IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009 853

Multiresolution Mean Shift Clustering Algorithm
for Shape Interpolation

Hung-Kuo Chu and Tong-Yee Lee, Member, IEEE

Abstract—In this paper, we solve the problem of 3D shape interpolation with significant pose variation. For an ideal 3D shape
interpolation, especially the articulated model, the shape should follow the movement of the underlying articulated structure and be
transformed in a way that is as rigid as possible. Given input shapes with compatible connectivity, we propose a novel multiresolution
mean shift (MMS) clustering algorithm to automatically extract their near-rigid components. Then, by building the hierarchical
relationship among extracted components, we compute a common articulated structure for these input shapes. With the aid of this
articulated structure, we solve the shape interpolation by combining 1) a global pose interpolation of near-rigid components from the
source shape to the target shape with 2) a local gradient field interpolation for each pair of components, followed by solving a Poisson
equation in order to reconstruct an interpolated shape. As a result, an aesthetically pleasing shape interpolation can be generated, with
even the poses of shapes varying significantly. In contrast to a recent state-of-the-art work [19], the proposed approach can achieve
comparable or even better results and have better computational efficiency as well.

Index Terms—Shape interpolation, pose configuration, multiresolution mean shift (MMS) clustering.

1 INTRODUCTION

SHAPE interpolation has been an active research area in
computer graphics and is a powerful technique in
computer animation and entertainment. It aims at producing
a gradually and naturally changing of transformation
between two or more existing shapes. Generally, there are
two major steps for polyhedral-surface shape interpolation:
1) establishing one-to-one correspondence among the input
models and 2) interpolating the positions of corresponding
vertices, known as the trajectory problem, to compute inter-
mediate shapes. While the correspondence establishment has
been thoroughly investigated by many previous works [2],
[18], [20], [28], [30], the trajectory problem is simply realized
by linearly interpolating corresponding vertices in their
studies. It is well known that a naive linear vertex interpola-
tion [2], [18], [20], [30], [40], [41] potentially suffers the
shrinkage problem (Fig. 1a), because the large-scale rotations
cannot be correctly expressed by linear interpolation. Some
researchers perform a global rigid [10], [13] or affine trans-
form [2] prior to linear vertex interpolation and obtain better
results. However, these approaches still cannot completely
solve the problem. To solve the trajectory problem, Alexa etal.
[4] propose a technique that is as rigid as possible in order to
interpolate the local transformations of the interior triangles
of the 2D shape by minimizing the distortion of the rigid
transformation during the shape interpolation. Xu et al. [38]
follow a similar theoretical basis and propose nonlinear
gradient field interpolation to control orientations of surface
triangles implicitly in 3D shape interpolation (Fig. 1b).
Because the surface triangles are considered independently

o The authors are with Computer Graphics Group/Visual System Laboratory,
Department of Computer Science and Information Engineering, National
Cheng-Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan,
ROC. E-mail: hkchu@csie.ncku.edu.tw, tonylee@mail ncku.edu.tw.

Manuscript received 26 June 2008; revised 9 Oct. 2008; accepted 18 Mar.
2009; published online 24 Mar. 2009.

Recommended for acceptance by H. Qin.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2008-06-0082.
Digital Object Identifier no. 10.1109/TVCG.2008-06-0082.

1077-2626/09/$25.00 © 2009 IEEE

and locally, this technique potentially fails when the poses of
inputshapes vary significantly (Fig. 2a). Even though a global
rigid transformation is applied to source shape before
gradient field interpolation, it still generates artifacts (Fig. 2b).
In the proposed approach, the key for achieving a natural
interpolation of articulated shapes (Fig. 2¢) is decomposing
the vertex trajectories into a rigid pose transformation and a
nonrigid residual transformation. The rigid pose transforma-
tionis described in terms of hierarchical rigid transformations
from the underlying articulated structure. The nonrigid
residual transformation captures the local detail deformation.
The two major contributions of this paper are listed below:

e We propose a novel multiresolution mean shift
(MMS) clustering algorithm to automatically and
efficiently extract a hierarchical, articulated structure
which can be used to describe various poses of input
shapes (Section 4).

e Using this articulated structure, we solve the
trajectory problem by combining a global pose
transformation with a local detail transformation,
followed by solving a Poisson equation (Section 5).

In Section 6, we demonstrate the success of our method

using several aesthetically pleasing shape interpolations
with significant pose variation. We also show that our
method is applicable to two useful applications: 1) multi-
target shape blending and 2) keyframe animation.

2 BACKGROUND

Several previous works have been proposed to study the
trajectory problem in shape interpolation. A naive linear
vertex interpolation is the most popular and simplest
proposal, butitsuffers from artifacts such as shape shrinkage.
To avoid shrinkage, Sederberg et al. [31] interpolate both
edge length and dihedral angle information of the boundary
of 2D polygons rather than vertex positions. Alexa et al. [4]
formulate the vertex trajectory as an optimization of the rigid
transformation of interior simplicial complexes between two

Published by the IEEE Computer Society

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



854 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

et

Fig. 1. (a) Linear interpolation of vertex position. Notice the shrinkage defects that are observed in the forelimbs of the lion shape. (b) Shape
interpolation using gradient field interpolation. Input shapes are shown in the color tan.

(@)

(b)

(©

Fig. 2. Shape interpolation between two lion shapes (shown in the color tan) with significant pose variation. Intermediate shapes are shown in blue.
(a) Gradient field interpolation generates serious self-intersection. (b) Apply a global rigid transformation before gradient field interpolation. Note the
unnatural bending at the tail. (c) The proposed method.

compatible 2D triangulations. However, it is not easy to For shape interpolation, 3D morphing, and editing, many
extend this technique from 2D to 3D because it requires works have been proposed to interpolate meshes repre-
nontrivial compatible tetrahedralizations. sented in differential representation, including the inter-

The differential representation of mesh has become very polations of gradient fields [38], Laplacian coordinates [1],
popular, in particular, for mesh deformation application. pyramid coordinates [32], and local frame representation

