
ACM Reference Format
Au, O., Tai, C., Chu, H., Cohen–Or, D., Lee, T. 2008. Skeleton Extraction by Mesh Contraction. ACM 
Trans. Graph. 27, 3, Article 44 (August 2008), 10 pages. DOI = 10.1145/1360612.1360643 http://doi.acm.
org/10.1145/1360612.1360643.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profi t or direct commercial advantage 
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation. 
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with 
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any 
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be 
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1 
(212) 869-0481, or permissions@acm.org.
© 2008 ACM 0730-0301/2008/03-ART44 $5.00 DOI 10.1145/1360612.1360643 
http://doi.acm.org/10.1145/1360612.1360643

Skeleton Extraction by Mesh Contraction
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Figure 1: Our method extracts a 1D skeletal shape by performing geometry contraction using constrained Laplacian smoothing. Left to right
are the original mesh and the results of the contraction after 1, 2 and 3 iterations. Faces with zero area are drawn in red. The rightmost
ray-traced image shows the final skeleton after performing connectivity surgery and embedding refinement.

Abstract

Extraction of curve-skeletons is a fundamental problem with many
applications in computer graphics and visualization. In this paper,
we present a simple and robust skeleton extraction method based
on mesh contraction. The method works directly on the mesh do-
main, without pre-sampling the mesh model into a volumetric rep-
resentation. The method first contracts the mesh geometry into a
zero-volume skeletal shape by applying implicit Laplacian smooth-
ing with global positional constraints. The contraction does not
alter the mesh connectivity and retains the key features of the orig-
inal mesh. The contracted mesh is then converted into a 1D curve-
skeleton through a connectivity surgery process to remove all the
collapsed faces while preserving the shape of the contracted mesh
and the original topology. The centeredness of the skeleton is re-
fined by exploiting the induced skeleton-mesh mapping. In addition
to producing a curve skeleton, the method generates other valuable
information about the object’s geometry, in particular, the skeleton-
vertex correspondence and the local thickness, which are useful for
various applications. We demonstrate its effectiveness in mesh seg-
mentation and skinning animation.

Keywords: Skeleton, mesh contraction, Laplacian smoothing,
segmentation, skinning

1 Introduction

Curve-skeletons are 1D structures that represent a simplified ver-
sion of the geometry and topology of a 3D object. They are useful
in many applications that require an analysis of the shape, such
as animation, morphing, shape registration, and shape retrieval.
Therefore, the extraction of curve-skeletons from 3D models is a
fundamental problem in computer graphics and visualization. The
problem has received a lot of attention in recent decades and yet the
design of a simple and robust method for extracting curve-skeletons
remains a research challenge [Cornea et al. 2007].

A curve-skeleton is essentially a geometry entity that abstracts the
object’s volume. Therefore, most existing skeleton extraction meth-
ods require a volumetric discrete representation of the input model.
However, many models used in computer graphic applications are
available only as surface representations, such as polygonal meshes.
Transforming them into volumetric representations may raise dis-
cretization error in both geometry and connectivity, depending on
the grid resolution used in the resampling process.

In this paper, we introduce a skeleton extraction technique that is
applied in the object space, directly on the mesh representation.
The surface of the given object is iteratively smoothed and con-
tracted into an approximate zero-volume degenerate mesh that ab-
stracts the given shape and topology well (see Figure 1). During
this contraction process, the original mesh connectivity is not al-
tered. The challenge of this geometry contraction is to control the
contraction process carefully so that it leads to a collapsed shape
that approximates the original geometry. We formulate the contrac-
tion as an energy minimization problem involving two terms: a con-
traction term based on the discrete Laplace operator that removes
the geometry details along the approximate normal directions, and
an attraction term that uses the mesh vertices as anchors to retain
necessary geometry information in the collapsing shape. We bal-
ance these two energy terms during the iterations by carefully de-
signing their weight functions such that the mesh is automatically
contracted into a skeletal shape within only a few iterations. This
geometry contraction is a global implicit smoothing process, thus it
is robust and noise insensitive.

To convert the zero-volume mesh into a 1D curve skeleton, we
perform a connectivity surgery process to remove all the col-
lapsed faces from the degenerate mesh through a sequence of edge-
collapse operations. The main requirement is to perform this sim-
plification with as little disturbance as possible to the shape of the
contracted mesh. A secondary requirement is to retain sufficient
sample points so as to maintain a fine correspondence between the
curve-skeleton and the original mesh. We devise an energy func-
tion that balances the shape and sampling requirements. The edge
collapses never disconnect the mesh and we prohibit edge collapses
that close tunnels, thus the extracted curve-skeleton is guaranteed
to be homotopic to the original mesh.

The geometry contraction process does not ensure the centeredness
of the contracted 1D shape. However, thanks to the skeleton-mesh
mapping obtained through recording the edge collapses during the
connectivity surgery, we can design a simple method to refine the
skeleton’s embedding by moving each skeletal node to the center of
its corresponding mesh region.
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Figure 2: Contracting a male model. Results after 1, 2, 4, 6 iterations. The red frames show zoom-in views of the hand. The blue frames
show an incremental zoom-in of part of the red frames.

