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Figure 1: A self-animating image inspi

Abstract

Ilusory motion in a still image is a fascinating research topic in
the study of human motion perception. Physiologists and psy-
chologists have attempted to understand this phenomenon by con-
structing simple, color repeated asymmetric patterns (RAP) and
have found several useful rules to enhance the strength of illusory
motion. Based on their knowledge, we propose a computational
method to generate self-animating images. First, we present an op-
timized RAP placement on streamlines to generate illusory motion
for a given static vector field. Next, a general coloring scheme for
RAP is proposed to render streamlines. Furthermore, to enhance the
strength of illusion and respect the shape of the region, a smooth
vector field with opposite directional flow is automatically gener-
ated given an input image. Examples generated by our method are
shown as evidence of the illusory effect and the potential applica-
tions for entertainment and design purposes.
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red by Van Gogh’s “Starry Nights.”
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1 Introduction

[lusory motion is a fascinating physiological and psychological
phenomenon. It refers to the phenomenon that still images com-
posed of certain colors and patterns lead to the human perception
of motion. The information gathered by the eye is processed by the
brain to give a perception that does not tally with a physical mea-
surement of the stimulus source. For example, “Rotating Snake” is
a remarkable motion illusion painting created by Kitaoka [2003].
The circular snakes appear to rotate “spontaneously,” although the
image is static. His study [Kitaoka 2006b] also indicates that
the two most illusive color combinations are blue-yellow and red-
green. As reported in [Kitaoka 2005], 5% of people cannot perceive
this kind of illusory motion. Scientists [Conway et al. 2005; Backus
and Oruc 2005; Murakami et al. 2006] have attempted to explain
this phenomenon and have found useful rules. The design of artful
and illusory patterns is their main concern. Illusion demonstration
is indeed fun to view and is potentially useful for entertainment and
advertising purposes.
In spite of these scientific studies, illusion art is still confined by
a limited choice of color pairs and simple geometric shapes. Most
existing work is done manually. There is no existing work automat-
ically converting a given image to one that possesses illusory mo-
tion. In this paper, we propose a computational method to achieve
such a goal. Based on existing psychological knowledge on illu-
sory motion, our method automatically optimizes for the effect of
illusory motion. Our major contributions can be summarized as:
e We propose a streamline-based RAP placement technique
(Section 4) to generate illusory motion for a given static vec-
tor field. This streamline based illusion can help faithfully
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Figure 2: An overview of generating a self-animating image.

convey the raw region shapes of the target image.

e We also propose a novel heuristic to determine the four-color
combination (Section 5) for the RAP, which is used to ren-
der the streamlines that strengthen the illusion. Therefore, the
RAP is no longer confined to the limited color combinations.

e Finally, we propose illusion-strengthening vector-field gener-
ation methods for images without a vector field (Section 6).

Figure 1 demonstrates our illusion result converted from Van
Gogh’s “Starry Night,” in which the illusive flow conveys the nat-
ural region shapes of the original painting. Our coloring scheme
automatically selects a rich set of colors in contrast to tedious man-
ual selection.

An overview of our method is summarized in Figure 2. The user
starts by employing a color image as input. The vector field gener-
ation step generates opposite directional flow to express the region
shapes and to guarantee the illusion effect. The step is optional if
a vector field is provided by the user. Following the vector field,
streamlines are rendered along the vector field, and an optimiza-
tion is performed to position the primitive illusion pattern on the
streamline. Finally, we determine the most illusive color combina-
tion according to the color of input image, and colorize the RAP to
generate the self-animating image.