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



CHU AND LEE: MULTIRESOLUTION MEAN SHIFT CLUSTERING ALGORITHM FOR SHAPE INTERPOLATION 855

[23]. Among these representations, the gradient field
approach is closely related to our work. Sumner and
Popovi¢ [34] use a per-triangle deformation gradient to
transfer source deformation to a target model. Later, based
on the deformation gradient, a mesh-based inverse kine-
matics system, which learns a space of natural deformations
from example meshes is proposed by Sumner et al. [35] and
improved by Der et al. [15] using a compact set of proxy
vertices inferred from example deformations. While both
approaches focus on direct manipulation of mesh deforma-
tion through intuitive control of mesh vertices, their
application to shape interpolation is not trivial because
they need to carefully pose intermediate keyframes to
obtain correct interpolation between shapes. Xu et al. [38]
combine the work of [4], [34], and achieve shape interpola-
tion by nonlinearly interpolating per-triangle gradient [9].
However, their approach may fail in the case where the
pose between source and target shapes varies significantly,
as described previously. Our approach also adopts the per-
triangle gradient to serve as local detail transformation
which is further controlled by the transformation of under-
lying articulated structure. Recently, the state-of-the-art
shape interpolation method proposed by Kilian et al. [19]
can solve the pose variation problem quite well by using
Riemannian geometry. Their approach maps the problem of
shape interpolation by finding the geodesic curve in the
shape space. The vertex trajectory is formulated as a global
optimization problem and solved using a multiresolution
approach. However, this approach cannot guarantee to
avoid trapping at local minimum and the optimization
process is inherently slow [25]. In contrast, our method
computes the vertex trajectory directly in the mesh domain,
and therefore, achieves comparable or even better results
and has better computational efficiency.

Skeleton-driven mesh deformation explicitly takes a
skeleton as an articulated structure and controls the
deformation via the skeleton. There are two recent
approaches related to our work. Yan et al. [39] achieve
shape deformation by using a skeleton to decompose the
shape into near-rigid parts and drive the transformation of
simplicial complexes. Weber et al. [37] factorize the mesh
deformation problem into a global skeleton-driven defor-
mation and a local gradient deformation. Both approaches
require manually sculpting a skeleton which is a tedious
task for complicated mesh.

On the other hand, the articulated structure can be
realized by a set of (hierarchically organized) near-rigid
components extracted from input shapes. Lengyel [22] uses
an iterative algorithm to cluster triangles with similar affine
transformation and applies the result to compress a time-
varying geometry. Lee et al. [21] suggest extracting near-
rigid components by analyzing the difference of deformation
gradients among animating meshes. However, the quality of
their results highly depends on the parameters tuning.
Similarly, Schaefer and Yuksel [29] cluster the faces with
similar rigid transformations among examples through a
face-based mesh simplification. In their approach, the
number of clusters is determined by either a user-specified
number or a specific error tolerance. Authors also point out
that an inappropriate cluster number leads to great approx-
imation error in their skinning animation application. A
symmetrization method [24], [26] based on statistical
analysis of sampling point pairs can be used to extract

near-rigid components from two input models with different
poses. Chang and Zwicker [11] further extend the symme-
trization to automatically align a pair of shapes with
articulated motion and missing data. However, both
approaches are limited to two input models and are
computationally expensive. Anguelov et al. [5] use a set of
registered scan meshes to automatically decompose mesh
into approximately rigid parts by optimizing a maximum
likelihood function. To discriminate rigid parts of difference
sizes, a parameter tuning is required during the optimization
process. Using the component-based articulated structure,
the SCAPE system [6] uses a pose deformation model to
parameterize the space of human shape from a set of dense
range scans and is designed for the application of shape
completion. Their results are further improved by Park and
Hodgins [27] to capture subtle but visually significant
surface deformation during the human motion.

Our work is inspired by James and Twigg [17], who use
mean shift clustering to cluster surface triangles with similar
rotation sequences. The number of clusters is automatically
determined by the mean shift clustering algorithm. How-
ever, their approach will produce clusters with discon-
nected triangles and there are unclustered triangles after the
clustering. Both factors are problematic for the construction
of articulated structure. A naive extension of their approach
by iteratively performing mean shift clustering on unclus-
tered triangles is still infeasible as explained in Section 4.1.
In addition, to perform mean shift clustering directly on the
original mesh domain is time-consuming. In this paper, we
propose a novel MMS clustering algorithm to automatically
extract the near-rigid components. In contrast to previous
works, our method can handle more than two input shapes,
generate an appropriate set of near-rigid components
without tuning any parameter, and improve the perfor-
mance by a multiresolution approach.

3 OVERVIEW

Our method comprises two major tasks: 1) computing an
articulated structure to describe all pose configurations of input
shapes and 2) executing shape interpolation. The articulated
structure consists of hierarchically organized near-rigid
components which are automatically extracted from input
meshes using the proposed MMS clustering algorithm. For
the shape interpolation, we require that the near-rigid
components have the same connectivity across all articulated
structures. Therefore, we assume that the input meshes to the
MMS clustering algorithm have compatible connectivity [2],
[20], [28], [30], [34]. To interpolate the intermediate shapes
between the source mesh Mg and the target My, the former
computes their pose configurations Py and Pr. Each P, is
used to describe the pose configuration of an input shape and
will be formally defined in Section 4. The shape interpolation
task calculates a global pose transformation from Pg to Pr
through a sequence of hierarchical and component-wise rigid
transformations, followed by interpolating triangle gradients
to account for the change in local details between two
corresponding components, and finally, it solves a Poisson
equation to reconstruct each interpolated shape. In general,
given arbitrary number of input meshes with various poses,
the proposed MMS clustering algorithm learns the pose
space from input shapes and the extracted articulated

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



856 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

separate

separate

Fig. 3. A naive application of the MS clustering potentially produces an excessive number of small clusters. The bottom images show 10 input
meshes used in the MS clustering. (a) Reference mesh and the result of MS clustering. Each colored cluster represents a rigid cluster while the black
regions represent flexible triangles. (b) Separate each rigid cluster in (a) into smaller, disjointed subclusters. (c) More small clusters are generated

when using only the second and the ninth mesh as input.

structure can be used to interpolate or blend among input
shapes. In Section 6, we will demonstrate this extension with
some applications.

4 Pose CONFIGURATION AND ARTICULATED
STRUCTURE EXTRACTION

In this section, our goal is to automatically compute pose
configurations {P;li =1...n} from a set of input meshes
{M;]i =1...n}. One of the input meshes is selected as the
reference mesh, called Mp. We define each pose configura-
tion P as follows. Let P = {N, E'} be a hierarchical graph to
describe the pose configuration. N = {¢y,...,¢} and E =
{e1,..., e} represent nodes and edges of the graph,
respectively. Among each node, ¢; = {K;,X;} denotes a
near-rigid component where K; encodes the connectivity of
the simplicial complex (triangles, vertices, and edges) and
X, represents the vertex coordinates. In other words, each
mesh M is decomposed into several disjointed components
and each component contains connected triangles. All pose
configurations have identical edges F and similar nodes N
(i.e., all connectivities K; are identical but vertex coordi-
nates X; can be different).