Our skeleton extraction method generates useful geometry infor-
mation, including skeleton-mesh mapping, the local thickness and
volume of the object. We show that this non-trivial information is
useful for segmentation and skinning.

2 Background

The literature contains extensive research on curve-skeleton extrac-
tion. In the following we review only some representative meth-
ods and refer the reader to the comprehensive survey of Cornea
et al. [2007].

Curve-skeletons do not have a rigorous definition. Various appli-
cations may have different requirements on certain properties; for
example, virtual navigation for medical applications has a stricter
requirement on the centeredness than animation. Curve-skeletons
are closely related to the medial axis. The medial axis of a 3D ob-
ject is defined as the locus of the centers of all inscribed spheres of
maximal radius, and it often contains surface elements. This defi-
nition implies that the medial axis is inherently sensitive to pertur-
bation in the object’s boundary. An additional non-trivial pruning
process is therefore needed to handle boundary noise and to extract
a 1D curve-skeleton from the medial surface [Amenta et al. 2001;
Dey and Sun 2006].

Another related structure is bone-skeleton, which is used exten-
sively in character animation [Baran and Popović 2007; Wang
et al. 2007] and mesh deformation [Shi et al. 2007; Yoshizawa
et al. 2007; Weber et al. ]. Such bone-skeletons can be easily de-
rived from curve-skeletons by down-sampling. We focus on curve-
skeletons in this paper, but show examples of down-sampled bone-
skeletons for skinning in Section 8.2.

Methods for curve-skeleton extraction can be classified into two
main categories, volumetric and geometric, depending on whether
an interior representation or only the surface representation is used.

Volumetric methods. Most existing curve-skeleton extraction
methods make use of a volumetric discrete representation, either a
regularly partitioned voxelized representation or a discretized field
function defined in the 3D space. These methods share the com-
mon drawbacks of potential loss of details and numerical instability
caused by inappropriate discretization resolution.

From voxelized representations, voxel-thinning methods extract
curve-skeletons by iteratively removing boundary voxels while
maintaining the topology [Ma et al. 2002; Palágyi and Kuba 1999].
These methods differ mainly by their way of choosing boundary
voxels and the priority for removal. Recently, Wang et al. [2008]
proposed to first shrink volumetric models before applying a thin-

ning algorithm, producing smoother skeletons, but pruning is still
required. Generally, thinning methods are not robust and additional
considerations are needed to prevent excessive removal of surface
or curve end-points.

Distance-field methods define a distance transform for each inte-
rior point of a 3D object and detect ridges of the field to get a
set of candidate voxel [Hassouna and Farag 2005; Zhou and Toga
1999]. Connecting these candidate voxels gives an approximate
medial surface, and hence, like other medial-axis-based methods,
this process is not robust [Wade 2000; Bitter et al. 2001]. Other
field methods use alternatives to distance transform including re-
pulsive forces [Cornea et al. 2005] and radial basis functions [Ma
et al. 2003]. These general field methods determine a potential
value at an interior point by considering a larger set of boundary
samples and therefore are less sensitive to noise. Then, a force-
following algorithm is applied to connect local extremes to form a
curve-skeleton. These methods are computationally intensive due
to the use of a larger boundary area, and are numerically unstable
caused by the computation of the first or second-order derivatives.

Geometric methods. Geometric methods work directly on poly-
gon meshes or point sets. Voronoi diagram is a popular geomet-
ric approach. Such methods obtain an approximate medial sur-
face by extracting the internal edges and faces of the Voronoi di-
agram [Amenta et al. 2001; Dey and Sun 2006; Ogniewicz and Ilg
1992] and prune the medial surface to obtain a curve-skeleton.

Reeb-graph-based methods have gained much attention in recent
years. The Reeb graph is a 1D structure whose nodes are critical
points of a real-value function defined on the model surface. It en-
codes the topology of the model [Pascucci et al. 2007]. Different
methods use various real-value functions for their specific applica-
tions, such as geodesic function [Hilaga et al. 2001] or harmonic
function [Aujay et al. 2007]. To represent a curve-skeleton, a Reeb
graph needs to be resampled on the model surface to obtain more
skeletal nodes and then be embedded into the geometry. Aujay et
al. [2007] propose a harmonic Reeb graph that uses the harmonic
function, found by solving the Laplace equation. Their method re-
quires the user to specify the boundary condition explicitly. Our ge-
ometry contraction uses Laplacian constraints and treats all vertices
as boundary conditions, with their weights automatically defined.

There are other methods that do not fall within the above gen-
eral classes. Sharf et al. [2007] extract skeletons both from point
clouds and polygonal meshes based on a deformable model evo-
lution. The initial extracted graph is noisy, requiring filtering and
merging. Chuang et al. [2000] extract a curve skeleton by applying
a force-following algorithm on the convex corners of the mesh. It
is based on a generalized potential field, which is computationally
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Figure 3: The geometry contraction process does not always guarantee that the contracted shape is within the object. The rightmost image is
the embedded result, showing that the skeleton is correctly centered.

expensive. Katz and Tal [2003] extract a skeleton by decompos-
ing a mesh and linking the components. Li et al. [2001] simplify a
mesh into line segments by collapsing shorter edges and connecting
the line segments. The latter two methods generate coarse curve-
skeletons and do not always preserve topology.

