scenes or too dense, our method may not perform well. The
failure phenomenon here is that the retargeted videos are quite
similar to linear scale. We note here that distortion does not occur
in these cases. It is because our ADE module fails to differentiate
which object/region is important. Thus, the estimated energy of
pixels is relatively identical. Another limitation falls into the
failure of the loss Lglo. Since we rely on performance of ResNet
to define the integrity of estimated frame versus the input one,
the failure of ResNet leads to Lglo to be disabled. The Lglo

performs well in most of the cases, but it is not guaranteed to
be stable in the videos with multiple objects distributed in entire
frame. Another limitation is that if the main objects located in
the leftmost or rightmost, the resized results may not appealing
due to the cropping effect as we discussed in Section IV-A. An
example in this case is visualized in the supplementary file.

V. CONCLUSION

In this paper, we propose a new RETVI framework for re-
targeting videos. With two modules configured in our method,

5[Online]. Available: http://graphics.csie.ncku.edu.tw/RETVI/
TemporalLoss.mp4
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our RETVI presents high performance in handling videos with
diverse contents and produces visually pleasing results when
retargeting to arbitrary aspect ratios. The analysis and exper-
imental results demonstrate that our method substantially ad-
vances prior works. With the fast running time of our end-to-end
RETVI, our system is potentially embedded into a video resizing
application/service. We perceive that our system can bypass the
computational bottlenecks in conventional methods. And it is
potential to extend for stereo image/video retargeting. For the
shortcoming we discussed, we plan to investigate techniques that
configure the loss function to be independent from the existing
feature extractor. In terms of cropping effect, a possible way can
improve is automatically define physical region of the important
content. This knowledge could serve us to shift the rendering
window more appropriately. Besides, developing a text-driven
framework to consider semantic issue in the retargeting videos
and investigating technique to retarget videos with enlarging
and reducing two dimensions simultaneously are also a possibly
extension in our near future. This could be a potential way to
visualize users’ expectation in such a video retargeting system.
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