2 Previous Works

lllusory Motion Our research has been inspired by many previ-
ous approaches in the study of illusory motion. These works pro-
posed different illusory patterns to enhance the perceived motion.
However, many findings were obtained based on observations or
rules-of-thumb that are still not fully verified in theory. In 1979,
Fraser and Wilcox [1979] first reported “anomalous motion illu-
sion” characterized by apparent motion in a still image. Faubert and
Herbert [1999] pointed out that illusory motion in peripheral vision
can be generated using “sawtooth” luminance patterns from dark
to light. Later, Kitaoka and Ashida [2003] suggested that the com-
binations of black, dark-gray, white and light-gray in “sawtooth”
luminance patterns can produce a very strong peripheral drift illu-
sion. Kitaoka published a very strong illusory design called “Ro-
tating Snakes” on his web page [Kitaoka 2003]. Recently, Kitaoka
[2006a] roughly classified even further the optimized Fraser and
Wilcox illusion into four categories. Later, by modifying the col-
ors, he presented a color version of the original “Rotating Snakes”
that produces a stronger illusion than the original gray version. He
also pointed out that color can, at times, enhance illusion. His ex-
periments indicate that certain color combinations, say blue-yellow
or red-green, are more effective in enhancing illusion [Kitaoka
2006b].

Self-Animating Images The research in producing motion using
a single image has motivated only a few works in computer graph-
ics. In 1979, Shoup [1979] proposed a simple color table animation
technique to animate the colors of objects and areas within an im-
age. Freeman et al. [1991] used a quadrature pair of oriented filters
to vary the local phase, thereby making patterns in a still image ap-
pear to move without really animating them. Masuch [1999] used

speedlines, fading contour repetitions, and motion arrows to create
the sensation of motion in motionless pictures. Later, by taking ad-
vantage of several existing illusory motion phenomena, Gossett and
Chen [2004] attempted to create illusory motion by self-animating
line textures. Wei [2006] proposed a fully automatic method to vi-
sualize vector fields using the tile-based RAP. Unlike these simple
applications of illusory motion, we propose a computational ap-
proach to maximize the strength of illusory motion.

3 Optimized Fraser-Wilcox lllusion

Our work is based on the classification of the optimized Fraser-
Wilcox illusion [Kitaoka 2006a] as shown in Figure 3. For com-
pleteness, we briefly describe each category below. A detailed ex-
planation can be found in [Kitaoka 2006a].

= N
Il = __J—

TYPEI TYPE lla TYPE lIb TYPE I

Figure 3: Types of optimized Fraser-Wilcox illusions excerpted
from [Kitaoka 2006a]. Arrows indicate the direction of the per-
ceived motion.

e TYPE I: The direction of the perceived motion depends on
whether a luminance gradient is surrounded by a lighter or
darker field.

e TYPE Ila and IIb: Both types are characterized by a line sep-
arating two flanks of different luminance or dark-and-white
fields. The direction of perceived motion depends on the color
combination of the separating line and the two flanks.

e TYPE III: This is characterized by two flanks of similarly
shaded fields that are enclosed by either a lighter or darker
shaded field. The direction of the perceived motion depends
on the color contrast between the flanks and the enclosing
field.

In the study of perception, a stimulus can be made from any of the
above four types. From our experience, a single stimulus does not
produce strong motion. Sometimes it is difficult to perceive the
motion direction as well. However, when many stimuli are placed
together, we can easily perceive strong motion. In this paper, we
focus on TYPE Ila which can generate the strongest illusion among
the four types of illusory patterns. The four-intensity combination
of this type is in the order of B-DG-W-LG (black, dark-gray, white
and light-gray). Each four-intensity pattern is also called a repeated
asymmetric pattern (RAP) [Backus and Oruc 2005]. In the follow-
ing sections, we first study how the basic four-color (Black-Blue-
White-Yellow) stimulus is used to generate interesting illusory mo-
tion for a given static vector field. Then, the four-gray (B-DG-W-
LG) pattern is extended to other four-gray patterns (Section 5.1)
and then finally to four-color patterns (Section 5.2).



4 Streamline-Based lllusion

We propose a novel computational approach for generating Fraser-
Wilcox illusion using the RAP placement. Given a vector field,
we position the RAPs along the vector flow to generate streamlines
having a motion that is consistent with the vector field. Optimiza-
tion of RAP placement is also introduced for strengthening the illu-
sion.