Laplacian editing and smoothing. Each step of our iterative con-
traction process is a Laplacian smoothing operation constrained by
all the vertices at different weights. There are previous methods that
modify or approximate the mesh geometry by solving the Laplacian
system, with all or a subset of vertices as the boundary constraints.
In [Sorkine and Cohen-Or 2004], the original input mesh is approx-
imated by a least-squares mesh, which is the solution of the discrete
Laplace equation with uniform weighting using a carefully selected
subset of vertices as the boundary constraints (called anchors).

More recently, Nealen et al. [2006] present a mesh optimization
technique that generalizes the concept of the constrained Laplacian
system for geometry smoothing and parameterization smoothing.
Their method solves a Laplacian system with different weighting
schemes to control the parameterization smoothing, and different
right-hand-side terms of the linear system to control the geometry
smoothing. In their general system, all vertices are constrained to
achieve global smoothness and volume preservation. Our geometry
contraction process solves a sequence of constrained Laplace equa-
tions, with weaker positional constraints than theirs, allowing the
geometry to be contracted into an approximate zero-volume mesh.

3 Overview

Given a mesh G = (V,E), with vertices V and edges E, where

V = [vT
1 ,vT

2 , . . . ,vT
n ]T are the vertex positions. We address the prob-

lem of extracting from the mesh a curve-skeleton S = (U,B) with

skeleton nodes U and edges B, where U = [uT
1 ,uT

2 , . . . ,uT
m]T are the

node positions. Our approach is based on a geometry contraction
process that iteratively smoothes and collapses the mesh geometry
in a constrained manner. This process is applied in the object-space,
directly on the mesh representation, without any voxelization pro-
cess. With carefully weighted contraction and attraction forces, the
contraction process produces a thin skeleton shape with junctions
and branches corresponding to the logical components of the ob-
ject. The contraction process is presented in Section 4. To convert
the contracted mesh into a 1D skeleton, we apply a connectivity
surgery described in Section 5. Finally, to refine the skeleton’s ge-
ometric embedding, we describe in Section 6 a post-process that
moves the skeleton nodes to the center of their respective local re-
gions.

Our method has the following advantages:

1. The geometry contraction process does not alter the connec-
tivity of the original mesh, and the connectivity surgery main-
tains its connectedness and retains all tunnels in the mesh as
loops in the resulting 1D skeleton structure. Hence, the final
curve-skeleton is guaranteed to be homotopic to the original

object.

2. The geometry contraction process is based on an iterative im-
plicit smoothing operation. Thus, the method inherently deals
with noise, making it insensitive to noise.

3. The method works directly on the original geometry rather
than on a resampled volumetric representation, making it effi-
cient, rotation invariant, and pose insensitive.

4. The skeletonization process yields a skeleton-mesh mapping
and local thickness, which serve as important information for
various applications that require shape analysis.

4 Geometry Contraction

The geometry contraction process removes details and noise from
the mesh surface by applying a Laplacian smoothing that moves the
vertices along their approximate curvature normal directions. Note
that an unconstrained normal flow of the vertices would progres-
sively smooth out all the details of the model and converge into
a single point. To constrain the normal flow, we use an implicit
updating scheme controlled by anchor points serving as positional
constraints. The anchor points provide the attraction forces caus-
ing the contracting mesh to converge to a thin shape of the original
object.

The vertex positions V′ are smoothly contracted along their normal
directions by solving the discrete Laplace equation: LV′ = 0, where
L is the n×n curvature-flow Laplace operator with elements

Li j =







ωi j = cot αi j + cot βi j if (i, j) ∈ E

∑k
(i,k)∈E

−ωik if i = j

0 otherwise,

(1)

and αi j and βi j are the opposite angles corresponding to the edge
(i, j) [Desbrun et al. 1999]. With the cotangent weighting, the

Laplacian coordinates δ = LV = [δ T
1 ,δ T

2 , . . . ,δ T
n ]T approximate the

(inward) curvature-flow normals, i.e., δi = −4Aiκini, where Ai, κi

and ni are the local one-ring area, the approximate local mean cur-
vature, and the approximate outward normal of vertex i, respec-
tively. Thus, solving LV′ = 0 means removing the normal compo-
nents and contracting the mesh geometry. We refer to the rows in
the Laplacian system as the contraction constraints because they
provide the forces to contract the mesh.

Since the matrix L is singular, extra constraints are required to solve
for a unique solution of V′. To avoid degenerate solutions and en-
sure that the contracted mesh abstracts the original shape well, we
constrain all the vertices to their current positions as soft constraints
with different weights. We call them the attraction constraints since
they attract the vertices to the geometry. The weights of the attrac-
tion constraints and the contraction constraints for different vertices
are carefully set during the iterations, such that the mesh contracts
to a shape that abstracts the original mesh well, rather than to a
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Figure 4: (Left) The 1D structure obtained by performing the connectivity surgery on the contracted mesh in Figure 1. (Middle) The induced
skeleton-mesh mapping. (Right) The resulting curve-skeleton after embedding refinement

single point. That is, we solve the following system for the vertex
positions:

[

WLL
WH

]

V′ =
[

0
WHV

]

, (2)

where WL and WH are the diagonal weighting matrices that bal-
ance the contraction and attraction constraints, respectively. The
i-th diagonal element of WL(WH ) is denoted WL,i (WH,i). Note
that the system (2) is over-determined. Thus, we solve it in the
least-squares sense, which is equivalent to minimizing the follow-
ing quadratic energy:

w

wWLLV′
w

w

2
+∑

i

W2
H,i||v′i−vi||2, (3)

where the first term corresponds to the contraction constraints and
the second term corresponds to the attraction constraints.

