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Regenerating Arbitrary Video Sequences With
Distillation Path-Finding

Thi-Ngoc-Hanh Le

Abstract—If the video has long been mentioned as a widespread
visualization form, the animation sequence in the video is men-
tioned as storytelling for people. Producing an animation requires
intensive human labor from skilled professional artists to obtain
plausible animation in both content and motion direction, incredi-
bly for animations with complex content, multiple moving objects,
and dense movement. This article presents an interactive frame-
work to generate new sequences according to the users’ preference
on the starting frame. The critical contrast of our approach versus
prior work and existing commercial applications is that novel se-
quences with arbitrary starting frame are produced by our system
with a consistent degree in both content and motion direction. To
achieve this effectively, we first learn the feature correlation on
the frameset of the given video through a proposed network called
RSFNet. Then, we develop a novel path-finding algorithm, SDPF,
which formulates the knowledge of motion directions of the source
video to estimate the smooth and plausible sequences. The extensive
experiments show that our framework can produce new animations
on the cartoon and natural scenes and advance prior works and
commercial applications to enable users to obtain more predictable
results.

Index Terms—Animation, sequencing, RSFNet, distillation,
SDPF.

I. INTRODUCTION

IDEO has long been a widespread media form in our daily

life. In addition to visualizing, the sequence of animation
in a video is mentioned as storytelling for people. Animating
production is usually a specialized and time-consuming job,
requiring intensive human labor from skilled professional artists.
In traditional cartoon animation (i.e., cel-based and path-based
animation) the procedure is complicated and needs much re-
peated manual labor, and a large amount of cartoon materials
have been produced during this procedure. If all these material
can be effectively managed and reused, we not only can speed
up the time of producing an art but also easily create variations
of the existing material. Although the recent computer-aid tech-
niques have removed the burden of artists from tedious work in
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producing new animations, understanding the content (i.e., char-
acter’s gesture, background scene, etc.) and finding smooth
transitions, are still challenging. The existing commercial ap-
plications, e.g., Toon Boom, Adobe Animate, mostly serve the
capability on cartoon characters with basic animations. They
lack diversity in animation styles and cartoon scenes. Therefore,
it’s necessary to establish and develop a cartoon images manage-
ment and retrieval system supporting interactive fast animation
making, so that the artists can pay more attention to the creative
work, rather than those repeated work like colorizing, repainting,
etc.

This problem has been explored. Previous work on this do-
main can be divided into feature-based and sequence-estimation
methods. In feature-based methods, research attempts have been
made to get knowledge on image content [3], [5], [26], [28].
Fried et al. [5] train a convolutional neural network to map
images into lower dimensional space and define their similarity
by a distance calculation. Yu et al. [29] propose an algorithm
to construct the feature space according to the shape context
of the character in the image and the user’s label. However,
their dataset is labeled by human judgment, which is difficult
or time-consuming to collect. Then, after projecting images into
the feature space, the distance metric between two images can
be considered as the similarity distance. Nevertheless, the user
still needs to manually label the relation between the data. Yang
et al. [26] extract three different features of the character in the
image’s shape context, color histogram, and motion direction.
These features are then fused to result in the feature vectors of the
character images. But, the segmentation of the character images
required by their algorithm is not easy to generate correctly
without professional skill.

In contrast, the sequence-estimation methods investigate dif-
ferent approaches to generate a plausible animation. Schodl
et al. [21] train a binary classifier and apply the Q-learning
algorithm [13] on the images library to produce arbitrary length
video sequences. Yu et al. [27] use a semisupervised algorithm
to select the next frame of the initial frame according to the sim-
ilarity distance. Then, they will treat the next frame as the initial
frame and repeat this iterative process to generate the results.
Recently, Morace et al. [17] construct a graph by the similarity
distance of images and compute the shortest Hamiltonian path
for reconstructing the sequence from a set of un-ordered images.

However, there are three major drawbacks in the above re-
search. First, they solely focus on cartoon characters. Second,
feature extraction and the distance metric used to measure such
features are developed independently. And third, with these two
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mentioned issues, such a prior system is not sufficient to chal-
lenge the input clip that consists of dense motion and content.
Therefore, we address the demanding problem by combining
knowledge learned from a self-trained network and modeling
them in a path-finding strategy to produce plausible and smooth
videos efficiently.

In this paper, we propose a framework to address the above
challenges. We aim to create new smooth sequences according
to users’ preferences of the starting frame. We do not know
the sequence we are to generate except the starting frame. Our
designed framework attempts to minimize the artifacts caused
by cold transition and the flip-flop phenomenon. The proposed
framework pays attention to the pairwise relationship on both
content and motion direction of an image and others in the
image gallery. Our essential contribution to reducing user effort
is automatically propagating user preference to predict a future
sequence in a meaningful manner. To achieve this, we present
a novel path-finding algorithm that absorbs the knowledge
of features in our self-defined network and motion properties
in the ground truth, which remedies the drawbacks of prior
work.

Our framework consists of an online knowledge learning and
an offline sequence generation stage. The online stage learns
the feature correlations of pairs of images in a given image
set. These feature correlations serve as the initial guidance for
new paths explored in the offline stage. The content of frames
in real-world videos is complex in both background and fore-
ground. Meanwhile, to model the user’s selection to a plausible
and novel animation, we need to calculate a meaningful degree of
interchangeability between any two frames. We achieve this by
proposing a neural network model, Recursive-based Semantic
Feature Network (RSFNet), to learn the high-level represen-
tation of images. It is because the neighborhoods tend to be
selected as correlation, which may prevent us from exploring
new animations.

In the offline stage, the correlation of images learned in the
online stage is performed in a graph. Users can specify their
preferences for any node on the graph as the starting frame
of their desired animation. Besides the meaningful degree, we
need to preserve the temporal coherency in transitions. We tackle
this by proposing an algorithm, Single-source Distillation Path-
Finding (SDPF), in which we embed constraints to interpret
potential candidates for plausible animations. In summary, our
main contributions are as follows:

e A framework for resequencing videos, which exploits
the feature correlation and the motion direction between
frames to efficiently produce plausible and smooth video
results.

® A framework to extract the representative feature vectors
of the images in general style without requiring a large
amount of dataset. And, the distance of the vectors can
properly match the similarity of the images.

® A novel path-finding algorithm that can synthesize the
resultant videos with smooth transitions from the image
collection. Moreover, the random selection of our algo-
rithm can increase the diversity of the results, and thus
make each resultant sequence distinct from the others.
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e Our overall system significantly reduces interaction time
required to produce desired results. Besides, the proposed
method works well in both cartoon scenes and natural
videos, and therefore this enables users to obtain more
predictable results.

II. RELATED WORK
A. Feature Extraction and Dimension Reduction

Researchers seek different approaches in analyzing images
to learn the correlation between their representation. Osadchy
et al. [19] propose an energy-based model to detect faces with
different views. Yang et al. [26] use multiple features of car-
toon characters to project images into lower dimensional space.
Zhang et al. [31] provide a flexible way for the extraction
and completion steps to reflect the unique characteristics of
cartoon animation. The transductive algorithm [6] can fuse these
different features together and construct a model which projects
the character images into lower dimensional space. Combining
multiple types of features [29] has achieved great success in
many areas. After extracting the feature vectors from the charac-
ter’s shape in the image, users can provide image pairs’ positive
and negative relationships to restrict the distance between feature
vectors.

