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(a) Original (b) Multi-Operator (c) Shift-Map (d) Warping (e) Ours
[Rubinstein et al. 2009] [Pritch et al. 2009] [Wang et al. 2008]

Figure 1: By summarizing the symmetry structure in (a) the input image, our method (e) can preserve the original curved lattice structure
without breaking, over-squeezing or cropping the lattice. Input resolution is 999×820. Target resolution is 516×820.

Abstract
Image resizing can be achieved more effectively if we have a better
understanding of the image semantics. In this paper, we analyze the
translational symmetry, which exists in many real-world images.
By detecting the symmetric lattice in an image, we can summa-
rize, instead of only distorting or cropping, the image content. This
opens a new space for image resizing that allows us to manipulate,
not only image pixels, but also the semantic cells in the lattice. As
a general image contains both symmetry & non-symmetry regions
and their natures are different, we propose to resize symmetry re-
gions by summarization and non-symmetry region by warping. The
difference in resizing strategy induces discontinuity at their shared
boundary. We demonstrate how to reduce the artifact. To achieve
practical resizing applications for general images, we developed a
fast symmetry detection method that can detect multiple disjoint
symmetry regions, even when the lattices are curved and perspec-
tively viewed. Comparisons to state-of-the-art resizing techniques
and a user study were conducted to validate the proposed method.
Convincing visual results are shown to demonstrate its effective-
ness.

Keywords: image resizing, summarization

1 Introduction
Image resizing techniques fit an input image to the target resolution
by reducing or replicating the image content. Image seamlessness
is the key. Existing methods [Wang et al. 2008; Rubinstein et al.
2009; Dong et al. 2009] rely on the importance or saliency map
to prevent the modification from being over-aggressive. However,
the importance or saliency may not confirm to the true semantics,

since mainly local and low-level features (such as gradient and/or
entropy) are considered. Without higher-level understanding of the
image content, the image seamlessness is hard to maintain.

Although computational understanding of general image content is
infeasible in the near future, analysis of certain high-level seman-
tics is feasible. One of them is symmetry. It exists everywhere,
from windows on the buildings to soldiers in marching. The sym-
metry structure and the repetitive elements (or cells) reinforce the
visual importance. Previous resizing techniques attempt to modify
without preserving the symmetry structure, and may easily result in
apparent visual artifacts, such as the obvious seam (Figure 1(c)) or
over-squeezing (1(b) and 1(d)). By considering the knowledge of
symmetry, resizing can then be achieved via summarization, which
removes or replicates the cells with respect to the semantics (Fig-
ure 1(e)). Note that we extend the original meaning of summa-
rization to include both reduction and repetition of cells. In other
words, symmetry opens an additional space for resizing. Instead of
squeezing or stretching the image pixel-wisely, we can now remove
or replicate it cell-wisely.

In this paper, we propose a novel summarization operator for im-
age resizing that handles one common type of symmetry, the trans-
lational symmetry [Liu et al. 2004]. Existing symmetry detection
methods are usually too slow for practical resizing applications. In-
stead, we propose a real-time and automatic method to detect sym-
metry over arbitrary surfaces (planar or non-planar) with arbitrary
viewing perspective, and to extract the corresponding lattice in im-
age space without reconstructing the underlying 3D geometry. By
trimming and extending the lattice, we can resize the content with
more respect to the semantics. By smoothing the transformation
and intensity of cells across the lattice, we can maintain the seam-
lessness in both geometry and illumination respectively. In contrast,
most existing resizing techniques do not consider the seamlessness
of illumination.