4.1 Mean Shift (MS) Clustering

To extract the near-rigid components, we use a nonpara-
metric MS clustering algorithm [12], [14] to cluster triangles
with similar rotation sequences, as was presented by James
and Twigg [17]. In their work, the input data of the MS
clustering algorithm are a set of points which represent
rotation sequences (i.e., a row vector collecting and
concatenating rotation matrices) of the mesh triangles. The
output are the shifted points of triangles and a set of
statistically significant modes. A triangle is assigned to the

closest mode if the L'-norm distance between its shifted
point and the closest mode is within a threshold. As a
result, several rigid clusters are obtained and each of them
contains triangles with similar rotation sequences. The
remaining unclustered triangles (i.e., not assigned to any
significant mode) are called flexible triangles. However, each
cluster is not always a connected component, ie., the
triangles in a rigid cluster may be scattered over several
disconnected regions (Fig. 3a). The scattering result will
hinder us from constructing an articulated structure for
pose configuration. To obtain disjointed components, we
separate each rigid cluster into several subclusters, each of
which contains connected triangles. However, this naive
approach may potentially lead to an excessive number of
small clusters (Fig. 3b) which represent the local surface
variation rather than a global pose variation. Likewise, a
repeat process of clustering flexible triangles until no
flexible triangle is left will result in generating an excessive
number of small clusters, too. In addition, the MS clustering
algorithm is computationally expensive. The computational
complexity of MS is O(nF'), where n and F represent the
number of input meshes and triangles, respectively. As
illustrated in Fig. 3, it requires 6.8 minutes to handle
11 input meshes with 35K triangles.

4.2 Multiresolution Mean Shift Clustering

To resolve the above-mentioned problems in directly
applying the MS clustering on the original resolution of
mesh sequences, we propose a multiresolution version of
the MS clustering algorithm. By means of a coarse-to-fine
approach, we can extract most significant near-rigid clusters
in the coarser level and progressively extract smaller ones.
As shown in Fig. 4, the larger clusters such as head, trunk,
thighs, and shanks are extracted in the coarse level while
the smaller ones, such as fingers, are extracted in the finer

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



CHU AND LEE: MULTIRESOLUTION MEAN SHIFT CLUSTERING ALGORITHM FOR SHAPE INTERPOLATION 857

(a3)] iz(ﬂ) é(aS)
! (bZ)] EE(M)} ie(blﬂ z(bﬁ

Fig. 4. lllustration of the MMS clustering algorithm. Input meshes are the same as those in Fig. 3. The MMS clustering algorithm proceeds along the
arrow direction with the down arrow indicating the step of MS clustering and the oblique arrow representing the reversing (vertex splitting) operation.
At each level of resolution (increases from left to right), (a1)-(a5) show the mesh, rigid clusters, and flexible triangles, and (b1)-(b5) show the result of
MS clustering. A close view of male’s left palm is shown at the right bottom corner of each image.

level. To reduce the number of small clusters, we consider
the rotation sequences of rigid clusters as input to the MS
clustering and propose three clustering conditions to
postprocess resulting rigid clusters and flexible triangles.
Our key insight is that the behavior of a cluster is more
representative of global pose variation than a single
triangle. Using the proposed clustering conditions, our
scheme will assign flexible triangles to neighboring rigid
clusters and merge two clusters with similar rotation
sequences into a larger one, thereby suppressing the
number of small clusters. Furthermore, the multiresolution
approach also greatly reduces the complexity of the MS
clustering algorithm and improves the performance of
overall MMS clustering algorithm.

Fig. 5 shows the flowchart of the MMS clustering
algorithm. In the initial stage, we simplify input meshes
simultaneously using the QEM method [16], [42]. We
essentially simplify all input meshes in parallel but
constrain their topology and mesh correspondence to be
the same under simplification. Therefore, we create an
aggregate error by summing the individual errors from the
meshes together where the minimized vertex position of the
collapsed edge from mesh i is determined solely by the
vertices of mesh i. We denote the mesh hierarchy of A; as

Multi-resolution Mean Shift Clustering

QEM Simplification
M., M’ M,)

Clusters
update

Finest
level?

Fig. 5. The flowchart of MMS clustering algorithm.

(M},...,M!= M;) with [ level of resolutions. The MMS
clustering algorithm starts from the coarsest level
(M},...,M}) and then repeats the following two steps
until the finest level (M!,... M!).

Step 1: MS clustering at zth level. The input to this step
includes: 1) the ith level meshes (Mj,..., M), 2) rigid
clusters C' = {o}|j =1...k'}, and 3) flexible triangles F".
Initially, i.e.,, i = 1, Ct is empty and F" contains all triangles
of the mesh in the coarsest level. After the first iteration of
MS clustering, we obtain new C' and F!, which are further
postprocessed and serve as inputs to the next iteration (as
described later). At ith level, ¢ > 1, we first compute the
rotation sequences of each rigid cluster in C* as follows. For
each rigid cluster with vertex positions x in the reference
mesh M}, and corresponding vertex positions x, in M, we
compute an optimal rigid transformation composed of a
rotation qp_,, (unit quaternion) and a translation tp_., using
the approach presented in [7], such that (1) is minimized:

:Z‘|<qR~>a'X§Q+tR—>u) _X'ZHQ' (1)
J

min
{ar—atra}
We collect the optimal rotation matrix (converted from q)
for each input mesh to represent the rotation sequences of
each rigid cluster. The rotation sequences of rigid clusters
are served as input to the MS clustering and used to merge
flexible triangles with similar rotation sequences. Therefore,
we call each rigid cluster as a virtual flexible triangle and
denote the set of virtual flexible triangles as F'. Regarding
the rotation sequences of each flexible triangle, we first

compute its deformation gradient as G = (x! —x3,x2 -
x3.n,) - (xh — x%, x5 — xb,np) " with (x!,x2, %] ) and n; as
triangle’s vertex positions and normal in };, respectively.
Then, we extract the triangle rotation from G using polar
decomposition [33] and collect the rotation matrix for each
mesh. We perform MS clustering on rotation sequences of

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



858 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

Cluster

(@)

{4}
F:{ 4}, F:{&)

Q

G:{d},F:{d4}

Update

51i:{‘ }5 55:{ ! }
Fi:{d}

Cluster

]

(b)

o) {4}, 0;:{ A}
F':{d}, F' {&%}

G:{A},F:{d}

Update

J

G:{d}, 5

F:{d4)}

Cluster

!