Solving system (2) once does not collapse the entire model into
a 1D shape. It requires several iterations with proper weights for
the process to converge to a thin shape. After the first contraction
step, certain high-frequency details are filtered out and the mesh is
noticeably contracted. However, using the same weights WL and
WH in subsequent iterations would not further contract the mesh
much, because the remaining details are retained by the current at-
traction constraints. Therefore, to increase the collapsing speed, we
increase the contraction weight WL,i for every vertex i after each
iteration. In addition, to avoid over contraction, we update the at-
traction weight WH,i for each vertex according to its collapsed de-
gree determined by its local one-ring area. Specifically, we want
the vertices with smaller contracted one-ring area to be attracted
more strongly to their current positions and thus contract less in the
next iteration. We find that such weight setting can retain the key
features and appropriate branching structure in the contracted mesh.
The iterative contraction process is as follow, where the superscripts
t denote the iteration number:

1. Solve

[

Wt
LLt

Wt
H

]

Vt+1 =

[

0
Wt

HVt

]

for Vt+1,

2. Update Wt+1
L = sLWt

L and Wt+1
H,i = W0

H,i

√

A0
i /At

i , where At
i

and A0
i are the current and the original one-ring areas, respec-

tively,

3. Compute the new Laplace operator Lt+1 with the current ver-
tex positions Vt+1 using equation (1).

The initial ratio of the weights W0
L and W0

H controls the smooth-
ness and the degree of contraction of the first iteration result, thus
it determines the amount of details retained in subsequent and final
contracted meshes. Since the scale of the Laplacian coordinate is
proportional to a vertex’s one-ring edge lengths (under the same lo-
cal one-ring shape), the contraction forces from the Laplace equa-
tions are smaller for denser models. Hence, to handle models of

different sizes and resolutions, we use the following default initial

setting: W0
H = 1.0 and W0

L = 10−3
√

A, where A is the average face
area of the model. Note that setting a uniform initial ratio of these
weights for all vertices works well even for meshes with irregu-
lar sampling since the subsequent updating of weights is according
to the local contraction degree which is resolution-independent. We
found that this default setting produces good quality skeletons, with
the key features retained and small surface details filtered away. All
results shown in this paper are obtained with this default setting.

In our experiments, we use sL = 2.0, which is found to contract
all models efficiently, usually in less than 10 iterations. The it-
erative updating stops when the ratio of the current and the orig-
inal volumes of the model is smaller than the threshold εvol (we
use εvol = 1e− 6). Figure 1 shows the sequence of contraction re-
sults for the raptor model. Each contraction iteration is essentially
an analysis process, updating the attraction force of each vertex
smoothly based on its local contraction ratio. The forces are de-
fined such that the contracted regions at the thinner branches act as
strong anchors retaining the key features of the object. The thin-
ner regions of the model always collapse first, while the thicker
regions take more iterations to collapse. The use of the curvature-
flow Laplace operator also ensures that meshes with poor triangle
quality are contracted well, with the triangle shapes maintained as
much as possible during the iterative contraction (see Figure 2).

The iterative updating process increases the weights of the attrac-
tion forces as the vertices become more contracted, thus the sys-
tem matrix becomes more diagonally dominant as the iteration pro-
gresses, making the updating process stable. During the construc-
tion of the new linear system to be solved in the next iteration, we
also check for degenerate faces and avoid any possible numerical
errors, such as infinity values or divide-by-zero error. The geometry
contraction is a global constrained smoothing process, with high-
frequency details and noise removed in each iteration (but with im-
portant geometry details retained by the strong attraction forces),
resulting in a smaller volume. The iterations converge when the
volume is close to zero.

5 Connectivity Surgery

We denote the contracted mesh as a 2D graph with vertex positions
Ṽ = [ṽT

1 , ṽT
2 , . . . , ṽT

n ]T . The contracted mesh has an approximate
zero volume with a shape that is visually a 1D skeleton. However,
its connectivity is still that of the original mesh. To convert the
contracted mesh into a 1D graph, we apply a connectivity surgery
operation. The surgery applies a series of edge-collapses to remove
collapsed faces from the degenerated mesh, until all faces have been
removed. The main requirement here is to retain the shape of the
degenerated mesh during this surgery process, while keeping suffi-
cient skeletal nodes to maintain a fine correspondence between the
skeleton and the original surface. We devise a cost function con-
sisting of a shape term and a sampling term. The surgery operation
is then an iterative greedy algorithm that collapses the edge having
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Figure 5: Top row: Neptune, dancer, feline, elephant, and elk. Bottom row: fertility, gargoyle, heptoroid and dancing children. Our method
extracts good quality curve-skeletons for complex models, including high-genus models and flat regions (see the elk model).

the minimum cost in each iteration.