With the revolution of deep learning technologies, researchers
develop the alternative promising approach. Fried et al. [5]
analyze patches by embedding them to a vector space in which
the texture of image patches are considered to define the simi-
larity of them. Holden et al. [10] use an autoencoder for human
manifold. Zhang et al. [30] propose an autoencoder architecture
for image clustering. They first train the local stacked contractive
autoencoder for the neighborhoods of training dataset based on
euclidean distance metric. Zhang et al. [33] use a convolutional
autoencoder network to project the images into lower dimen-
sional space, and the L2 distance between the latent vectors are
considered as the similarity of the images. Morace et al. [17]
utilize an off-the-shelf network LPIPS [32] to compute the
similarity distance between images. Most recently, Xu et al. [25]
introduce a dual-task deep learning scheme for separating the
structure content in a cartoon animation, i.e., content video and
effect video.

Contrasting the above approaches, we handle arbitrary ani-
mation objects, including cartoon and natural scenes, rather than
only focusing on cartoon characters. We get the knowledge of
image representation by a self-defined network which is suffi-
cient to capture comprehensive features. The network requires
much less training dataset but has better performance than those
in prior work. Plus, it enables us to be independent from such
an intermediate network.

B. Images Sequence Ordering

Ordering a collection of images is usually considered as
path-finding problem in a weighted graph, in which images
are represented by vertices and the weights of the edges are
the similarity of two end points, and other constraints such as
temporal ordering, path smoothness, or user-control.
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A variety of methods have been early developed to create
sequences [3], [20], [21]. Given a starting and ending frame, the
system proposed in de Juan and Bodenheimer [3] traverses on
the manifold to re-sequence an existing cartoon library to a novel
animation. Video textures [21] uses L2 distance of raw pixels
of images as similarity and applies Q-learning algorithm [13]
to generate an arbitrary length video sequence whose motion
is similar to input video. Their method can produce convincing
results in which input video has repetitive motion or unstructured
stochastic motion. However, as the way to calculate similarity
cannot adequately describe the high-level features of images,
the case of complex structured motion such as human body
motion will fail. To overcome this problem, Schodl and Essa [20]
extract six specified features from the key-frames to train a
binary classifier. This classifier will judge whether the transition
between the key-frames will be accepted or not, and the cost of
the transition depends on their original video sequences. They
use the beam search to find the smoothest sequence. For the
better result of the beam search, a hill climbing algorithm is
used to interactively minimize the total cost of the sequence
from initial random.

The seminal work has motivated researchers to investigate
deeper recently [26], [27], [28]. Yang et al. [26] present a cartoon
gesture space to cartoon retrieval and synthesis. They use color,
shape, and motion information in dissimilarity estimation. Yu
et al. [27] propose a semi-supervised algorithm to create new
cartoon animation from the image library. They extract the
shape context of the characters in the images, and calculate the
similarity distance based on the shape correspondence. Inspired
by these methods, Yu et al. [28] use a semisupervised multi-
view subspace learning algorithm to encode different features
in a unified space. To model the diverse dynamics, Khan and
Storkey [14] introduce a deep generative model for image se-
quences, in which they split the motion space into subspaces and
perform a unique Hamiltonian operator for each subspace.

Some different approaches are recently introduced [17], [33].
To create a sequence, Zhang et al. [33] embed image collection
into a convolutional autoencoder network. They then build the
proximity graph based on the complete graph of the latent
vectors and apply Monte Carlo algorithm to find the smoothest
animation sequence. Meanwhile, Morace et al. [17] remove the
last 10 percent outliers according to the generalized gamma
probability distribution to fine-tune the smoothness of sequence.
Then, they find the shortest Hamiltonian path to generate the
resequencing results.

The sharp contrast between our framework and theirs [3], [17],
[26], [28], [33] is that we develop a novel path-finding algorithm
SDPF to generate new sequences with arbitrary starting frame.
Our SDPF is faster than a greedy path-finding, effective to
explore novel sequence and control the motion consistency.

III. SYSTEM OVERVIEW

The framework of our video resequencing is illustrated in Fig.
1, which consists of two primary models: a semantic relation
graph (SRG) model for representing the relation of images
in the given set of images, and a Single-source Distillation
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Fig. 1.  Our framework for regenerating video sequence.

path-finding (SDPF) algorithm for exploring a path on SRG to
resequence the video. Our system takes as input a video, we aim
to generate new smooth sequences with arbitrary starting frame
while maintaining the consistency in both content relations and
temporal coherency.

The SRG models the set of frames in the given video to a
completed graph. RSFNet explores this, i.e., the network we
propose in this paper. RSFNet shoulders the task of converting
images ({x;}) into feature representation ({v; }) in which every
single v; represents a node in SRG. To describe the semantic
relation of v;, we merge the triplet of recursive-based encoders
(called R-Encoder) as a single one, i.e., RSFNet, and train it
with a distance loss function. As a result, the connected edges
in SRG are assigned by the pairwise distances between feature
representations.

Instead of naively traversing the graph and finding the short-
est path, which potentially prevents us from exploring a new
sequence, we find paths by the proposed SDPF algorithm.
Conceptually, SDPF first estimates the candidates, which are
potential to construct a new sequence, and then distills them
through constraints to define the final node at each path-finding-
iteration. Finally, the sequence of nodes in the path is mapped to
the corresponding frames to produce smooth video results. We
subsequently elaborate on each module.

IV. GRAPH GENERATION WITH RSFNET

Given a set of frames, we now aim to build a complete graph
of this set prior to the resequencing manner. As mentioned in the
related work, we propose a network RSFNet to get knowledge
on their feature representation and embed the samples to a
specific metric space where the similarity or distance between
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Fig.2. (a) Architecture of RSFNet; (b) Zoom-in of an R-Encoder; (c) Structure
of NCM and CIR block.

any two samples is clearly represented. Once the distance metric
is learned, feature representations and distance are capable of
reflecting the relation of input images. RSFNet is a reusable
structure that reduces the computational cost and efficiently
represents image information. RSFNet shoulders two significant
roles in the graph generation: first, RSFNet calculates latent
vectors corresponding to the given frames. Each vector is treated
as anodein the graph. Second, RSFNet is trained with a proposed
distance loss to infer the similarity of latent vectors. This manner
facilitates the distance of latent vectors more accurate. The
details of the proposed framework are presented as follows.

A. RSFNet Structure

In a common Convolutional Neural Network (CNN)
framework, an encoder converts the input image x into a
representation vector r (r = ®(z)). The architecture of an
encoder ®(.) depends on the input in a specific application. For
instance, in the application of image classification, the CNN
is a good choice. When applied to video resequencing, such
an off-the-shelf CNN might not be suitable since contextual
information in a specific frame is necessary for generating
new sequences. Besides, human often relies on a high-level
semantic understanding of the video contents, usually after
viewing the whole sequence, she/he can decide which frame
should be selected the next frame in the sequence. Therefore, it
is necessary to differentiate the target sequence scene to make
the resultant sequence semantic, reasonable, and smooth. At
this point, an encoder with a pure CNN structure may lack
sufficient information for such an appealing sequence.