However, a general image normally contains both symmetry region
(S-region) and non-symmetry region (NS-region), leading to com-
plication. While the S-region can be resized with our summariza-
tion operator, the NS-region can be resized with carving or warping
operators. But most importantly, there is no guarantee that both
resultant regions can be seamlessly combined, due to the different
natures of resizing strategies. In this paper, we propose a frame-
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Figure 2: Framework of our system

work to minimize the inconsistency of the sharing boundary be-
tween S- and NS- regions. A mesh-based representation is used to
offer constrained warping for the NS-region and ensure its bound-
ary confirms to that of S-region. A graph-cut is then performed
to minimize the intensity discontinuity at overlapped area near the
boundary. Convincing results are obtained and a user study is per-
formed to validate our method.

Our major contributions can be summarized as follow:

• An automatic and real-time summarization operator for image
resizing. By smoothing the transformation and intensity of
cells over the lattice, we can maintain the seamlessness of not
only the geometry, but also the illumination.

• A framework that seamlessly combines S- and NS-regions,
where they are resized differently due to their difference in
nature.

2 Related Work

Image Resizing Most content aware methods attempt to take ad-
vantages from the detection of pixel prominence. They either dis-
card or distort the homogeneous regions in order to absorb the re-
sulting distortion when changing the resolution of an image. The
cropping methods [Chen et al. 2003; Liu et al. 2003; Suh et al.
2003; Santella et al. 2006] remove the less important objects from
the image periphery. The seam carving methods [Avidan and
Shamir 2007; Rubinstein et al. 2008] judiciously carves the interior
seams without touching the salient features. The warping methods
[Gal et al. 2006; Wolf et al. 2007; Zhang et al. 2008; Wang et al.
2008] squeeze or stretch the regions with less importance values to
preserve the sizes or aspect ratios of prominent objects. Recently,
the multi-operators techniques [Rubinstein et al. 2009; Dong et al.
2009] crop and carve seams on only the inconspicuous materials.
Thus, all the above methods potentially suffer from visual distor-
tions when the image is dramatically retargeted or the homogeneous
regions run out.

Image Summarization Alternatively, the patch redistribution
methods have been presented to achieve image editing and retarget-
ing applications [Simakov et al. 2008; Cho et al. 2008; Barnes et al.
2009]. These techniques measure the patch similarity and then pre-
serve the content coherence between the source and target images.
As a result, the repetitive patterns are discarded when the target
image is getting small. Pritch et al. [2009] presented a Shift-Map
technique that allows removing a band region at a time, instead of a
pixel-wise seam used in the seam carving methods, enabling the re-
moval of entire objects. However, all these methods cannot handle
the patterns with different sizes or perspective distortion due to the
lack of understanding of high-level symmetry semantic. In contrast,
our method removes or replicates the repetitive elements/regions in
a more semantic fashion, and hence can better preserve the symme-
try structure.

Symmetric patterns detection Leung and Malik [1996] proposed
a greedy algorithm to extract repetitive elements that are added in
a connected set without a global topological structure. Later, Liu et
al. [2004; 2006; 2009] developed a more complete theory of com-
putational symmetry. They first proposed a computational model to
extract periodic repeated elements and then classify symmetric pat-
terns based on theory of crystallographic groups [Liu et al. 2004].
Hays et al. [2006] formulated discovering symmetric regularity as a
higher-order correspondence problem and solved it using a spectral
method. Lin and Liu [2007] tracked dynamic near-regular patterns
based on a lattice-based Markov-random-field (MRF) model within
a 3D spatiotemporal space. Ahuja and Todorovic [2007] repre-
sented the image with a segmentation tree and proposed a learning
algorithm which combines tree matching, belief propagation and
expectation-maximization to extract texels from nearly planar tex-
tures whose viewing direction is nearly along surface normal. Park
et al. [2009] used a mean-shift belief propagation (MSBP) method
to extract deformed lattice from repeated patterns. The automatic
symmetry detection of our work is based on their work [Hays et al.
2006; Park et al. 2009] but with a significant improvement on speed
at the expense of detection accuracy. Recently, Cheng et al. [2010]
employed a user assisted segmentation to scribble a template ob-
ject and extract approximately repeated elements by finding similar
boundary band map.