For simplicity, we apply the half-edge collapse. The half-edge col-
lapse (i→ j) merges vertex i to vertex j (i.e., with the resulting
vertex takes the position ṽ j) and removes all the faces that are inci-
dent to the collapsed edge. This operation never disconnects a con-
nected component. To preserve the mesh’s topology, we prevent
the collapse of a tunnel by prohibiting any edge collapse (i→ j)
if k is a common adjacent vertex of vertices i and j but (i, j,k) is
not a face in the current simplifying mesh. This simple restriction
ensures that the resulting 1D skeleton has the same number of loops
as the number of tunnels in the original mesh.

Shape Cost. The shape cost term is conceptually similar to the
popular QEM simplification method [Garland and Heckbert 1997]
which preserves mesh geometry well. QEM estimates distortion
caused by an edge collapse by computing an error metric at each
vertex, measuring the sum of squared distances between the vertex
and its associated faces. Since the faces of our contracted mesh have
zero area, this face-based error metric is clearly not applicable here.
We thus apply a QEM-like mechanism over the edges. Specifically,
we define the matrix Ki j for each edge (i, j) in the contracted mesh

such that the value pT (KT
i jKi j)p is the squared distance between

the point p (in homogeneous representation) to the line defined by
the edge (i, j):

Ki j =





0 −az ay −bx

az 0 −ax −by

−ay ax 0 −bz



 , (4)

here a is the normalized edge vector of the edge (i, j) and b = a× ṽi.

The initial error metric of vertex i is the sum of all the squared
distances to its adjacent edges, that is,

Fi(p) = pT ∑
(i, j)∈E

(KT
i jKi j) p = pT Qi p (5)

To keep the shape of the contracted mesh/graph as undisturbed as
possible during the simplification, we select the next edge collapse
(i→ j) based on the following shape cost:

Fa(i, j) = Fi(ṽ j)+Fj(ṽ j). (6)

That is, the next edge-collapse (i→ j) is the one with the mini-
mum sum of squared distances from the collapsed position ṽ j to
the adjacent edges of vertices i and j, as well as to all the adjacent
edges of the vertices that are previously collapsed to vertex i or j.
After an edge collapse, we update the error matrix of vertex j as
Q j ← Qi + Q j such that the edges that were previously associated
to vertex i are now associated to vertex j. We store the error matrix
of each vertex as a 4×4 matrix and, like QEM, each cost updating
step involves only a matrix addition.

Sampling Cost. The above shape cost retains the shape of the orig-
inal contracted mesh well. However, it leads to over-simplification
in straight regions, resulting in long skeleton edges and the loss of
fine correspondence between the skeleton and the surface. There-
fore, we add a sampling-aware cost term that penalizes edge col-
lapses that generate long edges. This sampling cost measures the
total distance the adjacent edges of the source vertex i travel during
the edge collapse (i→ j):

Fb(i, j) = ||ṽi− ṽ j|| ∑
(i,k)∈Ẽ

||ṽi− ṽk||, (7)

where Ẽ is the current simplified edge connectivity.

The Total Cost. The total cost function is a weighted sum of the
shape cost and sampling cost:

F (i, j) = waFa(i, j)+wbFb(i, j). (8)

We use wa = 1.0 and wb = 0.1 for all our examples. Note that dur-
ing the iterations, the relative shape cost increases since the shape
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Figure 6: Our method is noise insensitive. The curve-skeleton ex-
tracted from a noisy dense raptor model.

error matrices are cumulative. Therefore, the shape cost increas-
ingly dominates the edge collapsing process, retaining the shape of
the contracted mesh. Figure 4 (left) shows an example of the con-
nectivity surgery result.

We record all the edge collapses during the connectivity surgery
process. This gives rise to a skeleton-mesh mapping that indicates,
for each skeleton node k, the set of vertices Πk on the original mesh
that are contracted and collapsed to that skeleton node. Each set of
vertices forms a cylinder-like shape (for non-junction nodes) or a
sphere-like shape (for junction nodes). Figure 4 (middle) shows an
example of the induced skeleton-mesh mapping.

6 Embedding Refinement

The iterative geometry contraction process may produce a skeletal
shape that is off center or go outside the mesh, especially where
adjacent object components have large differences in thickness and
curvature. The main cause of this behavior is that a thicker region
requires stronger contraction constraints to be contracted into a 1D
shape, but these strong constraints also pull vertices at the nearby
thinner regions towards the center of the thicker component (see
Figure 3), causing the contracted shape to go outside the thinner
components. We exploit the skeleton-mesh mapping Π induced by
the skeletonization process to design a simple embedding refine-
ment method.