Motivated by the above reason, we design our RSFNet by the
triplet of R-Encoders, which share the parameters, i.e., weights
and biases. Each R-Encoder consists of two modules, Coarse
Feature Extractor (CFE) and Recursive Feature Fining (RFF).
The design is visualized in Fig. 2. For the CFE module, we treat it
as an extractor to obtain the initial feature maps. The backbone
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network of CFE is based on the VGG-19 network [23]. This
pre-trained network is widely used in several applications in a
feature extraction manner. Hence, it is reliable to be considered
a good feature extractor. Furthermore, VGG-19 has been trained
on a large-scale dataset. With this strategy, we can reduce the
burden in training for this process. We solely use the first four
blocks and remove the fifth block from the original VGG-19
framework since it lacks pixel-wise content information [7]. An
input image 7 is first fed to CFE. Let matrix X; € RH:xWixk
denote corresponding feature maps produced by four layers of
CFE. Here, k is the number of channels of each feature response.
H; and W; are respectively the height and width of the feature
maps in layer ¢ (2 = 1...4). As shown in Fig. 2(b), the feature
maps A; are enhanced along the channel and space dimensions
to obtain the feature maps F; by RFF module. In other words,
instead of directly utilizing feature maps from CFE, we propose
an RFF module to integrate with CFE to produce features that
can depict the variety content in frames. The effectiveness of
this design is visualized by the analysis in the later session A. /.

The Recursive Feature Fining (RFF) module is the core of an
R-Encoder, which shoulders the task of preserving contextual
information of images during encoding into latent space. RFF
is formulated by recursively integrating feature maps of CFE. A
straightforward technique could be used instead of RFF is that
re-scaling the feature maps obtained from CFE and combining
them together. However, the feature extraction from a backbone,
e.g., either VGG or ResNet, is performed by a repeated process
of convolutional and max-pooling operations. These extracted
features by themselves loss the low-level information that is
likely to aid in discriminating object regions from the back-
ground regions. Thus, such a simple technique, i.e., re-scaling,
might neglect smaller objects or information in the background
regions and eventually decrease the capability of the encoder.
In the structure of our RFF, we embed two blocks, NCM and
CIR. NCM is to normalize the input feature maps before the
concatenation. Meanwhile, the C1R block’s task is to compress
the size of feature maps without losing information.

The network architecture of the proposed RFF is shown in Fig.
2(b). Four feature maps with different resolutions obtained from
CFE (&) are taken as the inputs of the RFF. Mathematically, the
above process can be recursively expressed as

{fi =V(p(Fi-1® X)), (1=2...4) (1
./—" 1= \I/(Xl) ’

where ¥(.) and ¢(.) denote the functions from the NCM block
and CIR block, respectively; ® is the concatenation operation.
By concatenating two different feature maps, resultant feature
maps F; (¢ > 1) simultaneously captures two different receptive
fields.

To be more specific, NCM is designed to enhance the spatial
representation for the input feature maps from VGG-19. This
block performs the Normalization — Conv3x3 —MaxPooling
structure. Output of input feature maps F'" passed through
NCM is performed as

U(F") = P(C*(Norm(F™))), )
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where P(.) represents the Max-Pooling operator; C3(.) indi-
cates the standard convolution with the kernel size of 3 x 3; and
Norm is a normalization operator.

C1R employs a 1 x 1 point-wise convolution and a residual
block. Our residual block consists of two batch normalization
(BN) layers and two 3 x 3 convolutional layers. Note that,
compared with the basic residual block [9], our residual block
removes the RELU layer after the first convolutional layer to
preserve more spatial details. See Fig. 2(b), immediately after
the concatenation which is used to transmit the information of
these two distinct layers, this block is embedded to learn the
correlation of feature maps from different layers. This process
is expressed as

p(Fe) = C'(Fe) + BN(C}(BN(CH(F))), )

where F. is the resultant feature maps after the concatenation
phase. C'! represents the 1 x 1 point-wise convolution.

With our above design, some benefits can be gained. First,
using a pre-trained network as a backbone significantly reduces
the training cost. Second, RFF can be easily embedded into
an existing neural network. In the design of CIR block, 1 x 1
convolution s to increase channels corresponding to the previous
layer. Meanwhile, residual connection sufficiently mitigates the
gradient vanishing problem, which usually occurs when training
the deep network.

We need to build the embeddings of frames such that they
have the following properties: (1) two similar frames produce
two embeddings so that the mathematical distance between
them is small, and (2) two very different frames produce two
embeddings so that the mathematical distance between them is
large. To do that, we model RSFNet that contains the triplet
of R-Encoders, which use the same weights while working in
tandem triplet of different input vectors to compute comparable
output vector. In our training, the distance loss L, is used as
the objective function to reinforce the distance between two
latent vectors to match the similarity of the images well reflect
pixel-level image similarity. We train RSFNet using a set of
triplet images - an anchor z,, its positive x,, and negative
Z,. Detail of preparing such triplet data is discussed in our
supplementary material. For three embeddings r,, ), r, of the
images x,, Tp, Ty, respectively, the formula of the distance loss
is as follows.

Lq=—zlog (&) + (z—1)log(1—¢), “4)

where

=7l ra—7nll2 —| Ta —Tp ll2), (5)

z = L
=10,

Here, +(.) is the sigmoid function [18], used here to ease the
severe gradient problem. d,(.) is the PSNR measurement [11];
(6) is used to get the initial knowledge about the similarity
of image pairs. It indicates which term in (4) will be visible
during the training. Therefore, z can be treated as an indicator
to determine whether z, is similar to x,, or ,,. We note here

and

if dp(xq,xn) > dp(za, 2p)

if dp(zq,zn) < dp(Ta,xp) ©)
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that using any pixel-level distance metric in (6) could yield an
equivalent effect. It is clear that (4) encourages the embedding of
Z, to be closer to ), than to x,,. Optimizing these terms boosts
the margin between distances of negative pairs and distances of
positive pairs. The effectiveness of this formulation is discussed
by ablated results in later session A.2.

B. Learning-Based Euclidean Metric

To define the weight of each edge in the complete graph,
we calculate the distance of all pairs of latent vectors. The
distance metric used in this manner should satisfy two criteria:
(1) it can well reflect the distance of images, i.e., a distance in
low dimensional space should be consistent with the content
correlation of images, and (2) not too expensive to reduce the
burden when the number of given images is significant. Our
early experiments considered five different distance metrics:
the Hausdorff distance, Earth Movement Distance (EMD), the
LPIPS distance, SSIM, and the euclidean distance. However,
Hausdorff and EMD have a good performance on specific
data, i.e., cartoon characters [3], [26]. LPIPS is an expensive
computation metric, it takes approximately five seconds on an
image pair. SSIM and euclidean distance metrics are potential.
However, euclidean metric is the most common use of distance
measure and known as simple distance. When data is dense
or continuous, this is the best proximity measure. Thus, we
consider euclidean as the baseline in learning the relation of
images in our current application. It’s worth noting that directly
using pixel-level distance metrics, such as SSIM or euclidean,
without (4) is not sufficient in our current application. The reason
is that we target to explore new transitions on the diverse content
frames. Simply employing a plain distance metric without the
objective function L, prevents us to reach this goal. This could
be seen in the ablated visualization A.2

Instead of directly using euclidean distance to measure the
metric value between two features, in RSFNet, we apply deep
learning technique to further learn their similarity. When the
self-defined metric space is an euclidean space, the metric value
between two samples is a distance metric, which is defined as

dij(vi,vj) =|| R(xi) — R(z;) [, (7

where R is our trained RSFNet; x; and x; are the corresponding
frame of embedding v; and v, respectively.