4.1 Streamline Placement

Given a vector field, a naive approach for RAP placement is to ran-
domly generate seed points and then place the RAP on the inte-
grated streamline path along the vector field. The problem with
this method is that short and irregular streamlines may result. Note
that it is found that long streamlines lead to stronger illusion than
the short ones because they carry more RAPs. The overlap among
short streamlines generated by the above naive method may signif-
icantly reduce the strength of illusion.

Instead, we want to identify major long streamlines to express
the vector field. Long streamlines guarantee continuity and en-
sure undisturbed RAP flow, resulting in better illusory motion.
We adopt Mebarki’s method [2005] to generate long and evenly-
spaced streamlines. We parameterize each streamline along the
path in order to texture it with RAPs. We divide the streamline
into several segments with equal length, controlled by SegLen.
The length of each color in the RAP segment conforms to the
ratio 1:2:1:2 in order to satisfy the requirement of the TYPE
II optimized Fraser-Wilcox illusion. An array RAPColor|6] =
{black,blue,blue,white,yellow,yellow} is first prepared. Next, we
can color the streamline as:

Color = RAPColor| | (i mod SegLen) x (6/SegLen) |] (1)

where i is the distance from the starting point of the streamline.

4.2 Fragment Placement Optimization

The pattern surrounding the RAP segment also affects the strength
of the illusion. Kitaoka and Ashida [2003] pointed out that the pe-
ripheral drift illusion can be further enhanced by fragments of stim-
uli. Figure 4 demonstrates the importance of fragment placement.
In Figure 4(a), arbitrary placement of RAP segments in adjacent
streamlines may cause the overall layout to look like a single patch,
and does not produce much motion illusion. In contrast, the RAP
segments of adjacent streamlines in Figure 4(d) are properly placed
to strengthen the illusion effect.

To improve the RAP placement on the streamline, the following
optimization problem is formulated. According to the four-intensity
pattern in TYPE II, a RAP segment can be segmented into lighter
and darker fragments using the middle-gray color. Let X be the
fragment set of all RAP stimuli, N(x) is the set of neighborhood
fragments of x in X. L(z) is the intensity of fragment z.

Efragmem = Z Z (L(x) _L(y))2 (2)

xeX yeN(x)

The goal of optimization is to maximize Efpygment, 1-€-, the differ-
ence in intensity between neighboring RAP fragments from neigh-
boring streamlines. We propose an image-based method to measure
the placement difference between two neighboring streamlines in
order to maximize Equation (2).

A guiding image is first rendered. Figure 4 shows how this guiding
image is derived from the initial stimulus (top row). For clarity, we
illustrate our idea using two streamlines in (b) with the guiding im-
age in (c). First, all segments in streamlines start with equal lengths.
Then, the lighter part of a RAP segment is set as middle-red and the
darker part as middle-green. Hence, each RAP segment contains
a pair of middle-red and middle-green fragments. The width of
the streamline can be determined to ensure that RAPs on neighbor-
ing streamlines touch or even overlap each other. The red-green

streamlines are then drawn one-by-one with intersected regions be-
ing blended together. They are blended in a way that same-color
regions overlap to give higher intensity. Hence, light red or green
areas indicate poor placement, since intensities on adjacent stream-
lines are similar. On the other hand, yellow areas signify large dif-
ferences in intensity and, therefore, have better placement. The
more yellow pixels are obtained, the more optimized the placement
is.