The idea is to move each skeleton node k to the approximate cen-
ter of its corresponding local mesh region Πk. Each boundary of
a mesh region comprises a loop of vertices that are contracted to
roughly the same location (which is often off center), hence their
weighted average displacement represents the shifting of the skele-
tal node from the center. For each boundary j, with vertex index set
S j, we compute the weighted average displacement of the bound-
ary vertices d j during the geometry contraction:

d j =
∑i∈S j

l j,i(ṽi−vi)

∑i∈S j
l j,i

, (9)

where l j,i is the total length of the two adjacent edges of a vertex
i in the boundary loop j. Each regular non-junction node has two
boundaries, with average displacements during contraction denoted
d1 and d2. Since such a local region has a cylinder-like shape,
we simply shift the skeletal node as follows: u = u− (d1 + d2)/2.
For a junction node, there are more than two boundaries, therefore
we shift the node by the sum of the average displacements of the
boundaries, weighted by the boundary loop lengths. Finally, for a
terminal node u (with only one boundary), we compute the average
displacement d of all vertices in the local region, and set the new
node position as u−d.

The connectivity surgery process removes all the faces in the con-
tracted mesh, leaving a 1D connected graph as the skeleton. How-
ever, this skeleton may have more complex branching structure than
the anatomical branching structure of the model. For example, the

Figure 7: Our method is both pose- and sampling-insensitive. The
left models have 50K triangles while the right models have 8K tri-
angles. The extracted curve-skeletons for the different poses and
resolutions are similar in terms of junctions and branches.

raptor model in Figure 4 (left) has two junction nodes branching
to the forelegs instead of one. To simplify the branching structure
and also further refine the skeleton embedding, we merge a junction
node with an adjacent node if the merged junction node has a bet-
ter centeredness than the original junction node. The centeredness
of a junction node k is measured as the standard deviation of the
distances between k’s position and the vertices in Πk, denoted σk.
We merge the junction node k with a neighbor if σ ′k < 0.9σk, where

σ ′k is the centeredness of the merged junction node. In cases where
there is more than one adjacent node fulfilling this condition, we
choose the neighbor with the smallest σ ′k. This process is repeated
until the condition for merging with a neighbor is not met. Figure 4
(right) shows the embedding result for the raptor model.

The embedding refinement process relocates each skeletal node to
an approximate center-of-mass of its local mesh region. It success-
fully centers the skeleton nodes for most organic-shaped objects we
tested. However, for certain man-made objects where some local
regions have the center-of-mass outside the object (e.g., one with a
C-shape cross-section), our embedding refinement still fails to en-
sure that the skeleton is inside the object.

7 Results and Discussion

In this section, we show more results of our skeleton extraction
method and discuss some of its properties, demonstrated with ex-
amples. We then compare our results with previous methods, and
discuss some implementation details and limitations of our method.

Figure 5 shows some ray-traced images of models and the curve-
skeletons extracted using our method. Note that all the skeletons
represent well the geometry and topology of the original shapes.
Unlike field-based methods, our method does not require junctions
detection and the chaining of skeleton nodes. The extracted skele-
ton is guaranteed to be homotopic to the original object. The hep-
toroid, fertility and dancing children are examples of high-genus
models. The elk model demonstrates that our method also works
well for models with thin flat regions.

The extracted skeletons have sparser nodes at the core parts of a
model. This property is due to the fact that many triangle faces are
contracted to the same neighboring region, causing the connectivity
surgery process to require more edge collapses there to remove all
the faces. In some cases, the sparseness of nodes leads to skeletons
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Figure 8: Our method is fairly insensitive to a small variance in the default initial ratio of the contraction and attraction forces. Here we
fix W 0

L and vary W 0
H . Nevertheless, much smaller W 0

H values (e.g., 0.1) lead to missing branches, while much larger values (e.g., 10) lead to
superfluous branches.

with a zigzag effect (e.g., dancing children in Figure 5). A solution
might be to design an algorithm that removes faces using operators
that modify the connectivity and appropriately introduce new ver-
tices and edges. However, we did not find this to be necessary since
these relatively large core parts have approximate spherical shapes,
and are sufficiently abstracted with a few skeleton nodes for many
applications. For example, the fewer skeletal nodes there does not
affect the deformation space or the segmentation quality (see Sec-
tion 8).

The geometry contraction is based on implicit mesh smoothing,
with the contracted mesh as the solution of a least-squares sys-
tem. Therefore, the noise and fine surface details are smoothed out
evenly over the surface, making our method insensitive to noise and
thus not requiring any post-filtering. This property is demonstrated
in Figure 6 where a good quality skeleton is extracted from a highly
noisy raptor model.

Our method is rotation invariant, since the geometry contraction
depends only on the normal field of the mesh, which is invariant
under global rotations. In addition, since the normal field is locally
invariant to local rotations, the method extracts similar skeletons
from different poses of the same object (see Figure 7). If the poses
are of the same mesh model with identical connectivity, we can ex-
tract skeletons with identical branching structure for all poses by
applying a unified connectivity surgery process (see Section 8). Fi-
nally, since the initial weighting ratio of the contraction constraints
are sampling-aware, the extracted skeletons are largely independent
of the size and resolution of the input model (Figure 7).

We found that a small variance in the default initial ratio of the
contraction and attraction forces does affect the contracted mesh
slightly, but it has little effect on the resulting skeletal branching
structure (see Figure 8). Nevertheless, a much higher W0

H (10
times higher than the default setting) may lead to a skeleton con-
taining new small branches, while a much smaller W0

H causes over-
smoothing and produces a small contracted mesh that misses some
branches.