V. SINGLE-SOURCE DISTILLATION PATH-FINDING

In this section, we present our approach of finding the path
on the complete graph to construct new sequences. Let €2 be the
set of latent vectors v; obtained from our RSFNet and d;; be the
distance between two latent vectors v;,v; € €2 defined by (7).
We construct a graph G = (V, £) in which each node V; € V
represents a latent vector v; € 2 and the weight of each direct
edge e;; € £ (from V; to V}) is assigned by the corresponding
distance d;; (v;, v;).

Once graph G is constructed, our system lets the user choose
a node randomly. An expected sequence can be constructed by
traversing the graph starting from this node. A possible and
straightforward way is finding the shortest path on the graph
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with the selected node because the edge of a pairwise node
reflects their similarity, i.e., if the weight of an edge is smaller,
the connected nodes are more similar and vice versa. Hence, this
naive strategy is tolerant of plausible sequences if the input clips
do not have dense motion and content.

The question here is - How do we construct the sequences
that are different from those in the input video? Resequencing
videos without pre-processing (e.g., extracting objects from the
background), we may face arange of challenges in image content
(e.g., the video has multiple moving objects, dense motion di-
rections, or with complicated background). Generating new se-
quences while avoiding flicking artifacts, such a classic shortest
path-finding technique by itself is not tailored. The reason is that
the resultant path found by this technique, such as [17], tightly
reflects the similarity of the sequence in the given clip. It may
yield a similar sequence to the given sequence. Otherwise, it may
fall into chaotic motion if the clip has dense movements. Yang
et al. [26] tackle this issue by extracting the cartoon character
from the image content and using the motion direction feature
(MDF) to evaluate the gesture dissimilarity. However, they focus
on the frames that have a single cartoon character. If the frames
demonstrate the motion of multiple objects, using MDF might
be insufficient. Recent work by Morace et al. [17] also suffers
from this issue if there exist dense motion directions (Chinese
ink in Fig. 5(k)). To overcome these challenges and produce new
sequences, we propose an algorithm called Single-source Dis-
tillation Path-Finding (SDPF) to find the path when traversing
on the graph.

When designing SDPF, we base on the fact that the adjacent
frames have to be consistent in content information and temporal
coherency in a particular clip. Thus, in finding a new path that
satisfies these two aspects, we consider them whenever choosing
a node at every step. We call the phenomenon, which is caused
by missing one of the two aspects, as a cold transition. More
specifically, we model our SDPF to work under the control
of two-layer distillation. Given a graph and a starting node,
the first layer is to distill the set of candidates, which are the
potential to be consistent with the content. Taking this set as
input, the second layer estimates the plausible motion direction
that could be generated and distill the candidates on the set that
are potentially temporally coherent. In the following, we call the
current node V.; our SDPF aims to find the adjacent node of V,
denoted as V. 1. We visualize the difference of Single-source
shortest PathFinding (SSPF) versus our proposed SDPF in Fig.
3(a) and (b). SSPF chooses only one node, which has the shortest
cost, to add to the path. In contrast, our SDPF considers a number
of nodes, e.g., three nodes in this example, which have the cost
lower than a designated threshold, as the potential candidates in
equivalent probability to be added to the path.

There are several benefits of using our SDPF algorithm. First,
we can explore new paths since we do not strictly follow the
theory of the shortest path. Second, we can control the motion
direction to be locally consistent in clip segments and globally
realistic in the generated clip. Third, it is faster than such a
greedy strategy. We subsequently describe how we model the
constraints in our SDPF algorithm. The pseudo-code of SDPF
is presented in Algorithm 1.

3627

Fig. 3.  Visualization of SSPF (a) and SDPF (b). (c) is visualization of motion
tendency of each frame (i.e., blue arrow). The frames in green rectangle belong
to an LMS, i.e., the adjacent frames satisfy (11). (d) is visual constraint C'y in
(12), here the node outlined by double circle means it is an LMS-frame.

Algorithm 1: SDPF Algorithm.

Input: Set of latent vectors {v; }, distance metric {d;;}

1:V + {Ui}, E«+— {dU}’

2: Construct graph G = (V, €);

3: V,, < user’s selection;

4: Initialize a list P to subsequently push the selected node
to the path;

:Add V,to P

2 V. < Vi, /% V. is the node at current state™/
/* Distillation in the first layer*/

AN

7: for each node V; € G(V — P) do
8: ife.; < nthen/*)isdefinedin (8)*/
9: AddV;toS;

10: end if

11: end for

/* Distillation in the second layer */
12: for each node V;, € S; do
13: if V., € LM S then
14: Sy = Cd(VC,Vk) —I—Ct(Vc,Vk)

15: else

16: 52 = Ct(VC, Vk)
17: end if

18: end for

19: for each V; € S, do
20: Compute possibility €2 for each V; by (20);
21: end for
22: Choose V; by randomly selecting €2;
23: Add Vj to path P;
24: Update V. < V;
Output: Sequence of path P

A. Content-Aware Distillation

In this layer, we find the set of candidates that have relevant
content to the current node V, rather than finding the node that
have smallest distance to V.. Obviously, if V.4 is the node
that has the smallest weight to V. among the directed nodes of
V., this may yield the resultant sequences that are similar to the
source sequences. Thus, we find the candidates that are potential
to explore new transitions. This saves the generated video from
flicking artifacts due to the “cold transition” between them. We
construct a set S7 of candidates that are relevant to V,, as

Slz{m—eg:emn;s.t.n:2]5”}, (8)
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where N is the total number of nodes in the graph G. In this
equation, 7 is the threshold that represents for the mean of the
weights in the graph G. By this configuration, an edge has the
weight that smaller than 7 could be considered as a “potential
candidate”. It is hypothesized that we set another variable such
as top k% of the candidates that have the closest weight to the
minimum weight of the graph, the size of Sy is increasing with
the total number of frames in the given video. If the clip is short,
the size of Sy is small, and thus it might be not sufficient to
explore a new path. If the clip is long, the size of S; accordingly
increases, and thus it might include the wrong candidates (i.e.,
the candidates are not correlated). Therefore, the threshold 1 <
mean(.) is tolerant with different amounts of frames and able
to avoid these phenomena.

With (8), we can eliminate the nodes that have low reliability
and drive our focus on the nodes that are highly potential to be
content correlation. Each element of S; represents for a possible
way that we can explore from V. without suffering from cold
transition. Note that the size of S; varies along with V. at each
iteration. And in Sy, the nodes are treated equivalently, i.e., the
probability of choosing a node is independent with the edge
weight.

B. Motion Direction-Aware Distillation

Having computed the set Sy, the next question is - which
candidates in this set can yield a plausible motion direction?
Note that here “plausible” refers to both backward motions,
forward motions, or any movement but avoiding the results from
the flip-flop and jumping phenomena. To do this, we propose to
our SDPF algorithm two constraints: Directional distillation and
Coherent distillation. Detail of each constraint is described as
follows.

1) Directional Distillation: This constraint, denoted as Cy,
is proposed to control the consistency of motion direction. To
achieve this, linear motion segment (LMS) is the factor we
consider here. LMS is ubiquitous in real-world videos. Readers
can see the visual example of LMS here.! Resequencing such
videos may fall into two kinds of motion-noise: (1) flip-flop
phenomenon due to the LMS-frame is not recognized, causing
inconsistent direction, and (2) abnormal motion since both back-
ward and forward motions yield smooth transitions. Therefore,
there is a need to recognize the major motion direction in frames
as well as detect the LMS to avoid these motion-noises.