©

0'{:{ [}, g;:{A}
F':{d}, F':{&Y}

G{A},F:{d4}

S F{ A}

o,:{

Fig. 6. lllustration of the clustering condition #1 and #2. Images in the first column show the inputs to the MMS clustering algorithm with rigid clusters
colored in tan and blue and flexible triangles colored in gray. The second column shows the clustering result with a new pink cluster. After applying
our clustering conditions, the updated clusters are shown in the third column.

all triangles in F'UF'. The output includes new rigid
clusters C' = {5'[j = 1...k'} and flexible triangles F". Note
that C' and F' may contain virtual flexible triangles which
originally represent the rigid clusters in C". In the next step,
we use three (and only) clustering conditions to update C"
and F*, such that the final rigid clusters are representative
of global pose variation and no excessive number of small
clusters are generated.

Condition #1: 35 € C': ' NF' =0.! There is no
virtual flexible triangle in &’, i.e., no rigid cluster in C’
has similar rotation sequences with triangles in &'. We
separate &' into several disjointed subclusters and retain
the one with the maximum area of triangles. Triangles in
the remaining subclusters are removed from &' and
inserted into F! (Fig. 6a). In this manner, we ensure that
the most representative cluster & is obtained.

Condition #2: 35' € C' : 6' N F' # (). Assume that there
are n > 1 virtual flexible triangles in &' and denote the
corresponding rigid clusters in C' as {o},...,0"}. Then,
we iteratively update each cluster o' € {0},...,0%} by
assigning a triangle f€ ¢’ to o' if f is connected (ie.,
sharing any edge) to ¢'. If two updated clusters become
connected, they are merged into a single cluster. For those
triangles that are not merged into any rigid cluster, we

1. The logic expression 3z € X : P(x) means that there exists one z in X
such that the expression P(z) is true.

remove them from &' and insert them into . As a result,
o' is separated into several rigid clusters and we insert
these rigid clusters back into C'. Therefore, triangles are
merged into existing rigid clusters with similar rotation
sequences and rigid clusters with similar rotation se-
quences are merged, too. Fig. 6b illustrates the case: there
are two virtual flexible triangles in &' and the correspond-
ing rigid clusters are disconnected from each other after
merging connected triangles in &'. Fig. 6c illustrates
another case: two updated rigid clusters are connected
and merged into a single cluster.

Condition #3: 3f € F' : f € F'. We remove the triangle
f from F' and insert the corresponding rigid cluster in C*
into C'. In this condition, this cluster will not be updated at
the current iteration (Fig. 6a).

Step 2: Reversing process using vertex-split operation.
Up to now, we have rigid clusters C' and flexible triangles
[ in the ith level of resolution. To proceed to the next level,
we reverse the mesh sequences from (Mj,...,M!) to
(Mt ..., M) and update C° and F' using vertex-split
operations. Each vertex-split operation involves one vertex
and its two neighboring edges. After splitting, each edge is
split into two edges and two new triangles are created.
Therefore, for each new triangle, the only task is to
determine to which rigid cluster the triangle should be
assigned or to insert the triangle to F'. We accomplish this

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



CHU AND LEE: MULTIRESOLUTION MEAN SHIFT CLUSTERING ALGORITHM FOR SHAPE INTERPOLATION 859

Flexible Triangle
Erosion

——

Hierarchy Graph
Construction

f

—
& l 7/

(
A

Fig. 7. Flexible triangle (black regions) erosion and final near-rigid components.

task using the following rules. For each edge of the vertex-
split operation,

e if one of its two neighboring triangles belongs to F",
we insert the new triangle incident to the edge into
F' (Fig. 8 (left)).

e if both neighboring triangles belong to a rigid cluster
in C', we assign the new triangle incident to the edge
to that cluster (Fig. 8 (middle)).

e if two neighboring triangles belong to two different
rigid clusters in C?, we assign the new triangle to the
rigid cluster with smaller similarity distance between
their rotation sequences. The similarity distance is
computed by the following equation:

2
max(||th_, — % _l[2),a=1...n, (2)

where rf, and r% , are rotation matrices from
rotation sequences of the new triangle f and the
rigid cluster o, respectively.
The results of this step are (M{™,..., M*!), rigid clusters
C™*!, and flexible triangles F'*!, and these results are used
as input to the next iteration of MS clustering step described
in previous paragraphs.

4.3 Flexible Triangle Erosion
and Hierarchy Graph Construction

The output of the MMS clustering algorithm consists of
several rigid clusters and flexible triangles (Fig. 4(b5)). To
find the final near-rigid components, we first merge these
flexible triangles into several disjointed flexible clusters
based on shared edges and then iteratively remove each
triangle from flexible clusters and insert it into a nearby
rigid cluster by an erosion approach. The metric of erosion
priority for each flexible triangle is determined by the
rigidity of its edge [21]:

max (||G/

R—a

—G%_}a||2F),a:1...n, (3)

where ¢ and j represent the neighboring triangles of the
edge and G, ., represents the matrix of deformation
gradient of the triangle of M, relative to Mp. Our
motivation is to assign each flexible triangle to a

neighboring rigid cluster such that the boundary of the

final near-rigid cluster passes through the nonrigid region
in the flexible cluster. For each flexible cluster o, we start
with the erosion process from its boundary edges which
are adjacent to the neighboring rigid clusters by finding
an adjacent edge e with the minimum rigidity, and then
removing a triangle sharing e from oy, assigning it to the
rigid cluster sharing e and updating the boundary of oy.
This process is repeated until o, is empty. So, in this
iterative manner, each oy is eroded and the neighboring
rigid clusters are growing. Fig. 7 shows the result of the
erosion process.

Then, we treat each near-rigid component as a graph
node of P = {N,FE}. If any pair of nodes is sharing the
boundary, these two nodes are considered to be connected
by an edge. We determine the hierarchical relationship
among near-rigid components by finding a minimum
spanning tree to connect them. The weight of each edge is
equal to the inverse length of the shared boundary between
two components. The default root of this hierarchical graph
is the node whose centroid position is the closest to that of
Mpg. Finally, the construction of pose configuration P =
{N, E} is accomplished.

Fig. 9 shows several near-rigid components extracted
from two input shapes. Although the shared boundaries
of near-rigid components are not smooth, they are
good enough for shape interpolation described in the
next section.

Fig. 8. Assignment of two new triangles after a vertex-split operation.
The gray triangle represents the flexible triangle, while the tan and blue
triangles represent two different rigid clusters.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



860

—
(©)

Fig. 9. Extracted near-rigid components and their input meshes.

(d)

Global Pose Transformation

Ds_>7"‘ (5) 4 PS

Fig. 10. lllustration of shape interpolation.