3 Overview

Figure 2 overviews our framework. Given an input image, our sys-
tem automatically detects one or more regions containing symmet-
ric patterns, and divides the image into one NS-region and one or
more S-regions (Section 4.1). As each S-region contains repetitive
cells organized in a grid structure, it is resized via the proposed
summarization operator, in order to maintain the symmetry struc-
ture, overall shape, as well as the illumination distribution (Sec-
tion 4.2). On the other hand, the NS-region contains general con-
tent. It is resized via warping, so that sub-regions with high salient
objects are scaled uniformly while homogeneous sub-regions are
squeezed to fit the target resolution (Section 4.3).
The last step is to merge the resized S- and NS- regions. However,
due to the different resizing strategies in S- and NS- regions, the
boundaries of resized S- and NS- regions may not be consistent to
each other. Figure 7(a) shows one such example. To reduce the
inconsistency, we represent both S- and NS- regions using meshes
(Figure 2). For the S-region, it is natural to have the region being
tessellated according to the detected lattice. For the NS-region, the
tessellation can be achieved according to the interior contents, such
as straight lines. Their shared boundaries must be contained by the
edges in their meshes in order to maintain the continuity. The mesh
topology of both S- and NS- regions does not change throughout the
resizing. The only change is the “texture content” (image) mounted
on the mesh. Section 4.4 describes the details on minimizing dis-
continuity artifact at the boundary.
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Figure 3: Symmetry detection. (a) MSER detection and clustering. Each cluster is color-coded with a distinct color. (b) Determination of
translation vectors t1 & t2. (c) Lattice formation. (d) Picking missed cells by interpolation and extrapolation. (e) Dual lattice.

4 Algorithm

4.1 Symmetry Detection

Identifying Cells The first step for symmetry detection is the
choice of the basic element or cell. One can utilize Canny
edges [Canny 1986], Harris corners [Harris and Stephens 1988],
KLT corners [Shi and Tomasi 1994] or SIFT points [Lowe 2004]
to identify the feature points. However, a cell in a symmetry struc-
ture can seldom be identified by a single feature point, but rather as
a region containing a group of features. The clustering and iden-
tification of such group based on the above isolated feature points
could be inefficient and time-consuming. Hence, we need an effi-
cient method to quickly locate regions, instead of points, with simi-
lar content. In particular, we employ the maximally stable extremal
region (MSER) [Matas et al. 2002] for identifying a feature region.

MSERs are affine invariant and less influenced by the illumination.
This means cells with the same pattern, but viewed from differ-
ent perspectives and illuminated by different lighting conditions can
still be equally identified. The detailed mathematical definition of
MSER and its implementation can be found in [Matas et al. 2002].
Suppose R = {ri} is the set of MSERs detected in an image (Fig-
ure 3(a)). Each MSER ri is graphically a 2D ellipse represented by
a triplet ri = {ci,ui, vi} where ci is its center, ui and vi are its major
and minor axis vectors.

Clustering and Indexing A symmetry structure normally contains
multiple cells and similar cells should have similar MSER feature.
This suggests that we can perform clustering on the MSERs to iden-
tify the major clusters, and simultaneously filter away the outliers.
Figure 3(a) shows the major clusters by color-coding each cluster
with a distinct color. Each major cluster corresponds to a poten-
tial symmetry structure (S-region). The number of S-regions in a
single image is usually not large. Hence, we only identify the ma-
jor κc clusters which have the largest total area of coverage. In our
current implementation, κc = 5. We use adaptive mean-shift clus-
tering [Comaniciu and Meer 2002] to group the detected MSERs.
For each MSER ri, we form a 2D vector by concatenating its |ui| and
|vi|. These vectors are fed for clustering in order to group MSERs
with similar shapes and sizes.

To facilitate the following lattice formation, we further index the
centers ci of MSERs in each cluster with a KD-tree. For fast re-
trieval, we implemented the KD-tree on GPU to support the parallel
KNN-search.