Let X = {z,}]_, be the sequence of frames z, in the given
video, n is the number of frames, we first calculate the optical
flow [24] of X and denote this set as Y = {F, ,,41}"_;, here
F,_,q+1 is the optical flow of frame z, to z,41. To focus on
drastic changes in the optical flow, we normalize each element
in Y as follows:

<= | Fij |l2 — ming; || Fij ||

N, = , . )
Y maxy; || Fyj |l2 —ming || Fy |l

We denote this set as Y = {Ne}"_L. Video frames may have
various motions, e.g., motions of main object(s) or light motions

Thttp://graphics.csie.ncku.edu.tw/SDPF/LMS.mp4
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of background objects. To recognize the major motion direction
in frames, we mask on each frame a value called “motion
tendency” (T'), as shown in Fig. 3(c). This value represents
for the motion direction that dominates in a frame, which is
formulated by average normalized vectors of partial optical flow

N\ . F,
T =/ L ,S.t.,NZ‘j > 00—, (10)
nxm | Fij ll2

where m,n is the width and height of frames, respectively.
Threshold o is set to 0.5 in our experiments to ensure only huge
changes to be concentrated.

Thereafter, we base on motion tendency in frames to detect
LMS-frame, the frame that belongs to an LMS. The definition
of an LMS-frame is expressed as

Y keN:j<i<j+kk>2 st|T;—T|<é (1)

for all I € [4,j + k]. In our experiments, we compute motion
tendency of frames and mask them with motion tendency value
if the frames belong to LMS prior of path-finding manner, and
threshold ¢ is set to 7.

Finally, we configure the constraint for directional distillation
as

Cq=|T. — Tx| <& ifr. € LMS&IV;, € Sy s.t.,ap, € LMS,

12)
where T, T}, is the motion tendency of the corresponding frame
X, xy, of the node V., Vj, respectively, k € [1...n1], and &
is set to % Here, nq is the size of set ;. The condition in
(12) reveals that constraint C'y only works if the corresponding
frame of V_ is an LMS-frame and there exist an LMS-frame
in S1. Otherwise, we skip this constraint. The visual sample
can be found in Fig. 3(d). We can see that, V. and two of its
three candidates are LMS-frames. In this case, (12) is used to
avoid flip-flop phenomenon. We analyze the effectiveness of this
constraint with ablated results in session A.3.1.

2) Coherent Distillation: The distillation in this layer is
proposed to maintain the temporal coherency in generated se-
quences. Yang et al. [26] extract cartoon characters from frames
and compute the angle of two motion direction features of the
characters to define the differences of motions. In the cases that
video frames consists of multiple moving objects, this technique
is not practical. We instead propose a Pixel-wised Motion Sim-
ilarity Measurement (PMSM) to shoulder the smoothness of
generated sequences.

As named, PMSM measures the pixel-wise motion similarity
between two frames. To get knowledge of motion in frames,
inspired by [12], we use optical flow as the motion feature.
Thus, a possible and straightforward way we can measure the
motion differences is using optical flow directly. Nonetheless, as
aforementioned, various motions of multiple objects in frames
cause challenging to define the consistency between them. We
therefore learn the motion feature by mapping optical flow
domain to image domain. In other words, given two frames,
we use the corresponding the optical flow of these frames to
construct the instance in image domain, dubbed pseudo-image.
A pseudo-image is made by the major motions in the corre-
sponding frame and the correlated motion of frame-pair. We
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Fig. 4.

Flowchart of our proposed PMSM.

finally calculate the distance of pseudo-images to measure how
smooth the motion changes in a transition. A smaller PMSM
reveals a smooth transition. Consequently, we use PMSM to
configure the constraint in this distillation layer, so-called Cy,
to control the motion in adjacent frames not to change frequently
or drastically.

Fig. 4 outlines the flowchart of PMSM. For each node V}; in
the set S1, we treat it as a hypothesized adjacent node of V..
And z., x, respectively are the corresponding frames of node
V., Vi.. The smoothness of transition from frame x. to x; is
now defined by the motion distance of two optical flows FC and
FK, where FC is the optical flow of frame x. to its backward
adjacent frame in the input video. The reason for the order of this
calculation is explained in detail in our supplementary, available
online. Similarly, FK is the one of xy.

With two optical flows FC and FK, we first normalize their
magnitude by (9), denoted as FC, FK, respectively. We then
define a map of significant motions with

Mij = maX(IE(\:ij,F/I\(ij), (13)

withi=0...W,5=0... H; W, H is the width and height of
the frame, respectively. The map M represents for the correla-
tion of major motions in frame-pair. We get these information to
learn how to control the pixel-wise consistency in the pseudo-
images.

In each normalized optical flow FC, FK, we count the number
of elements that are larger than a threshold y.. We denote as

= {61, ...,en. 1. Note that the size of set E varies along FC
or FK Smce we only use N, optical flows in F to model Ci,
value of N, should be large enough. A small N, will decrease
the difference between optical flows. This yields to that we may
fail to define the difference correctly. Therefore, if V. is smaller
than a threshold, i.e., 224 is the height and width of frames,
we will cut p in a half and compute ;o again to ensure N, is
sufficient. Initially, we set 2 to 3.

Thereafter, we rely on M, E to map back to the input
optical flow to construct pseudo-image. More specifically, Vi, j
in optical flow F;; = (x;,yi; ), pseudo-image X? € RHEXWx3
is expressed as

XP — {(2?&2 + 3o+ %71) i Mz
v 11 it M <ey
(14
where ey, is the largest element of E in M. In (14), if the pa-
rameters are M, E., and FC, we can construct pseudo-image of
node V., denoted as XZ. Similarly, we can get the pseudo-image
X% from those of node Vj,. The first two channels in X? are the

57570 )
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unit vector of F' with constant translation, in which unit vector
provides only direction information. The constant translation
makes the value to be in range of [0, 1] without any computation
error. The third channel is used to enlarge the difference between
the feature point and other pixels.

At the end, motion distance of two optical flows is formulated
as the similarity of the corresponding pseudo-images

§(FC,FK)=— || R(XE) = R(X}) |2, (15)

where R(.) indicates our trained RSFNet. In essence, pseudo-
images have different appearance compared to video frames,
i.e., pixel value represents for the motion intensity of objects in
the corresponding frame. Encoding such pseudo-image serves
the knowledge of the regions that have considerable motions.
It’s worth noting that motion distance of two frames in (15) also
could be expressed by the similarity of pseudo-images. However,
to make §(.) stable when working on diverse motions, we feed
them to RSFNet. Although RSFNet is trained on video frames
data, RSFNet on the other hand learn a similarity function to
see if two images are the same. This enables to discriminate
new classes of data without training the network again. We
give out discussion and visualization on these effects in the
supplementary file, available online.

Equation (15) represents the relation adjacent frames in term
of motion change degree. For each node V}, in the set Sp, k =

0,...,n1, we define constraint C; as
0(FC,FK) <w (16)
where w is set by
_ 7= Yokes, 0(FC, FK), ifny > 2 an
min (§(FC, Ay),8(FC, Ay)), ifny <2

here A; and A, are the augment form of FC, i.e., A is the
rotation of FC with angle %77 and A is the rotation of FC
with angle —%77. We set w as the average difference of S
is intuitive. However, the average will loss its function if the
number elements in S; is less than 2. Therefore, we calculate
the difference between FC and the rotation of itself to ensure
the direction of the motion is sufficiently smooth. We analyze
the effectiveness of this constraint by the ablated results in later
session A.3.2.