5 SHAPE INTERPOLATION

With the extracted pose configurations, we are now ready to
interpolate between shapes. Fig. 10 illustrates the progress
of shape interpolation and each step will be elaborated in
the following sections.

5.1 Pose Transformation

The pose transformation consists of a set of rigid
transformations and each of them transforms a component
of Pr to the corresponding component of Ps. Since both Ps

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

()

Combined Transformation

T,.(8)-D;_;:(3)-

P
S

' Poisson Solver

v;‘f ) JV P

and Pr are organized hierarchically, we compute the rigid
transformations hierarchically by applying the parent’s
rigid transformation to its children components before
optimizing (1) to find the local rigid transformations of
children components. We denote the pose transformation
from Pr to Ps as Tr_g = {(t}_g dy_g)[i =1...k}, where
(th_ g 4} ) indicates a local rigid transformation (trans-
lation and rotation, respectively) of the ith component and
k is the number of components.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



CHU AND LEE: MULTIRESOLUTION MEAN SHIFT CLUSTERING ALGORITHM FOR SHAPE INTERPOLATION 861

5.2 Local Detail Transformation

ApplyingTTﬁgtoPTwillobtainaposeconﬁguration]sTwhose
componentsarealignedwiththecorrespondingcomponentsof
Pg.Tocompletethetransformationfrom My to Mg, wecompute
the local detail deformations from Pg to Pr and denote it as
D, ;= {D! s 7li=1...k}.Each D! s encodes deformation
gradients of triangles of the ith component in Py relative to
triangles of the corresponding component in Pr. In order to
facilitate the nonlinear interpolation described in the next
section,wefurtherfactorizeeachtriangledeformationgradient
intorotationandstretch partthroughpolardecomposition. We
denote each D, as {(qSHT, SHT) li=1. l} where m' is
the number of triangles of the ith Component q; sandsy -
represent unit quaternion and symmetric stretch matrix,
respectively.

5.3 Nonlinear Global Pose and Local

Detail Interpolation
Given pose transformation T7_.g and local detail transfor-
mation Dg_ 7, it is easy to derive the following equation:

Pr=T;' - (Dg_z-Ps), (4)

where T;! ¢ indicates the inverse pose transformation.
Therefore, the interpolation from Pg to Pr corresponds to
the interpolation of the combined transformation,
T;' s Dg ;7. We interpolate T;' ¢ and Dy ; separately
and write the equation as

P(é) = T%Lb(é) : (DSHT((S) - Ps),6 € [07 1]7 (5)

with the boundary conditions P(0) = Ps and P(1) = Py.
Instead of linearly interpolating the transformation ma-
trix, we nonlinearly interpolate T7' ¢(6) and Dy ;(8) by
the following equations (we denote T;' gy as
(B s @rg)li = 1...K}):

Ths(6) = {(6- Eé‘—»SvSZP(qbqg“—»b‘v (1=8))li=1...k},
Dg_(8) = {D%_;(6)li=1...k}, and
DEHT(‘S) = {(slp(ql7 q*SHT” (1-96),(1-06)-I+56- SJS%T))

.m'},

li=1..
(6)

where slp denotes the quaternion slerp interpolation,
and q; and I represent the quaternion identity and the
identity matrix, respectively.

5.4 Poisson Solver

Although the nonlinear interpolation of (6) satisfies the
boundary conditions at 6 =0, 1, it generates shapes with
disconnected triangles at 0 < § < 1 because the interpolated
transformations are not consistent and applied to each
triangle independently (Fig. 10 (right top)). To solve this
issue, we adopt the Poisson solver [9] to stitch disconnected
triangles of interpolated shapes. At each time step, the
vertex positions of an intermediate shape are obtained by
solving a linear system of equation AX = b, where sparse
matrix A encodes edges’ connectivity of Mg and a vector b
contains the interpolated gradients, T;! ¢(8) Dy 7(6).
Since the interpolated gradients are translation invariant,

we need to specify at least one positional constraint to solve
the Poisson equation [34], [38]. Therefore, we choose the
interpolated trajectory of one vertex of the root component
to serve as the positional constraint at each time step. Then,
we prefactorize the matrix A using sparse Cholesky
factorization [8], [36]. Given the interpolated gradients at
certain time step, we can obtain the vertex positions
efficiently by back substitution.

6 EXPERIMENTS AND APPLICATIONS

In this section, we demonstrate experimental results of shape
interpolation and two applications in keyframe animation
and multitarget shape blending. All the results shown in the
paper were generated on a PC with Intel Core 2 Duo E6420
213 GHz CPU and 1 GB RAM. To experiment MMS
clustering algorithm, we use [ = 5 and set 3,000 triangles in
the coarsest level. The number of triangles in the subsequent
levels is 3,000 + (“2%%) % (7 — 1),i = 2...1, where ny is the
number of triangles of original mesh. The L'-norm distance
threshold used in MS clustering is h = 9ne /4, where n is the
number of input meshes and ¢ = 0.05. This setting is exactly
the same as [17]. In addition to this parameter, there is no
parameter required for MMS. The accompanying video and
data sets can be found in our project Web, http://graphics.
csie.ncku.edu.tw/ Shape_Interpolation/.

Shape interpolation. In Fig. 11, we interpolate the male
shape from its sneaky crouched pose to an extremely
stretched pose. As a result, the natural pose interpolation of
the limbs and fingers is demonstrated, and the local detail
of shape (lines of the muscle) is well preserved and changes
smoothly during the interpolation. In this example, the
input shapes are chosen from Fig. 3, and their extracted
near-rigid components are shown in Fig. 7. Using these
near-rigid components to construct pose configurations, we
can smoothly interpolate any two or more arbitrary shapes
in Fig. 3. Fig. 12 shows other four interesting interpolation
results and their near-rigid components are shown in Fig. 9.
In addition to interpolation between articulated shapes, we
also experiment with nonarticulated shapes, as shown in
Fig. 14. Our results on these two nonarticulated cases are
pleasing too.

Keyframe animation. Fig. 13 shows an example of
interpolating three male shapes in different poses using
the same pose configuration as in Fig. 11. These three
shapes are very dissimilar from the input shapes used in the
construction of pose configurations (Fig. 3). Therefore, as
long as the pose space is well spanned by the input shapes,
the extracted pose configuration is reusable and applicable
to shape interpolation between shapes with various poses.
Besides, this kind of shape interpolation is very useful in
traditional keyframe animation. An intuitive extension to
interpolate more than two keyframe shapes by our method
is to interpolate consecutive pair of keyframe shapes.
However, our shape interpolation requires the factorization
of a coefficient matrix (i.e., A matrix) in the Poisson
equation (i.e., AX = b), if each keyframe shape is treated
as a new source shape, it will require (m —1) times
factorization cost, where m is the number of keyframe
shapes. To avoid this, we only treat the first key shape as

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



862 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

eARRA

Fig. 11. Shape interpolation of the male shape from a crouched pose to a stretched pose (both shown in tan).