Similarity Metric We can then form a lattice for each cluster
by starting from a seed MSER and connecting the neighboring
MSERs. However, the resulting clusters may potentially contain
some wrong MSERs that are not really cells, as the clustering is

only based on a crude measurement of ellipse similarity without
considering the region content. Hence, we need a more sophisti-
cated metric to validate and select neighboring cells during the lat-
tice formation. We define a metric to quantify the similarity of two
neighboring MSERs in terms of the shape and appearance similar-
ities. Even when the symmetry structure is not planar, two neigh-
boring cells remain close in shape. Hence, the shape dissimilarity
Ds of two neighboring MSERs ri and r j is a function of their major
and minor axes (u and v) and defined as

Ds(ri, r j) =
|ui − uj|

max{|ui|, |uj|}
+

|vi − vj|

max{|vi|, |vj|}
(1)

The appearance dissimilarity Da measures their difference in terms
of pixel intensity, after registration and normalization. Suppose the
Pi and Pj are the image regions falling inside the ellipses of two
considering MSERs ri and r j, respectively. A simple registration
or transformation A from Pj to Pi can be obtained by translating
from the center cj to ci, rotating the major axis vector from uj to ui,
and scaling by |ui|/|uj| and |vi |/|vj| along the major and minor axes.
Then the appearance dissimilarity is computed as,

Da(ri, r j) =
1
n

√

∑n (
(pi − pi) − (p j − p j)

)2
(2)

where pi is the pixel value in Pi; p j is the corresponding pixel value
in the transformed Pj; pi and p j are the mean pixel values of Pi and
the transformed Pj, respectively; n is the size of Pi. The zero-mean
design in (2) allows us to minimize the influence of illumination and
focus only on the pattern. The overall dissimilarity D is defined as
a product of Ds and Da,

D(ri, r j) = Ds(ri, r j) · Da(ri, r j) (3)

Lattice Formation According to the group theory of wallpaper pat-
terns [Grünbaum and Shephard 1986], all translational symmetric
patterns can be represented by a 2D lattice generated by a pair of
shortest translation vectors t1 and t2. Hence, the key is to identify
the translation vectors during the lattice formation. There exists
methods that automatically extract the optimal lattice, but they are
usually too slow for our resizing application. The method by [Park
et al. 2009] generally takes about 5-10 minutes to handle a medium
size image. As our goal is not to recover the real geometry, but to
identify the symmetry for resizing, we can trade the lattice accuracy
for speed.

The symmetry in an image is usually perspectively viewed and the
underlying geometry can be non-planar (e.g. windows on cylindri-
cal buildings or irregularly curved surface of modern museums). A
pair of constant translation vectors is not sufficient to represent the
lattice. Instead of recovering the 3D lattice, we are only interested
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Algorithm 1 Lattice Formation
// A function computing deviation of two vectors

Define diff(v1,v2)=



















+∞,
|v1−v2 |

max{|v1 |,|v2 |}
> τv

|v1−v2 |
max{|v1 |,|v2 |}

, otherwise

// Initialization Phase
Given a seed cell r
C = Ø; K = Ø // C: cells, K: translation vectors
G = {C,K}
Search two closest neighbors ra&rb, if exist, by minimizing

D(r, ra)D(r, rb)|t1(r)||t2(r)|eτs(θ− 5π
12 ), where t1(r) = ca − c;

t2(r) = cb − c; and θ = arccos(t1(r) · t2(r)) // ci means center of cell ri
Search opposite neighbors r′a&r′b, if exist, by

r′a = argmini D(r, r′a) · diff(c− ci, t1(r)) // left
r′b = argmini D(r, r′b) · diff(c− ci, t2(r)) // top

Put r into C // processed
Put t1(r) & t2(r) into K;
for each r j ∈ {ra, rb, r′a, r

′
b}

t1(r j) = t1(r); t2(r j) = t2(r)
put r j into U // i.e. not yet processed
put t1(r j) & t2(r j) into K