In summary, the constraint model of distillation in this layer
can be factorized as

Ca (Ve, Vi) + Ce (Ve Vi) (18)

where Vj, € S;. In the cases that V. does not belong to LMS or
there does not exist a candidate in S; that belongs to LMS, the
first factor in this equation is omitted. In other words, we define
the candidates that we can add to the path as

S {cd (Ve Vi) + C; (Vi, Vi), if V. € LMS
2 p—

19
C; (V., Vi) , otherwise (19)

3) Final Selection: Thus far, the candidates in Sy are the
possible nodes we can choose to explore. In the cases that Sy is
empty, the algorithm will early stop to maintain the quality of
resultant clips. If So > 1, we adopt Softmax parameterization
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Fig. 5. Frames in some of the videos we use to evaluate our method.

protocol [8] to converge the selection in each iteration. Let §; be
the motion distance from anode V; € S, to V., we parameterize
the possibility of choosing V; as

exp(d;)
2oiZy exp(di)

where ny denotes the number of candidates in Ss, §; is the motion
distance of node V; and V.. This equation is used to compute
the possibility of a vertex to be chosen. Then, we select the
adjacent node of V. according to randomly choose the possibility
Q. It’s worth pointing that choosing any candidates in Sz is
sufficient to guarantee smooth and plausible sequence. However,
we aim to explore the novel path, we thus utilize (20) to increase
the possibility of sequencing novelty rather than choosing the
smallest edge-weight node. Furthermore, this strategy enables
users to have more predictable results. The efficiency of this
design is visualized by video results in the supplementary video,
available online.

QV;]S) = (20)

VI. EXPERIMENTAL RESULTS
A. Implementation Details

We implemented our proposed resequencing system in Ten-
sorflow [1]. All experiments were performed on a PC equipped
with Intel Core i7-770 CPU, 16 GB RAM and an NVIDIA
GTX 1070 GPU. The User Interface (Ul) is developed by QT
toolkit [4]. We train our model with patch size of 8. Adam
optimizer [15] is used. Early-stopping with 10 epochs patience
is used to prevent over-fitting. To reach the minimum of loss,
we cut the learning rate in half when the validation loss does not
improve in 3 epochs.

B. Our Results and Discussion

Fig. 5 exhibits the frames of some typical videos in our
experiments. Readers are encouraged to explore our project
website? to access more visual results. The aspects that make our
results and system advance prior works could be summarized as
follows.

We are capable of resequencing both cartoons (Fig. 5(a) to (g))
and natural videos (Fig. 5(h) to (I)). Cartoon images often consist
of sharp lines, flat backgrounds, and smooth color blocks, while
natural images contain more complex and local textures [2]. This
ability is adopted by benefiting of the proposed RSFNet and the
distance loss. RSFNet boosts the performance of our system in
understanding high-level features of natural images; meanwhile,

Zhttp://graphics.csie.ncku.edu.tw/SDPF/
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Fig. 6. Demonstrates the differences in the sequence generated by our method
versus those in the original video. Shown in this figure are the filmstrips from
original video (first row) and our rendered video (second row).

the distance loss facilitates the accuracy of image feature-pairs
similarity.

We are capable of resequencing the clips, which consist
of complex motions, i.e., the motion of multiple objects or
dense motion directions. This aspect is adopted by the Motion
Direction-Aware Distillation in our SDPF algorithm. As exam-
ples, let us take Fig. 5(f) and (g). The challenge here is that
both cases consists of multiple simultaneous motions. In Fig.
5(g), we have to control the consistency of movements of two
objects: 1) the direction when the bear raises his hand to hold
the flower and rotates it, and 2) the other flower waves with the
wind. Meanwhile, in Fig. 5(f), such a resequenced clip should
maintain the consistency of the movements of the lady, baby, the
car, and the windshield wipers. Nevertheless, we can generate
appealing results, i.e., we re-sequence the new clips without
damaging the coherency and flicking artifacts. The challenge
also falls in the natural scenes here. These samples encompass
linear motion segments, which cause resultant sequences to be
a flip-flop phenomenon. Thanks to the constraints embedded
in our SDPF, we revolve this challenge and produce smooth
transitions.

Another interesting aspect of our system is the ability to
produce the sequences which are different to those in the given
clip. This aspect is adopted by the Content-Aware Distillation
in our SDPF Algorithm. More specifically, we visualize the
filmstrips of two paths which are from the original video and
our result in Fig. 6. We can see with the same image gallery, but
our sequence is quite different from those in the input video. By
observing this resequencing result, we can see the transition of
each single frame pair is plausible. The full clips can be seen in
our supplementary videos.

In addition, we can generate different sequences according to
the starting frame, which the user selects. This aspect enables
users to obtain various predictable results. Fig. 6 is a sample.
More results can be seen on our project website. By observing
the filmstrips in the figure, the sequence generated by our method
is not only relatively different from the source sequence but also
smooth in transitions.

C. Evaluation Metrics

To evaluate the performance of the proposed method, we mea-
sure the generated sequences with three aspects: (1) the stability
of videos, (2) the difference degree of generated sequences,
and (3) human perception on our results. In this evaluation
manner, we totally use 12 videos (shown in Fig. 5), which are
rendered from our system. Then, we synthesize them for the
below evaluation metrics.
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Fig. 7. Visualizes the heatmap of differences of frames.

1) Stability Measurement: As the generated videos are ex-
plored according to the user’s selection of the starting frame,
they may not have the ground truth. To measure the stability of
rendered videos, we synthesize 12 videos by our method and
the corresponding source video; and measure the differences
between adjacent frames. The reason is that the source videos
by themselves are temporally coherent; our results are rendered
from the same image set with them but probably in different
orders. Thus, we treat them as the standard to judge the stability
degree of the results.

Given two adjacent frames F;_; and F}, difference of them is
factorized as

Disir = Fy = Fya |, 2n

heret € [0... Ng], N; is the total frames in the video. After that,
we calculate the mean (Mp) of D;_,4_1, and we compare them
against those in the source video. On each single pair, Dy ;1
in our result might be higher than those in the ground truth, but
it should be at an acceptable rate to guarantee there does not
exist notable flicking artifact. This eventually affects the quality
of the entire rendered clip. Therefore, we base on Mp to judge
the stable quality of the results, i.e., the more tightly asymptotic
to those in the source is better. We visualize an example of this
manner in Fig. 7. In this visualization, we choose a mutual frame
between our rendered clip and the corresponding source video
(i.e., frame 9). We can observe that the adjacent frames of frame
9 in the source (i.e., frame 11) and the adjacent candidates (i.e.,
frames 16 and 34) are in the same motion direction, but the
heatmaps show that Dg_,1¢ is closer to Dg_,11 than Dg_,34. This
result reveals that the transition from frame 9 to 16 is better
among two potential candidates than to frame 34, i.e., there could
be a noticeable jumping artifact in the transition from frame 9
to 34 in this context. The average of Mp in this experiment is
reported in Fig. 8(a). The analysis shows that the stable rates
of our rendered clips are relatively close to those in the source
video. There are three cases (e.g., clip A, C, and F) in which the
stable rates are relatively higher than the source. However, they
are still at acceptable rates.