With this guiding image, solving the optimization problem of Equa-
tion (2) is now a matter of maximizing the number of yellow pixels.
The fragments are essentially in a darker-to-lighter alternative order
when placed on a streamline. During the optimization, the place-
ment is adjusted by two parameters, the starting fragment colors
(darker or lighter), and the length of each fragment. To avoid the
fragment from being too small or too large, we constrain the length
of a fragment to the range of [0.4(SegLen), 0.65(SegLen)]. The
length of the fragment is initalized to 0.5(SegLen). We start with a
randomly selected streamline and its nearest neighbor (Figure 4(b)),
and the goal is to differentiate colors between any two neighboring
fragments from these two streamlines. In particular, as shown in
Figure 4(e), the starting fragment on the target streamline (the up-
per one) is adjusted to a lighter fragment (yellow and white in this
example), according to the colors of its neighbor on the reference
streamline (i.e. blue and black). Its fragment length is also adjusted
to differentiate colors with its neighbor. Such adjustment is then
applied to all other streamlines to maximize the size of the yellow
region in the guiding image (Figure 4(f)). Once the placement of
the fragments is optimized, we can then texture the streamline with
RAPs with the optimized parameters. Figures 4(d) and (e) show the
result after optimization.
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Figure 4: Fragment offset optimization. Top row: before optimiza-
tion. Bottom row: after optimization.
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Figure 5 shows an example of the streamline-based RAP place-
ment. The input vector field in Figure 5(a) is rendered by the LIC
method [Cabral and Leedom 1993]. The proposed method can ex-
press one more piece of information that compares to LIC, namely
the flow direction.

Finally, we slightly separate the streamlines with a middle-gray
boundary (width of 1-2 pixels). Without such a boundary, neigh-
boring RAPs may accidentally merge and change the pattern. We
also use tapering to smoothly reduce the width at the two ends of
each streamline to give a stylish result.

5 Color Combination in RAP

Traditionally, the colors of RAP are manually selected. The choice
of colors is usually very limited. In this section, we propose heuris-
tics to extend the RAP color combination from the limited color
set to a wide range of color. Given an input color Cy, we want to
find the other three colors to fit in RAP with the optimized illusion
which is closely related to the perceived lightness of stimuli. Since
the CIE L*a*b* (CIELAB) color space aspires to the perceptual
uniformity and its L* component closely matches the human per-
ception of lightness, we therefore first convert Cy to CIELAB(Lg,
agp, by) to find the other three colors.
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Figure 5: RAP placements. (a) The input vector field, (b) tile-based result, and (c) our streamline-based result.

5.1 Determining Four-Gray RAPs

First, we consider Cy as gray and its CIELAB value as (Lo,
ap=0, bp=0). Based on the discovery of Kitaoka and Ashida
[2003], a basic B-DG-W-LG configuration is denoted as RAPy =
{0, 25, 100, 75} using their lightness values in CIELAB color
space, and such order can be rotated circularly to create another
three RAP,, i = {1, 2, 3}. They all belong to the TYPE II stimulus
because their lightness contrasts are not changed. In the following
pseudocode, we use a greedy nearest-first approach to determine
a four-gray RAP (Lg-L-Lr-L3). Their lightness values are then
stored in a table LL[4]. For a TYPE II stimulus, the existing B-DG-
W-LG combination is a good choice for a RAP and their lightness
values are stored in a table L[4]={B=0, DG=25, W=100, LG=75}.

FOURGRAYRAPFINDING (L, L[])

Find ipegrest, s-t. argmin | |L0 - L[inearest] ||
LL[0] = Ly;

fori<— 1to3

do LL[i] = L[(i + inearest) mod 4];

return LL[];

DA W=

The basic idea behind our greedy method is very simple. We first
pick up one, say RAP;, of the above four RAF;, i = {0, 1, 2, 3}
such that the difference between Lo and the first element of RAP;
is minimal. Then, we replace the first element of RAP;" with Lg. In
other words, we wish to create a new RAP that is very similar to
RAP?. This new RAP is a TYPE II stimulus. Finally, we convert
Ly, Ly, and L3 with (a;=0, b;=0) to their gray values and hence a
four-gray RAP is determined.