// Propagation Phase
while U is not empty

Pick a cell rk ∈ U and its t1(rk), t2(rk) ∈ K
Search rk’s neighbor set Nk = {rc, rd , r′c, r

′
d}, if exist, by

rc = argmini D(rk , ri) · diff(ci − ck, t1(rk)) // right
rd = argmini D(rk , ri) · diff(ci − ck, t2(rk )) // bottom
r′c = argmini D(rk , ri) · diff(ck − ci, t1(rk)) // left
r′d = argmini D(rk , ri) · diff(ck − ci, t2(rk )) // top

Put rk into C and remove rk from U // processed
t1(rk)= cc - ck; t2(rk)= cd - ck
for each rj ∈ Nk and rj < C

t1(r j) = t1(rk); t2(r j) = t2(rk)
Put r j into U // not yet processed
Put t1(r j)&t2(r j) into K

Output: G = {C,K}

in extracting the 2D image-based lattice for our resizing applica-
tion. So, we represent the lattice as a set of spatially varying 2D
translation vectors {t1(r), t2(r)}, in which we index the vectors by
the corresponding cell r.

For each MSER r in a major cluster, we try to construct the lattice
G by propagation (Figure 3(b)). Since the constructed lattices from
different seeds may be different, due to the noise, we exhaustively
construct the lattices from all r to obtain the lattice(s) with as much
coverage as possible. We implement this method on GPU to paral-
lelize the construction. Note that MSERs previously grouped in the
same cluster only mean they are similar in shapes and appearances.
They are not necessarily cell-by-cell connected. Hence, disjoint lat-
tices have to be disconnected and resized separately.

Algorithm 1 presents the pseudo-code for the lattice formation start-
ing from an arbitrary seed cell r and outputs the lattice G, com-
posed by the set of cells C and the set of spatially varying trans-
lation vectors K. In the first part of the pseudo-code, we locate
the four neighbors of the seed r, via the previously constructed
KD-tree. We first find an optimal pair of two neighbors, ra and
rb, such that the associated translation vectors t1(r) = ca − c and
t2(r) = cb − c form a subtended angle within [ π3 ,

π

2 ] [Schattschnei-
der 1978], and give the minimal score of an objective function,
D(r, ra)D(r, rb)|t1(r)||t2(r)|eτs(θ− 5π

12 ). Here, parameter τs weights the
importance of the subtended angle and equals to 0.5 in all our ex-
periments. Once ra and rb are located, the other two r′a and r′b can
be trivially located by computing the opposite translation vectors.
Then the current cell r can be marked as processed and put into C,
with the obtained translation vectors being put into K. Cells ra, rb,
r′a and r′b are put inside a set of unprocessed cells U. In the second
part of the pseudo-code, this neighbor searching process continues
for each of the unprocessed neighboring cells in a recursive manner,
until all cells are processed.

MSER may fail to identify cells due to image noise or partial oc-
clusion. With the formed lattice, we can extend the lattice outward
to check whether there is any missing cell. This can be done by ex-
trapolating (or interpolating) the cell position from the external (or
internal) boundary of the current lattice (Figures 3(c)&(d)). Note
that there can be missing cells (holes) within the lattice. We can ei-
ther interpolate the cell position from the whole lattice or infer the
cell position using the translation vectors of the nearest neighbors.
The matching criteria for missing cells can be more relaxed, by
considering two cells as matched if their appearance dissimilarity
Da < τm. In all our experiments, we set τm = 0.2.

So far, we only connect the centers of MSERs to form lattice. Op-
tionally, we can also form the dual lattice with the MSER centers
coinciding with the lattice cell centers (Figure 3(e)). Such choice is
left to users.

4.2 Summarizing S-region

Once all S- and NS- regions are identified, we can construct meshes
that respect the shared boundaries (Figure 2). For the S-region,
it is natural to construct a mesh according to the detected lattice
(Figure 4(a)). In other words, the S-region is represented as a mesh
dressed with a texture, which is the S-region image content.