A4 4 4 4
CL LY (.

(a)

Fig. 12. More shape interpolations with significant poses variation.

S A 2

Fig. 13. Given three keyframe shapes (shown in tan), our method smoothly interpolates the intermediate shapes (shown in blue), providing a useful
tool for animators to rapidly create keyframe animation sequences.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



CHU AND LEE: MULTIRESOLUTION MEAN SHIFT CLUSTERING ALGORITHM FOR SHAPE INTERPOLATION

Fig. 14. Two examples of interpolation between shapes with no apparent
articulated structure. (a) Shape interpolation from a normal pillar to a
highly twisted one. (b) Shape interpolation between three facial
expressions (smile, anger, and sad).

the source shape, and compute the pose and local detail
transformations of other keyframe shapes relative to this
source shape. Then, we interpolate both pose and local
detail transformations between each pair of keyframe
shapes and generate intermediate shapes by solving the
Poisson equation. For example, assume there are three
keyframe shapes denoted as A (i.e., source shape), B, and C,
and A interpolates to B at 0.0 < ¢; < 0.5, while B to C at
0.5 < 62 < 1.0. The pairwise pose and local detail transfor-
mation are denoted as Tj;' , and D, j respectively
(similarly for B — C). We can compute the interpolated
triangle gradient relative to A as follows:

T '(6)-D()

TZ L 4(6+05)-D, 5(6+05), iféeé,

T (6 —05) Dy 5(6—05)- T 1(0.5) - D(0.5),
if 6 € 6.

Since all the computations are done in terms of the same
source shape, we only need to factorize the coefficient
matrix once and solve the Poisson equation efficiently by
back substitution.

Multitarget shape blending. Another useful application
of our method is n-way shape blending, also called
multitarget shape blending. Given a set of shapes, multi-
target shape blending generates shapes which are weighted
combinations of the input shapes. This technique provides
the user a practical tool to explore the space of possible
shapes among input shapes. The multitarget shape blend-
ing is achieved using the following steps:

I. Given a set of input shapes {Mi=1...1}, we
choose any one of them as a source (reference)

863

I J‘

b4

Fig. 15. Multitarget shape blending of three hand shapes (shown in tan).
The near-rigid components are extracted from three shapes and shown
in the lower-left corner.

shape Mg, and then compute the pose configurations
from these shapes.

2. Next, we construct the pose transformations T;_.g and

local detail transformation D_ ; for each input shape.

3. Given the specified blending weight for each shape,

we blend the rotational part of T;_,s and Dg_ - using
the exponential map [3] and linearly blend the
translational and scale/shear part of T;_.g and Dg_;,
respectively. Then, we combine the blended pose
and local detail transformations.

4. Finally, we reconstruct the blended shape by solving

the Poisson equation.

Fig. 15 shows an example of blending three hand shapes
using the above four steps.

Timing and comparison. We show the timing statistics
of all experiments in this paper in Table 1. The second to
fifth columns indicate the number of triangles (#Tri), the
number of key shapes used in shape interpolation or
multitarget blending (#Key), near-rigid components
(NRC), and the number of input shapes used in the MMS
clustering algorithm (#Input). The sixth to tenth columns
list the timing of the pose configuration extraction (Extract),
calculation and interpolation of global pose and local detail

TABLE 1
Timing Statistics of Pose Configuration Construction and Shape Interpolation

Fig. #Tri | #Key NRC #Input | Extract | Interpolate | Factor | Solve Total
Fig. 2 (bottom) | 10K 2 Fig. 9(e) 2 8.86 0.64 0.62 0.01 10.12
Fig. 11 35K 2 Fig. 7 11 160.57 2.11 2.84 0.06 | 165.22
Fig. 13 35K 3 Fig. 7 11 160.57 2.78 2.84 0.06 166.19
Fig. 12 (a) 26K 2 Fig. 9 (a) 2 8.28 1.45 2.59 0.04 12.32
Fig. 12 (b) 80K 2 Fig. 9 (b) 2 77.54 4.9 11.82 0.15 94.26
Fig. 12 (¢) 35K 2 Fig. 9 (¢) 2 33.48 2.0 2.84 0.06 38.32
Fig. 12 (d) 25K 2 Fig. 9 (d) 2 19.62 1.5 2.28 0.03 23.4
Fig. 15 16K 3 Fig. 15 3 14.47 0.73 0.91 0.07 16.11

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



864 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

TABLE 2
Timing Comparison with Those of Martin et al. [19]

Fig. Our Method | Martin et al. [19]
Fig. 2 (bottom) 10.12 39
Fig. 11 35.3 41
Fig. 12 (a) 12.32 42
Fig. 12 (b) 94.26 164

transformations (Interpolate), prefactorization (Factor) of
the coefficient matrix of the Poisson equation, the average
timing to generate each intermediate shape by solving the
Poisson equation (Solve), and total timing of the process
(Total = Extract + Interpolate + Factor). Since each inter-
mediate shape is generated on the fly, we do not include the
timing of generating 50 frames and just list the average
timing of solving the Poisson equation for each frame. For
the multitarget shape blending, the “Solve” time also
includes the blending of transformations among each input
shape. As shown in the table, the complexity of the
proposed method is dominated by the extraction of pose
configuration which scales according to the complexity of
the shape and the number of input shapes. In Table 2, we
also compare five experimental results with [19] in terms of
performance. The timing of [19] is measured on a PC with
Intel Core 2 Duo T7700 2.4 GHz CPU and 4 GB RAM. Note
that for the purpose of comparison, we regenerate the result
of Fig. 11 by using only source and target shapes as input to
the MMS clustering algorithm. The unit of timing of both
tables is measured in seconds.

We also compare our MMS clustering algorithm with MS
clustering algorithm using examples of Figs. 3 and 9. We
perform fiveiterations of MS clustering on flexible triangles to
get rigid and flexible clusters. The final near-rigid compo-
nents are obtained by the erosion process (Section 4.3). Fig. 16
shows the side-by-side comparison of the MMS and MS
clustering algorithm. Table 3 indicates that our MMS
clustering algorithm can not only generate smaller number
of components than MS clustering algorithm, but also 3-
11 times faster than direct application of MS clustering
algorithm.