Readers may intuitively think about modifying L, L, and L3 with
some offsets based on the difference between Ly and the first ele-
ment of RAPi*. However, from our evaluation, this simple extension
may only work in some cases. The magic combination of (B=0,
DG=25, W=100, LG=75) is still the best choice for illusory mo-
tion.

5.2 Determining Four-Color RAPs

Up to now, little work has addressed how color influences the il-
lusory motion perceived in a still image. Since we cannot find re-
lated studies or theory in existing literature, we propose a heuristic
method based on the following observations.

Observations Kitaoka[2003] designed eight sets of four-color
RAPs (Cy, Cy, C3, C3) to demonstrate his “Rotating Snakes.” We
convert each set of four-color RAP into CIELAB and consider their

L components only. Interestingly, both (Lg, Ly, Ly, L3) and B-DG-
W-LG have the same direction of the perceived motion. For each
set of four-color RAP, its perceived motion direction is mainly de-
termined by C| and C3. We plot a vector CTC?: for each RAP and
consider their a and b components only in Figure 6. Then, we have
the following observations. When C| and C3 are at opposite quad-
rants of the coordinate system (i.e., a, b are opposite in signs) in
Figure 6, a RAP (Cy, C1, G2, C3) is observed to generate stronger
motion than other patterns. We also observe that the magnitude of
the perceived motion seems to be proportional to the distance be-
tween C and C3 in CIELAB.

Based on the above observations, CIELAB seems to be an appro-
priate color space for studying the illusory motion. Given any color
Cy, we determine Cy, C, and Cj such that a four-color RAP (Cy, Ci,
Cy, C3) can generate an illusory motion with the following pseu-
docode.

(b) after rotation

(a) before rotation

Figure 6: - of Figure7: Rotating Cy by 180 ° to make
the four-color RAPs  Cy and C, in different opposite quad-

in CIELAB. rants to enhance the perceived motion.

FOURCOLORRAPFINDING(Cy, L[], degree)
1 LabCy = rgb2Lab(Cy);
2 LL[] = FOURGRAYRAPFINDING(LabCy.L, L[]);
3 LabCy = Lab(LL[1], LabCy.a, LabCy.b);
4 LabC, = Lab(LL[2)], LabCy.a, LabCy.b);
5 LabC; = Lab(LL[3], LabCy.a, LabCy.b);
6 if ijeqress ==0o0r2
7  then Rotate(LabCy, degree, Lgyis
8
9

);
Rotate(LabCs, degree, Lgyis);
else Rotate(LabCy, degree, Lyyis);
10 Rotate(LabCy, degree, Lgyis)
11 fori={1, 2, 3}

12 do Find_gamut -boundary(LabC;);

13 C; = Lab2rgb(LabC;);

14 return Cy, C;, C3;

>



To ease the explanation of the pseudocode, we plot the CIELAB
color space in 2D with a = 0 as shown in Figure 7. The compu-
tation is carried in CIELAB (line 1). Then, in line 2, we obtain a
specific lightness table LL for the input Cy using the greedy nearest-
first approach in Section 5.1 and the input table L[4] = {0, 25, 100,
75}, as the standard RAP of (B, DG, W, LG). After determining the
lightness in table LL and the chromatic value of Cy, we can gener-
ate LabCy, LabCy, and LabC5. According to our observations, both
{Co, G2} and {Cy, C3} should be at opposite quadrants in order to
give a strongly perceived motion. Therefore, in lines 6-10, we ro-
tate them along the L axis in the 3D CIELAB color space to change
their chromatic values without changing their L components, plac-
ing them at opposite quadrants. Figure 7 gives an example of rotat-
ing C; by degree = 180. In most cases, this setting helps to increase
the illusion.