Summarization To resize the S-region, we summarize it by sim-
ply removing or adding rows/columns of cells. However, directly
modifying the mesh elements (quads) will change the mesh topol-
ogy and introduce complication. The shapes of consecutive quads
may change abruptly when a large number of quads are removed
(Figure 4(b)). The boundary of the S-region may no longer confirm
to that of the NS-region (Figures 4(b)&(c)).

Instead of modifying the mesh, we retain the mesh topology and
only modify the texture content during the summarization (Fig-
ure 5). The summarization is performed in a rectified domain. By
regarding each observed quad in the image (Figure 5(e)) as a per-
spective projection of a square, we can compute a transformation
matrix T, based on the vertex positions, to map each quad together
with the texture content to a square (Figure 5(f)). The rectified cell
content can be obtained by resampling the input image using T−1

(Figure 5(b)). In this rectified domain, the texture can be seam-
lessly resized by inserting and removing rows/columns of cells us-
ing graphcut [Kwatra et al. 2003] (Figure 5(c)). We choose to in-
sert and remove rectified cells at the middle of rectified S-region,
as content of cells near the boundary normally changes more vig-
orously. Hence this strategy can reduce the chance of visual arti-
fact appearing. The number of columns (∆Cn) and rows (∆Rn) to
remove or insert is automatically computed based on the target re-
sizing ratio. We project the changes of image width and height onto
the major axes of the lattice and obtain the two projected changes,
∆wp and ∆hp, one for each major axis. Then ∆Cn = b∆wp/wcc and
∆Rn = b∆hp/hcc, where wc × hc is the average size of cells.

On the other hand, the mesh is topologically unchanged and only
linearly scaled in the rectified domain according to the change of
number of rows/columns (Figure 5(g)). As the texture content is
changed, the texture coordinates of the mesh vertices have to be
recomputed by linear interpolation. To map the rectified cells back
to the image domain, we cannot simply map the scaled mesh quads
in Figure 5(g) to the original quad in Figure 5(e) because the S-
region in the image domain should also be scaled. For simplicity,
the S-region is linearly scaled in the image domain according to the
target resizing ratio (Figure 5(h)). The pair of scaled corresponding
quads in image (Figure 5(h)) and rectified (Figure 5(g)) domains
gives another transformation matrix T′ to transform the cell content
back to the image domain.

Careful readers may notice the texture content at the boundary
changes as we retarget the mesh and texture content separately
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(a) (c)(b)
Figure 4: Summarizing S-region by directly changing the mesh
topology. (a) Original S-region. (b) Removing 3 columns in the
middle. (c) Removing 1 column from the right, 2 columns from the
left, and 3 rows from the top.

(a) (b) (c) (d)

(h)(g)(f)(e)

Figure 5: S-region summarization. Bottom row: the mesh topology
remains unchanged during the summarization. Top row: only the
texture content is modified by removing columns/rows of cells in
order to respect the symmetric structure.

in the rectified domain (top right boundaries in Figures 5(b)&(c)).
This implies the disagreement of image content between resized S-
and NS- regions. We describe how to reduce such visual artifact in
Section 4.4.

Illumination Adjustment Inserting or removing rows/columns of
cells may introduce abrupt change of intensity among consecutive
cells (Figure 6(a)). Such artifact is especially apparent when the
underlying surface is curved, and at the boundary when the resized
S-region is recombined with the resized NS-region. To solve the
problem, we relight each cell in order to maintain the original light-
ing distribution over the S-region.