(a)

(b)

TABLE 3
Comparison with MS Clustering Algorithm

Timing (sec) #Rigid cluster  #Flexible cluster

MS MMS MS MMS MS MMS
Fig. 3 57932 160.57 247 69 188 44
Fig. 9 (a) 53.7 8.28 408 21 129 23
Fig. 9 (b) 853.25 77.54 5848 66 22 44
Fig. 9 (c) 120.68  33.48 1134 62 349 34
Fig. 9 (d) 9542 19.62 1264 37 34 18
Fig. 9 (e) 2546 8.86 406 21 136 12

In Fig. 17, we compare our results with those of Xu et
al. [38] and Kilian et al. [19]. For each example, only a
certain frame with noticeable difference is shown. We
refer readers to the accompanying video, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2009.40, for a
complete comparison of the interpolation sequences. As
shown in the video, our results are superior to those of
Xu et al. [38] and comparable or even better than those of
Kilian et al. [19].

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a practical solution to interpolate
shapes with a wide range of pose variation. A novel MMS
clustering algorithm is proposed to automatically and
efficiently compute the pose configuration. Then, we solve
the vertex trajectory problem of shape interpolation as a
combination of global pose transformation and local detail
transformation of surface triangles, followed by solving a
Poisson equation to reconstruct an interpolated shape. We
demonstrate the success and usefulness of our method
through several examples and two applications. There are
some future works to be further investigated. Our MMS
clustering algorithm may potentially fail in the case that
shapes not only vary in pose but also have large deforma-
tion on the surface. Under this circumstance, the MMS
clustering algorithm fails to extract near-rigid components
for representing pose variation because the rotation
sequences of triangles are quite different, i.e., generating

R
K

Fig. 16. Comparison of extracted near-rigid components. (a) The proposed MMS clustering algorithm. (b) The iterative application of MS clustering

algorithm.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



CHU AND LEE: MULTIRESOLUTION MEAN SHIFT CLUSTERING ALGORITHM FOR SHAPE INTERPOLATION

865

Fig. 2 (bottom) Fig. 11

Fig. 12 (a) Fig. 12 (b)

Xu et al. |38]

Martin ef al. [19]

Our Method

Fig. 17. Comparison of shape interpolation results with those of Xu et al. [38] and Martin et al. [19].

an excessive number of components. This limitation can be
reduced by deforming one of the shapes using the
technique in [34] to make two shapes vary only in pose
and then extract the pose configuration from these two
shapes. A more robust feature used in the MMS clustering,
which is invariant to surface deformation is worth further
exploration in the future. We do not apply any collision
detection during the shape interpolation, and therefore, it
may potentially generate self-collision among components
which are far from each other in geodesic. In the future, we
plan to include collision detection to resolve the self-
collision problem in the shape interpolation.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers’
helpful comments to improve this paper. They are also
grateful to Niloy J. Mitra and Martin Kilian for their help in
performing experimental study with their work [19]. In
addition, they thank AIM@SHAPE Shape Repository and
Stanford 3D Scanning Repository for the 3D polyhedral
models used in this paper. The eagle and human poses are
taken from Poser 7. This work is supported in part by the
Landmark Program of the NCKU Top University Project
(Contract B0008), and the National Science Council (Con-
tracts NSC-97-2628-E-006-125-MY3 and NSC-96-2628-E-006-
200-MY3), Taiwan, Republic of China.

REFERENCES

[1] M. Alexa, “Differential Coordinates for Local Mesh Morphing and
Deformation,” The Visual Computer, vol. 19, nos. 2/3, pp. 105-114,
2003.

[2] M. Alexa, “Merging Polyhedral Shapes with Scattered Features,”
The Visual Computer, vol. 16, no. 1, pp. 26-37, 2000.

[3] M. Alexa, “Linear Combination of Transformations,” ACM Trans.
Graphics, vol. 21, no. 3, pp. 380-387, 2002.

4

(5]

[6]

[

8]

]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

M. Alexa, D. Cohen-Or, and D. Levin, “As-Rigid-As-Possible
Shape Interpolation,” Proc. ACM SIGGRAPH '00, pp. 157-164,
2000.

D. Anguelov, D. Koller, H.-C. Pang, P. Srinivasan, and S. Thrun,
“Recovering Articulated Object Models from 3D Range Data,”
Proc. 20th Conf. Uncertainty in Artificial Intelligence, pp. 18-26, 2004.
D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J.
Davis, “Scape: Shape Completion and Animation of People,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 408-416, 2005.

PJ. Besl and N.D. McKay, “A Method for Registration of 3D
Shapes,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 14,
no. 2, pp. 239-256, Feb. 1992.

M. Botsch, D. Bommes, and L. Kobbelt, “Efficient Linear System
Solvers for Mesh Processing,” Proc. IMA Conf. Math. Surfaces,
pp. 62-83, 2005.

M. Botsch, R. Sumner, M. Pauly, and M. Gross, “Deformation
Transfer for Detail-Preserving Surface Editing,” Proc. Vision,
Modeling, and Visualization Conf. (VMV), pp. 357-364, 2006.

E. Carmel and D. Cohen-Or, “Warp-Guided Object-Space Morph-
ing,” The Visual Computer, vol. 13, nos. 9/10, pp. 465-478, 1997.
W. Chang and M. Zwicker, “Automatic Registration for Articu-
lated Shapes,” Proc. Computer Graphics Forum, vol. 27, no. 5,
pp- 1459-1468, 2008.

Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 8§,
pp- 790-799, Aug. 1995.

D. Cohen-Or, A. Solomovic, and D. Levin, “Three-Dimensional
Distance Field Metamorphosis,” ACM Trans. Graphics, vol. 17,
no. 2, pp. 116-141, 1998.

D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
Toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

K.G. Der, RW. Sumner, and J. Popovi¢, “Inverse Kinematics for
Reduced Deformable Models,” ACM Trans. Graphics, vol. 25, no. 3,
pp. 1174-1179, 2006.

M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. ACM SIGGRAPH 97, pp. 209-216,
1997.

D.L. James and C.D. Twigg, “Skinning Mesh Animations,” Proc.
ACM SIGGRAPH 05, pp. 399-407, 2005.

T. Kanai, H. Suzuki, and F. Kimura, “Metamorphosis of Arbitrary
Triangular Meshes,” IEEE Computer Graphics and Applications,
vol. 20, no. 2, pp. 62-75, Mar./Apr. 2000.