In lines 11-13, we correct LabCy, LabC,, and LabCs before con-
verting them to the RGB color space. This correction is required
for two reasons. First, the CIELAB color gamut is a distorted 3D
cube [Lindbloom 2007]. When we assign Cy’s chromatic value to
LabC; for i = {1, 2, 3}, LabC; may be outside the CIELAB color
gamut. We move it back to the boundary point of the color gamut
in two steps: 1) we first compute an isoluminant plane with L =
LabC;.L, and 2) along the vector from (LabC;.L, LabC;.a, LabC;.b)
to (LabC;.L, 0, 0), we compute the intersection at (LabC;.L, a, b)
with CIELAB color gamut. The second reason is that the mag-
nitude of the perceived motion appears to be proportional to the
lengths of - or . in CIELAB color space. We heuristically
move them to the boundary of the CIELAB color gamut with the
same luminance of LabC;.L, thereby increasing the circumference
of a four-sided shape (LabCy, LabCy, LabC,, LabC3) as shown in
Figure 7 (b).

Although we can generate a color combination with an illusion ef-
fect for various colors, some combinations are weaker than oth-
ers, especially when the input color carries middle luminanace, i.e.
L = 50. The input colors near white or black belonging to TYPE
IIb also have a weaker effect. Therefore, for a better effect in TYPE
IIa, we can shift the input color to a lighter area while keeping the
same hue and enhancing the input color saturation.

The color RAP selection is useful when we want to colorize a
streamline with varying colors. We can divide the streamline into
several segments and the average color of the region underlying
each segment is used to find the RAP combination for that segment.
To produce the strongest illusion, we reorder the colors of the RAP
in the streamline to follow the lightness change of the TYPE Ila
four-gray pattern in the order of (B-DG-W-LG). Note that, manu-
ally selecting a proper color combination for a strong illusion ef-
fect is difficult and tedious, especially for an image with a complex
structure. Figure 8 shows three examples for designing a colorful
streamline illusion. Mistakes in the lightness order (Figure 8(a)) or
the hue difference (Figure 8(b)) may easily happen and may there-
fore reduce the illusory effect. The proposed method automates the
color selection and strengthens the illusion (Figure 8(c)).

6 Opposite Directional Flow Generation

So far, we assume that the vector field is given. If an image is given
as an input without a vector field, we have the freedom to gener-
ate a vector field for a self-animating image. Other than the RAP
placement and color selection, the contrast in direction can also
strengthen the illusion. By observing Kitaoka’s results, a stronger
illusion occurs when the motion directions of neighboring regions
are opposite to each other. It may be that, when looking at a fixed
point, an illusion occurs in the peripheral vision where the opposite
directional flow can be more easily perceived and even enhanced.
Another possible reason could be that the opposite direction may
easily lead to saccades and could, therefore, evoke the illusion.

(a)
(b)
7
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Figure 8: Color streamline-based illusion. (a): Mistake in light-
ness order. (b): Small hue difference leads to weak motion. (c):
The proposed method.

Based on this, we introduce two illusion-strengthening vector-field
generation methods given an input image.

6.1 Gradient Vector Flow

Given an image containing regions with arbitrary shapes, we now
aim at constructing a vector field in which the neighboring regions
have opposite directions. There are two kinds of opposite direc-
tions, one is parallel to the boundary and the other is perpendicular
to the boundary. Both conditions can be generated based on the
initialization from the gradient vector flow (GVF) method [Xu and
Prince 1997] . The GVF is calculated by applying a generalized dif-
fusion to the gradient components of an image edge map so it can
assure a smooth vector field. The smoothness property of GVF al-
lows us to directly apply our streamline-based illusion (Section 4).
However, the GVF cannot guarantee the opposite direction require-
ment. Therefore, we propose two modifications to GVF in order to
generate the perpendicular and parallel opposite directional vector
fields.

For the perpendicular type, the idea is to generate GVF for each
region individually. To do so, we need to segment the input image
and then compute the GVF for each region independently. In this
way, vectors inside a region tend to point away from the boundary
in its perpendicular direction. Therefore, vectors in two neighbor-
ing regions are opposite to each other because they share the same
boundary. The parallel type can be easily achieved by rotating the
vectors clockwise by 90 degrees. The rotation keeps the vectors of
the neighboring regions opposite to each other, while keeping them
parallel to the boundaries.
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Figure 9: Graph-based vector field generation. (a) The graph and direction before optimization. (b) After optimization. (c) An un-optimized

vector field result. (d) An optimized vector field result.