2) Degree of Differences: It is difficult to find a standard
objective metric to measure the differences of the generated
sequences compared to the input ones. Therefore, in this regard,
we elaborate as follows.

We evaluate how different the rendered clips compared to the
ground-truth by calculating the overlapping rate between them.
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To do this, we follow the well-known F-measure [16] as the
evaluation metric. Previous works use this metric to measure
the coherency of the rendered videos. The higher F-measure is,
the higher the coherent rate will be. Reversely, our purpose is to
measure how different they are. To avoid confusion, we denote
this value as A,. As a result, the smaller A, represents the more
difference. Note that the clips generated by our system may be
of different lengths and also less than those of the source clip.
Let G be the generated clip and 7" be the corresponding source
clip, the precision P and recall R is defined based on the amount
of temporal overlap between GG and 7', which are expressed as
] 0
P = dGandR— i
where 0 is the duration of overlap between G and T'; d and
dr denotes the duration of clip G' and T, respectively. Finally,
A, is formulated as

(22)

A, = 2x PxR
P+R

Quantitative results on this aspect are shown in Fig. 8(b). We
can see that A, of the testing data are relatively different from
the ground-truth, especially on the clip D-Frog dance. It is worth
pointing that the significant difference in this manner does not
mean the clip is not stable. Inferring this clip in Fig. 8(a), the
results reveal that the sequence this clip is still stable. There are
three cases (e.g., clip H, I, and J) where the different rate is low.
This implies that these results are not significantly different with
the ground-truth. The reason is that these cases consist of linear
motion in the entire video. Therefore, our method can only gen-
erate the smooth sequence as the ground-truth in such cases. In
addition to these metrics, we conduct a user study to further learn
about the human preferences on the visual quality of our results.
Detail of the user study is described in the supplementary file.

In summary, if we denote the total number of linear motion
segment in a certain source video is L, the quality on these two
aspects of the rendered clips is defined as follows. The stability
(Mp) is covariate with L and the differences of sequence (A,)
is inverse with L.

3) Human Perception-Based Evaluation: In addition to the
above measurements, we further use human visual perception
on the sequences generated by our method. Seven testing clips
with small A, are used in this evaluation. We first collect two
summarization per sequence. Then we recruit a group of 11 users
rank (in five levels) the summarization based on how well they
describe the clip according to two questions. The detail of this
study is described in the supplementary file.

For each question, let s be the score if the it™ user rates for the
corresponding level of s and N be the number of rating of s.
We use the following equation to compute the rate of each sum-
marization to each question, which reflects the users’ opinions

RA = (isx N5>/(5>< 11).

We then average RA of two summarizations for each sequence
to define the users’ opinion. Fig. 8(c) shows the statistics of
users’ preference. We can see that the scores of two questions

x 100%, (23)

(24)
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Fig. 8.  Analysis results on (a) stability, (b) difference degree, and (c) human perception on our resequencing results.
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Fig. 10.  Comparisons with Manifold sequence [17].
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Fig. 9. Visualizes the differences in transition between our method (a) and [3]
(b). Photos in (b) are obtained from [3].

are not extremely high but all of them are over the average
degree (i.e., in range of 0.62 - 0.79, and 64% is greater than
0.7). The results reveal that most users think the sequences
generated by our work can tell meaningful stories.

D. Comparisons to Prior Works

We compare our system with some seminal works in this
domain, including de Juan and Bodenheimer [3], Yu et al. [28],
Yang et al. [26], and Morace et al. [17]. The different aspects
in comparisons are summarized in Table I. In general, the early
works [3], [26], [28] share the same two shortcomings: first, their
mutual focus is the cartoon characters, and second, they need to
do a pre-processing to extract the cartoon characters from the
frames. Manifold method [17] is more general, i.e., it does not
need such a pre-processing and thus, it is adaptable to cartoon
scenes. However, they do not consider the motion direction as
the other competitors [3], [26], [28] do, clips with dense motion
directions are the major limitation in their system. In shape
contrast, our approach has three major advantages. First, our
system performs well on arbitrary input video scenes. Second,
our system does not need any pre-processing. And third, our
system is able to produce novel animations compared with those
in the given video. The remainder of this subsection describes
detailed comparison on each single competitor.

Fig. 9 shows a qualitative comparison between our results and
those in de Juan and Bodenheimer [3]. The pair of frames in (b)

is mentioned as a bad transition in [3]. As a result, they have
to insert inbetweens to obtain good transition. In contrast, our
method automatically defines the adjacent frame with a smooth
transition without refinement. It is observed that our transition
in (a) is more plausible compared to (b).

Similar to our approach, Yang et al. [26] consider motion
direction in transitions. The significant difference here is that
they focus on cartoon characters. Gesture of characters needs
to be extracted to define the similarity between frames (see
Fig. 7 in the supplementary file, available online). Moreover,
the motion direction feature (MDF) cannot accurately describe
the gesture of a cartoon character. Thus, their approach is not
effective to explore the challenging input. Reversely, our system
gets knowledge from self-defined network to learn the similarity
of images in terms of content correlation and embeds optical
flow to maintain consistency in motion directions. Therefore,
we advance not only in arbitrary input but also in accuracy.

Fig. 10 shows the comparison with Morace et al. [17]. The
source clip of this example consists of dense motions of fish and
chinese ink, in which there exist several linear motion segments.
As in our early discussion, since Morace et al. [17] do not
consider the motion direction, there is significant abrupt motion
in the regions masked in red rectangles. Fortunately, thanks to
the constraints in our scheme, we resolve this phenomenon and
obtain smooth transitions in the generated sequence. Another
aspect makes [17]’s system suffer some limitations (i.e., image
content is complex) is that they use LPIPS metric to define the
similarity of image pairs. This metric is learned by training a
“small network” which is designed to predict perceptual judge-
ment from distance pair and not originally designed for rese-
quencing application. Besides, it takes approximately 5 seconds
to compute on a pair. Therefore, the performance of [17] heavily
relies on those in this model.

Apart from the above visual comparisons, we quantitatively
compare the quality of our results against those of prior work by
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TABLE II
COMPARISONS ON THE QUALITY OF RESULTS

Methods Ground-truth  Morace et al. [17]  Our method
Testing data Mp Mp A, Mp Ao
A- Lovebird 0.037 0.056 0.78 0.047  0.67
B- Daffy Duck 0.048 0.067 0.84 0.052 0.64
C- Hippo funk 0.046 0.062 0.81 0.058 0.63
D- Frog dance 0.048 0.079 0.77 0.054  0.59
E- Michigan 0.060 0.062 0.79 0.065 0.64
F- Umbrella 0.059 0.083 0.69 0.067 0.72
G- Little doctor 0.048 0.073 0.73 0.051 0.70
H- Basket ball 0.047 0.081 0.58 0.049 0.88
I- River flow 0.051 0.075 0.75 0.052  0.92
J- Harry Porter 0.053 0.078 0.68 0.056  0.87
K- Chinese ink 0.049 0.052 0.73 0.056 0.78
L- Movie Scene 0.058 0.065 0.74 0.060  0.79
Average 0.050 0.069 0.74 0.055 0.73

two metrics Mp and A,. We also use the data in Fig. 5 in this
comparison. And our competitor is Manifold [17] since the other
three methods [3], [26], [28] focus on cartoon characters, and
their results are not available for a fair comparison. Meanwhile,
Manifold [17]’s focus is comparable to ours, and the source code
is provided by the authors. Table II presents the statistic results in
this comparison. We can see that our method outperforms on the
average of stability score. In terms of A, Manifold and ours have
the comparable scores. However, we can see that their values of
A, are relatively equal, and the score in cartoon data (A-G)
are higher than natural scenes (H-K). When we inspect Mp of
data A-G, they are not at good stability degree. This reveals
that Morace et al. [17] fail to either generate new sequences for
cartoon data or produce smooth sequences with linear motion
in natural scene data. Conversely, in our method, smaller A, on
cartoon data implies that it can explore new sequences. For the
natural scene data with linear motion, higher A, side by side
with smaller Mp reveal that it can tolerate to avoid flip-flop
phenomenon in such data.