Some skeleton extraction algorithms generate a hierarchy of skele-
tons with increased complexity, allowing the user to select a res-
olution with fewer unwanted branches. Since our method always
produces a nice branching structure, we did not define such a hi-
erarchy of skeletons. However, we note that it is possible to build
a hierarchy by ordering the branches according to their approxi-
mate volume in a bottom-up manner. Specifically, a hierarchy can
be constructed by iteratively removing the terminal branch with the
smallest volume. In section 8.1, we use the hierarchical order pro-
vided by the approximate volume to design a simple segmentation
algorithm.

Comparisons. We compare our results with the results of one
algorithm from each of the five main classes of skeleton extrac-
tion methods discussed in Section 2. In the volumetric category,
we adopt the implementation of Cornea et al. [2007] for potential-
field, distance-field and thinning methods and use the same param-
eter values described in their paper. These implementations consist
of the core part of the algorithms with minimum additional steps
sufficient only to obtain curve-skeletons (rather than unconnected
voxels or a structure with surface elements). For the geometric
category, we implement a simple Reeb-graph method based on a
harmonic function defined by user-specified feature points, with
the geodesic distances from a source feature as the boundary val-
ues [Aujay et al. 2007]. The Reeb graph is embedded into the ge-
ometry using the centroid of each connected component in the level
sets of the harmonic function. We also compare with the method
of Dey and Sun [2006], which also works on the surface mesh di-
rectly and extracts a subset of an approximate medial surface as the
skeleton according to geodesic distance on the original surface.

Figure 9 shows the comparison results. The skeletons extracted
with the distance-field algorithm contains a large number of su-
perfluous branches and may be disconnected. The thinning algo-
rithm produces skeletons that are not smooth and contain small ex-
tra branches due to the propagation of irregularities from the surface
to the curve-skeleton. The potential-field algorithm yields cleaner
and smoother skeletons, however, a large number of branches may
appear in thin and flat regions (bunny’s ears) due to the existence of
many critical points. Moreover, the force-following process may re-
sult in disconnected skeletons due to the poor local voxelization res-
olution. The results of the harmonic-based Reeb-graph algorithm
are highly dependent on the user-specified feature points as well
as the level-set sampling and embedding steps. The Reeb graph
successfully captures the model’s topology, however the nodes are
critical points of a function that does not abstract the geometry
well and the centeredness of the resulting skeleton is poor in gen-
eral. Dey and Sun’s method does not always preserve the topology
since their method may extract disconnected edges from the me-
dial surface and requires an erosing step to filter and connect the
edges to form the final skeleton. In contrast, our method gener-
ates curve-skeletons that are clean, connected, topology-preserving
and geometry-aware. The entire process of our method works on
the original domain: the geometry contraction alters only the mesh
vertex positions, the connectivity surgery alters the connectivity,
and the embedding refinement alters the skeletal node positions.
No node connecting and branch pruning are required and the entire
process maintains a well connected and topologically preserving
graph (mesh or skeleton).

Implementation Details. In term of memory usage and processing
time, our skeleton extraction framework is dominated by the geom-
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Figure 9: Comparisons with the results of various classes of curve-
skeleton extraction algorithms.

etry contraction process. Each iteration requires solving a sparse
linear system, which takes O(n3) time with a naı̈ve linear solver.
For efficiency, we implement a multigrid solver to solve for the
new contracted vertex positions, making each iteration taking only
O(n) times. This greatly increases the overall performance of our
system when handling large models. The connectivity surgery and
the embedding refinement only takes O(n logn) and O(mn) time in
the worst case, respectively (recall that n is the number of vertices
and m is the number of skeletal nodes). Table 1 shows the running
time of some skeleton extraction examples. All data are recorded
on an Intel Core 2 Dual E6600 machine with 2GB memory, using a
single thread implementation.

Limitations. Our curve-skeleton extraction framework only works
for closed mesh models with manifold connectivity since our geom-
etry contraction requires a well-defined Laplace operator for every
vertex. Although our method is largely insensitive to the model
resolution, it cannot generate fine skeletons for very coarse models.
Based on our experience testing a large set of models, we found
that our method can generate good quality skeletons for common
models with more than 5000 vertices.

Figure 10: (Top) A visualization of the local thickness at each skele-
ton node. (Bottom) Segmentation results.

Model #Vertices t1 t2 t3 Total

Wolf 4344 1.1 0.4 0.01 2
Raptor 25000 6.3 2.7 0.03 10
Neptune 112220 116 15 0.2 138
Asian Dragon 250000 197 31 0.6 240

Table 1: Columns t1, t2, and t3 show the running time (in seconds)
of geometry contraction, connectivity surgery, and embedding re-
finement, respectively.

8 Applications

In this section, we demonstrate the effectiveness of our skeleton ex-
traction framework for mesh segmentation and skinning animation.

8.1 Mesh Segmentation

We exploit the induced skeleton-mesh mapping and the local thick-
ness of each skeleton node to design a simple segmentation algo-
rithm. Each branch of the skeleton, i.e., a sequence of regular nodes
between two junction nodes or between one junction node and one
terminal node, corresponds to a logical component of the object.
This branching structure serves as a useful guide for segmenting the
mesh. We first order the branches according to their approximate
volume. The volume of a branch is measured as ∑i∈Γ r3

i , where Γ
is the index set of the skeleton nodes within the branch, and ri is
the approximate thickness of the mesh region Πi corresponding to
node i, defined as the average distance between the node i and the
vertices in the region Πi.