6.2 Graph-based Vector Field Generation

The method described above is intuitive and robust. Its distinctive
advantage is that the generated vectors follow the region bound-
aries. However in some cases (such as the arrow pattern in Fig-
ure 9), the user may expect the vectors to flow in a consistent direc-
tion along the region skeleton, instead of swirling along the region
boundaries, and keeping the opposite directions of neighboring re-
gions.

To do so, we need to maximize the appearance of neighboring re-
gions containing opposite flow vectors. We also try to maximize
the length of the boundary with opposite vectors on its two sides.
Hence, we formulate it as an optimized graph coloring problem.
Each region is represented as a node in the graph and an edge rep-
resents the connection (shared boundary) between two regions. For
an edge e;, j connecting nodes i and j, we use the difference between
two region skeleton directions of regions i and j as the energy of
the connecting edge, e.g. E(e; j) = arccos(Dir; - Dir}), where Dir;
means the direction of the skeleton in region i. The larger the in-
ner angle between Dir; and Dir j, the larger the opposite directional
effect. By accumulating the energy on each edge in the graph, we
can measure the directional relation among all regions as:

Egraph = Y, Y, wp arccos((Ci-Dir;) - (Cj-Dirj))  (3)

i€R jEN, (i)

~ ~ _ J +1, black,
G, G 7{ —1, white. @

where R is the node set, N, (i) is the neighboring region of i with the
shared boundary. We modulate the E(e; ;) by wp, which represents
the length of the shared boundary between two connected regions
so the energy favors a longer connected area.

To maximize the direction energy Eg.qpp, We can only change the
direction of a region skeleton by multiplying by —1. Therefore, the
energy maximization is reduced to a two-coloring graph problem.
We use C; to indicate the color state in Equation (4): black is for
preserving the direction and white is to invert the direction. In most
cases, we can find the best solution by maximizing Equation (3).
By modifying the vector directions in the image according to the
optimized graph, we can generate the maximized opposite flow re-
sult.

We use Figure 9 for illustration. In the initial step (a), the right three
regions are in the same direction. The illusory motion is therefore
weak (shown in (c)). According to Equation (3), these three regions
in the graph are optimized with different colors (shown in (b)). Fig-
ure 9(d) shows the corresponding result in which the direction of
two regions are inverted to give a stronger illusion. Notice that this
coloring result is already modulated by wj, which considers the
contribution from the length of the shared boundaries.

7 Applications and Discussion

Our method can be easily extended to generate various interesting
results, including tile placement, illusory toon-shading, and TYPE
[l illusions. Readers can perceive stronger motion from the images
shown in this paper by enlarging those images on display. Glance
around the images and do not stare at a fixed place of the image
too long. In our experiments, the best viewing distance to screen is
roughly half the width of the screen.

Tile placement Figures 11 and 14 show an illusory Tai-Chi pat-
tern and SIGGRAPH logo produced by our system respectively.
Our method can be naturally extended to generate tile-based illu-
sions. The idea is the same: drawing the four color RAPs according
to the vector field. Figure 10(a) gives an illustration of a single tile
pattern configuration. We generate a tile-based result by placing
primitive tiles surrounded by an outer boundary, then we rotate the
tiles along the input vector field and colorize them with the color
RAP combination from the input image. Additionally, the consis-
tent distance between neighboring tiles is maintained to provide a
uniform illusory motion, and arrow patterns are used to enhance the
motion direction.