E. Ablation Study

1) Verify the Effectiveness of RSFNet: Our RSFNet is struc-
tured in the integration of a backbone and the proposed RFF
module. Without RFF module, generated sequences include
inconsistencies due to the lack of information on the features
that are extracted from the backbone. We demonstrate the effec-
tiveness of RFF module by removing it from our training. We
show these ablation analyses in Fig. 11. Here, we visualize the
Grad-CAMs [22] of those obtained from our RSFNet with and
without RFF module. The results show that with FRR module,
our RSFNet has much larger attended regions. This enables our
system to have more predictable results.

2) Study on the Impact of Distance Metric: Performance of
our resequencing system is affected by the feature correlation
calculation. To analyze the influence of feature correlation on the
quality of rendered sequences, we change the model to calculate
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Fig. 11.  Second row is the Grad-CAM visualization of the backbone VGG-19
(left) and our RSFNet (right).

213 4 15 16 17 18 19 20 L 200

(b)

Fig. 12.  Zoom-in the heat map of distance metric calculated by euclidean
distance (a) and our learning-based euclidean distance (b). The experiment is
conducted on segment with 20 frames of Daffy Duck clips. Entire heat maps
could be seen in Fig. 6 in the supplementary file, available online.

TABLE III
ANALYSIS OF THE QUALITY ON ABLATED RESULTS

Method Mp A,
Ground-truth ~ 0.0535 1
w/o Cy 0.118  0.783
w/o Cy 0.079  0.827
w /o RSFNet 0.082  0.731
w/o Ly 0281  0.816
Full configure  0.0648  0.706

the distance metric by a pure euclidean distance calculation. That
is, we remove the distance loss (e.g., (4)) and use the euclidean
distance to measure the correlation in pairs of latent vectors.
Fig. 12 shows the contrast results. It is observed that euclidean
distance metric performs the correlation of the neighbors well.
For example, we inspect on frame 5, which is highlighted in
green rectangle. We can see that most similar frames are adjacent
frames of this frame (e.g., frame 4, 5, 7). Meanwhile, our distance
is able to capture more (e.g., frame 1, 2, 3, 4, 5, 12, 20).
Therefore, if we directly use euclidean as the distance metric, it
prevents us from exploring new paths.

3) Study on Constraints in SDPF: A.3.1. Directional distilla-
tion: This constraint is configured to detect the motion’s property
of a certain frame. As we mentioned in previous session, the
“property” here is the linear motion. To verify the impact of
this constraint (Cy) in the results, we remove it from the full
procedure. That is, Cy is omitted from (18). Fig. 13 shows the
results of ablation analysis. In this example, we deliberately
choose a frame (i.e., frame 187) that belongs to such a linear
motion segment to clearly reveal the influence of this constraint.
After the first distillation, we define five candidates that have
feature correlation to frame 187. Among them, frame 152 does
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+~————— Potential candidates have content correlation with frame 187

frame 121 frame 152 frame 144 frame 193

+——— Transition with C; —— Transition without C,

2/ I
frame 135

frame 187

frame 152

Fig. 13.  Ablated results of constraint Cy. Five candidates in Sy are correlated
with frame 187. Because frame 187 belongs to LMS, if S; has LMS-frames,
they will be considered to guarantee the coherency with frame 187. With Cy,
frame 193 is chosen. This is an LMS-frame, we can see the transition is visual
smooth. In the contrast case, both frame 152 and 135 do not belong to LMS,
exploring to these frames may cause artifacts.

——— Transition with (¢, ————+ «— Transition without ¢, ——

-

frame 149 Draz—149

frame 143 frame 172 72

Fig. 14.  Ablated results of constraint C%.

not belong to LMS, meanwhile, the remainders are. In the
remained candidates, frame 121 and 144 are in reverse direction
motion with frame 187, and frame 193 is the same direction
with frame 187. Without constraint Cy, frame 152 and 135
are selected as being adjacent with frame 187. Obviously, the
flip-flop phenomenon will occur. Reversely, with constraint Cg,
frame 193 is chosen. This result yields a reasonable transition.

A. Coherent Distillation: Without this constraint, the motion
in generated sequences can be realistic but may fail in temporal
coherence. We measure this effect quantitatively by removing
this constraint (i.e., Cy) from our proposed procedure. Fig. 14
visualizes the ablated results in this aspect. It is observed that
without C}, the adjacent frame of frame 143 is frame 172. In
the contrast case, it is frame 149. Although both frame 149
and 172 are the same direction motion with frame 143, the
heat maps reveal that the differences from frame 143 to 172 is
significant. This is the reason that causes the jumping transition
in the rendered clips without C;.

In summary, we verify the effectiveness of RSFNet, distance
loss, and two constraints (Cy, C) by testing on 12 videos in
Fig. 5. The analysis is shown in Table III. From these results,
we can conclude that the each constraint plays an important role
for the stability of the rendered clips; the distance metric and
RSFNet affect to the ability in exploring new sequences. Full
configuration guarantees better quality results.

F. Limitations

In the cases that the input videos consist of subtle motion of
landscape scenes (see the visualized sample here®), our method
may not perform well. The failure phenomenon in such data is

3http://graphics.csie.ncku.edu.tw/SDPF/Failure. mp4
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that the resultant sequence is quite short, i.e., approximately 20%
of the total number of frames in the source video. We note here
that these results are still smooth. The reason is our SDPF utilizes
the temporal coherency or the velocity of motion in the source
video to estimate the adjacent frame in each single pair of frames.
In such subtle motion, the differences of the adjacent frames are
small and the motion is looped. Therefore, our SDPF will early
stop if the changes are relatively large to avoid cold transitions.

VII. CONCLUSION

We propose a framework to create new animations from
cartoon and natural videos with plausible smooth motion. We
demonstrate that our novel path finding algorithm SDPF is
especially useful to create the novel animations and control
the consistency in generated clips. This gives our system the
capability of resequencing various video contents with flexible
sequences. We perceive that our system, on the one hand, will
be useful as an aid to charge with generating new art in an-
imation video, on the other hand, allows ordinary users with
minimal expertise to explore compelling animations by reusing
the existing video frames. Our results and evaluations show that
the proposed scheme substantially advances prior works. For
the drawback we mentioned in our limitation session, we plan
to investigate such techniques to detect the bad transitions in
the initial sequence and make it smooth by a novel algorithm
rather than early stopping. Besides, this could be a possibility
to develop a GAN-based network architecture to produce new
images from existing image collection, and increase the diversity
of the results in the near future.
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