M. Kilian, N.J. Mitra, and H. Pottmann, “Geometric Modeling in
Shape Space,” ACM Trans. Graphics, vol. 26, no. 3, p. 64, 2007.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



866

(20]

[21]

(22]
(23]
(24]
[25]
[20]

(27]

(28]
[29]

(30]

(31]

(32]

(33]
[34]

(33]

[30]

(371

(38]

(391

[40]

[41]

[42]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009

V. Kraevoy and A. Sheffer, “Cross-Parameterization and Compa-
tible Remeshing of 3D Models,” Proc. ACM SIGGRAPH ’04,
pp- 861-869, 2004.

T.-Y. Lee, Y.-5. Wang, and T.-G. Chen, “Segmenting a Deforming
Mesh into Near-Rigid Components,” The Visual Computer, vol. 22,
no. 9, pp. 729-739, 2006.

J.E. Lengyel, “Compression of Time-Dependent Geometry,” Proc.
Symp. Interactive 3D Graphics, pp. 89-95, 1999.

Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or, “Linear
Rotation-Invariant Coordinates for Meshes,” ACM Trans. Graphics,
vol. 24, no. 3, pp. 479-487, 2005.

N.J. Mitra, L. Guibas, and M. Pauly, “Partial and Approximate
Symmetry Detection for 3D Geometry,” ACM Trans. Graphics,
vol. 25, no. 3, pp. 560-568, 2006.

N.J. Mitra, Personal Comm., 2009.

N.J. Mitra, LJ. Guibas, and M. Pauly, “Symmetrization,” Proc.
ACM SIGGRAPH ’07, p. 63, 2007.

S.I. Park and J.K. Hodgins, “Capturing and Animating Skin
Deformation in Human Motion,” ACM Trans. Graphics, vol. 25,
no. 3, pp. 881-889, 2006.

E. Praun, W. Sweldens, and P. Schroder, “Consistent Mesh
Parameterizations,” Proc. ACM SIGGRAPH '01, pp. 179-184, 2001.
S. Schaefer and C. Yuksel, “Example-Based Skeleton Extraction,”
Proc. Symp. Geometry Processing, pp. 153-162, 2007.

J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-
Surface Mapping,” ACM Trans. Graphics, vol. 23, no. 3, pp. 870-
877, 2004.

T.W. Sederberg, P. Gao, G. Wang, and H. Mu, “2D Shape
Blending: An Intrinsic Solution to the Vertex Path Problem,” Proc.
ACM SIGGRAPH '93, pp. 15-18, 1993.

A. Sheffer and V. Kraevoy, “Pyramid Coordinates for Morphing
and Deformation,” Proc. 3D Data Processing, Visualization, and
Transmission Conf. (3DPVT), pp. 68-75, 2004.

K. Shoemake and T. Duff, “Matrix Animation and Polar
Decomposition,” Proc. Conf. Graphics Interface, pp. 258-264, 1992.

R.W. Sumner and J. Popovi¢, “Deformation Transfer for Triangle
Meshes,” Proc. ACM SIGGRAPH 04, pp. 399-405, 2004.

R.W. Sumner, M. Zwicker, C. Gotsman, and J. Popovi¢, “Mesh-
Based Inverse Kinematics,” ACM Trans. Graphics, vol. 24, no. 3,
pp- 488-495, 2005.

S. Toledo, “Taucs: A Library of Sparse Linear Solvers, Version 2.2,”
http://www .tau.ac.il/stoledo/taucs, 2003.

O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman, “Context-
Aware Skeletal Shape Deformation,” Proc. Computer Graphics
Forum, vol. 26, no. 3, pp. 265-273, 2007.

D. Xu, H. Zhang, Q. Wang, and H. Bao, “Poisson Shape
Interpolation,” Proc. ACM Symp. Solid and Physical Modeling,
pp. 267-274, 2005.

H.-B. Yan, S-M. Hu, and R. Martin, “Skeleton-Based Shape
Deformation Using Simplex Transformations,” Proc. Int’l Conf.
Computer Graphics, pp. 66-77, 2006.

T-Y. Lee and P.-H. Huang, “Fast and Intuitive Polyhedra
Morphing Using SMCC Mesh Merging Scheme,” IEEE Trans.
Visualization and Computer Graphics, vol. 9, no. 1, pp. 85-98, 2003.
C.-H. Lin and T.-Y. Lee, “Metamorphosis of 3D Polyhedral
Models Using Progressive Connectivity Transformations,” IEEE
Trans. Visualization and Computer Graphics, vol. 11, no. 1, pp. 2-12,
Jan./Feb. 2005.

T.-Y. Lee, C.-H. Lin, Y.-S. Wang, and T.-G. Chen, “Animation Key-
frame Extraction and Simplification Using Deformation Analysis,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 18, no. 4,
pp. 478-486, Apr. 2008.

Hung-Kuo Chu received the BS degree in
computer science/engineering from the National
Cheng-Kung University, Tainan, Taiwan, in 2003.
Now, he is pursuing the PhD degree at the
Department of Computer Science and Informa-
tion Engineering, National Cheng-Kung Univer-
sity. His research interests include geometry
modeling, mesh deformation, and perception
analysis.

Tong-Yee Lee received the PhD degree in
computer engineering from Washington State
University, Pullman, in May 1995. He is currently
a distinguished professor in the Department of
Computer Science and Information Engineering,
National Cheng-Kung University, Tainan, Tai-
wan, ROC. He leads the Computer Graphics
Group, Visual System Laboratory, the National
Cheng-Kung University (http:/graphics.csie.
ncku.edu.tw/). He is the recipient of the 2008
Distinguished Research Award, the 2005 and the 2006 First-Class
Principal Investigator Award from the National Science Council of
Taiwan, ROC, and the 2003 Youth Engineer Award, the Chinese Institute
of Engineers, ROC. His current research interests include computer
graphics, nonphotorealistic rendering, image-based rendering, visualiza-
tion, virtual reality, surgical simulation, medical visualization and medical
system, and distributed and collaborative virtual environments. He is an
associate editor for the IEEE Transactions on Information Technology in
Biomedicine with a tenure from 2000 to 2010. He is also on the editorial
advisory board of the Journal Recent Patents on Engineering, an editor of
the Journal on Information Science and Engineering, and a region editor
of the Journal of Software Engineering. He served as a member of the
international program committees of several conferences including IEEE
Visualization, Pacific Graphics, the IEEE Pacific Visualization Sympo-
sium, the IEEE Virtual Reality, the IEEE-EMBS International Conference
on Information Technology and Applications in Biomedicine, the Joint
Virtual Reality Conference of EGVE-ICAT-EuroVR, the International
Conference on Atrtificial Reality and Telexistence, and the International
Conference in Central Europe on Computer Graphics, Visualization, and
Computer Vision. He is a member of the IEEE and the ACM.

8| h

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on October 11, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