Starting from the thickest branch, we iteratively assign a cut to each
branch to segment the mesh, with each cut resulting in exactly one
additional segment (see accompanying video). In an automatic set-
ting, the cutting stops when every branch has been assigned one cut.
To allow user control, we also let the user specify a desired num-
ber of segments, which may be fewer or larger than the number of
branches, as the terminating condition. After every branch is cut
once, subsequent cuts are assigned globally.

To identify a cut within a branch, we first choose a node as the cut-
ting node. Specifically, for each regular node s (within the branch)
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Figure 11: Compatible curve-skeletons (left column) and bone-
skeletons (right column) extracted from three poses of a horse
model. The root node is drawn in purple.

with adjacent nodes t1 and t2, we compute the 1D Laplacian of the
local thickness δs = 2rs − rt1 − rt2 , and select the node with the
smallest δ as the cutting node. A smaller value of δs (possibly
negative) means that the local region of the node is more concave
and should be cut first. The cutting node defines a search region
in which we determine the final cutting boundary by a minimal-cut
algorithm. We set the search region as the mesh regions of the cut-
ting node and its two adjacent nodes. The capacity function for the
minimal-cut algorithm is defined as in [Katz et al. 2005], which in-
cludes a concavity term and a boundary-length term to balance the
quality of the local shape fitting and the smoothness of the segment
boundary, respectively. Since the minimal-cut tends to go through
edges with a small capacity, it finds a boundary that passes through
concave short edges. Figure 10 visualizes the local thickness infor-
mation and the segmentation results of the Asian dragon and Ar-
madillo models.

8.2 Skinning Animation

Our skeleton extraction method is applied directly on the mesh do-
main, thus it enables the extraction of compatible skeletons from
a given set of example poses of the same model. We first contract
the geometry of each example mesh independently. Then, we apply
the connectivity surgery to all the meshes simultaneously. Specif-
ically, we use a unified cost function that sums up the edge col-
lapsing costs across all contracted meshes to choose a minimum-
cost edge to collapse and collapse the same edge in all the con-
tracted meshes. Consequently, the resulting curve-skeletons of all
meshes have the same final set of nodes and edges. This compat-
ible skeleton structure adequately abstracts the geometry features
of all meshes. For skinning purpose, we then down-sample the
curve-skeletons into compatible bone-skeletons based on the bend-
ing angles in the different poses. We calculate, for each node with
two neighbors, the bending angle between its adjacent bones and,
if the maximum bending angle across all examples is less than a
threshold (we use 20◦), we remove that node (and connect its two
adjacent nodes directly) from all curve-skeletons. This process pro-
duces bone-skeletons that have the same set of joints and bones for

Figure 12: Example-based skinning animation. The compatible hi-
erarchical bone-skeletons extracted from three hand models and the
reconstructed poses.

all meshes (see Figure 11). Since we only remove nodes with two
neighbors, the resulting bone-skeletons preserve the topology of the
original curve-skeletons. The set of bone-skeletons adequately rep-
resent the deformation space defined by the example poses.

For articulated animation, we need a hierarchical bone-skeleton de-
fined by the root node, which usually represents the largest compo-
nent of the object. Since the contraction paths of the vertices fill the
object volume, we use them to identify the root node. We compute
the approximate local volume occupied by each vertex as the prod-
uct of the path length and the local area of that vertex, and compute
the approximate volume of the node’s region as the sum of the lo-
cal approximate volumes of all its vertices. To demonstrate that
the automatically extracted compatible bone-skeletons adequately
represent the deformation space, we input the mesh-skeleton pairs
to the rotation regression model of Wang et al. [2007]. Figure 12
shows the compatible bone-skeletons extracted from three hand
models and the new poses obtained by blending the compatible
bone-skeletons and reconstructing the meshes using the trained re-
gression model.

9 Conclusion

In the paper, we present a novel geometric-based framework for ex-
tracting curve-skeletons from mesh surfaces. We iteratively remove
the surface geometry without altering the connectivity to obtain a
thin skeletal shape and then perform a surgery to remove the redun-
dant connectivity to get a 1D structure. Both processes use only
simple mesh processing algorithms, namely, constrained Laplacian
geometry smoothing and mesh simplification. The extraction is ap-
plied directly on the mesh domain and does not require voxeliza-
tion. We adopt an implicit geometry contraction process with all
the vertices as boundary constraints, ensuring that the constructed
curve-skeleton is smooth and noise insensitive. The connectivity
surgery is performed with edge collapses which guarantee the cor-
rect connectivity and topology of the skeleton. We demonstrate the
effectiveness of our skeleton extraction framework for surface seg-
mentation and skinning animation. In the future, we will explore
its use in other applications, such as interactive mesh editing and
volumetric signal processing. We would also like to extend our
framework to process more general meshes or other surface repre-
sentations, including non-manifold meshes, surfaces with bound-
aries, and point set data.
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