@ v

(@) () (c)
Figure 10: Basic configuration of (a) tile, (b) toon-map, and (c)
TYPE III streamline. The arrow indicates the illusion direction.

lllusory toon-shading We also attempt to apply the four-color
RAP as a toon-map for shading a 3D surface. The “exaggerated
shading” technique [Rusinkiewicz et al. 2006] is adopted here to
capture the illuminance. The illuminance is mapped to the four-
color RAP map instead of the original toon-map, as in Figure 12.
The illusion can also indicate the direction of the light source. We
can further strengthen the illusion by using an opposite direction
illusion pattern on the background.

TYPE lll streamline Kitaoka recently proposed a TYPE III illu-
sion pattern for central vision. For example, in Figure 10(c), each
lighter color diamond pair is surrounded with darker colors and vice
versa. Therefore, it meets the TYPE III condition. Although the
TYPE III pattern may be weaker than TYPE II and only effective
along straight streamlines, it has advantages in perceiving the il-
lusion even when you stare at it. Replacing TYPE II RAPs with
TYPE III RAPs, we can easily achieve the illusion in central vi-
sion. We demonstrate a TYPE III streamline example for an ocean
flow in Figure 13.
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Figure 11: lllusory tiles on Tai-Chi.

Applications A new stylization of Van Gogh’s “Starry Night” is
demonstrated in Figure 1. In the original painting, Van Gogh used
high contrast colors and long strokes to express the sensations of
flowing motion. Based on the composition of this painting, we gen-
erate the illusion effect by applying the following steps. First, we
segment the image into several regions and fill the region with its
average color, which, in turn, is used to determine the nearest color
with a better illusion (Section 5.2). Second, we determine the oppo-
site directional flow field to represent the input image. Finally, we
texture the optimized streamlines by colorizing with the selected
RAPs to create a self-animating image for the “Starry Night” as
shown in Figure 1. Finally, in Figure 14, we show an example of an
advertising design using the proposed method.

Discussion and Limitations The three essential elements, in-
clude the RAP placement, the coloring of RAP, and the opposite
directional flow contribute to the strength of the illusion. If any
one of these requirements cannot be satisfied, the illusion may be
weakened. The comparison for missing elements in a suitable color
combination is demonstrated in Figure 8, and the optimization of
directional flow is shown in Figure 9. Another important issue
is the resolution of the individual RAP elements making up the
self-animating images. Each individual perceives the strength of
the illusion differently depending on the size of the RAP elements.
Generally speaking, when these motion-inducing elements are too
small, the evoked motion illusion vanishes. This can be easily veri-
fied, when looking at the same illusion pattern from a farther view-
ing distance. Therefore, our method could not well express the mo-
tion flow when the input images contain too many small regions.

The strength of the illusion primitive is also important. In the opti-
mized Fraser-Wilcox illusion, we mainly use TYPE II, and extend
to the TYPE III in Section 7. Although TYPE I can be easily ap-
plied on the streamline, it is not used because it has the weakest
illusion among the four categories. In Figure 5, we compare the
streamline and tile based methods. The Fraser-Wilcox illusion is
produced by the edge with asymmetric contrast. In a tile-based
RAP, not all the surrounding edges are perpendicular to the vector
field, therefore reducing the strength of the illusion. This interrup-
tion may make it difficult to express the flow. In contrast, all the
edges in the streamline are perpendicular to the vector field to give
a consistent illusion direction and therefore strengthen the illusion.

made by Xshade(http://xshade.cs.princeton.edu/).

8 Conclusion

Based on existing findings on illusory motion, we propose a compu-
tational method to generate self-animating images from given input
images. We can deal with a more general four-color RAP. Images
with a strong motion illusion are produced. We also provide al-
gorithms to generate vector fields that can strengthen the illusion
when no vector field is given. Various extensions and applications
are demonstrated. Illusory motion is still an open and challeng-
ing cross-disciplinary field of research. Many unsolved problems
still exist; for example, it is very challenging to generate a self-
animating image that is faithful to every single detail of the input
image. In addition, a metric to measure perceived motion in an
image will be very useful to quantify the illusion.
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