For each rectified cell content before summarization (Figure 5(b)),
we compute its intensity mean µi and standard deviation σi. As all
cell contents are statistically the same, the change of µi and σi over
the lattice is mainly due to the illumination distribution. Our goal
is to maintain such illumination distribution even after summariza-
tion. With the lattice of µi and σi, we resample the µ

′

i and σ
′

i at
the new cell centers (Figure 5(c)) using the thin-plate spline inter-
polation. Each cell can then be relit by shifting the intensity mean
to µ

′

i and mapping the intensity variance to σ
′

i . To avoid blocking
artifact at the cell boundary, we relight, not just the cell, but a re-
gion slightly larger than the cell, and perform a simple feathering to
blend neighboring relit regions. Figure 6 compares the results with
and without illumination adjustment.

4.3 Resizing NS-region

We resize the NS-regions using a warping technique. To imple-
ment this idea, we generate a triangular mesh for the given im-
age using the Delaunay triangulation, where some vertices are ran-
domly distributed, some are from the boundary of S-regions and
some are uniformly sampled on straight lines. Straight lines are
automatically detected by a Hough transform. To protect promi-
nent objects, we require the triangles covering salient objects to
undergo similarity transformations. To keep the straight lines from
bending, we enforce edges on the same line to have similar slopes.
The above mentioned constraints are formulated into energy terms
and we minimize the objective function to determine the deformed
mesh. Finally, the image is reconstructed by the linear interpolation
of contents within triangles.

(a) Without relighting (b) With relighting
Figure 6: Illumination adjustment on S-region.

Let us denote by M = {P,E} a triangular mesh, where P =

[pT
0 ,p

T
1 , ...p

T
n ], p = (x, y) is the vertex position and E denotes the

set of edges on M. In addition, we define M′ and P′ to be the de-
formed version of M and P, respectively.

Shape Similarity We apply the conformal energy to maintain the
similarities of the original and the deformed triangles. Under this
constraint, the corresponding triangles are enforced to have the
same shape while the sizes and orientations are allowed to be dif-
ferent. Formally, we transform the vertex p using

[

s −r
r s

] [

x
y

]

+

[

u
v

]

=

[

x′

y′

]

, (4)

where s and r denote the scaling and rotation factors, respectively,
and [u, v] is the translation vector. By putting vertices of the triangle
f together and define

A f =
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, (5)

we can obtain the equation A f [s, r, u, v]T = b′f and this equation
can be transformed into Ωs = (A f (AT

f AT )−1AT
f − I)b′f = 0. Please

refer to [Zhang et al. 2009; Wang et al. 2010] for more details.

Line Preservation We require edges that lie on the same straight
line to have similar slopes. Specifically, we pick up two vertices
pe0 and pe1 from the line which are closest to the line center and we
wish the slopes of other edges on the line to be similar to the slope
of pe0 − pe1. The formal expression is given as:

Ω` =
∑

{i, j}∈Ek

∣

∣

∣(p′i − p′j) − `i j(p′e0 − p′e1)
∣

∣

∣

2
, (6)

where `i j = |p′i − p′j|/|p
′
e0 − p′e1| and Ek are edges on the line k.

We solve for the deformed mesh by minimizing Ωs + Ω` subject
to the boundary and positional constraints. The positional con-
straints define the target resolution. The boundary constraints re-
quire boundary vertices moving along the respective lines such that
the resized image can be retained as a rectangle. We compute this
non-linear objective function in an iterative manner because the un-
known variables in Equation 6 are correlated. Please refer to [Wang
et al. 2008; Wang et al. 2009] for the implementation details.

4.4 Merge of S-Regions and NS-Region

Recall that we represent both S- and NS- regions using meshes. The
correspondences between vertices from S- and NS- regions along
the shared boundaries can be set up before the resizing. The pairs
of boundary vertices are used to minimize the discontinuity artifacts
during the warping of the NS-region. This is done by minimizing
the distance between the corresponding vertices, and hence gives
the objective, Ωm =

∑n
i |pS ,i −pNS ,i|

2, where pS and pNS are the pair
of corresponding vertices in S- and NS- regions, respectively, and
n = |pS | = |pNS | is the total number of pairs.
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(a) (c)(b)

Figure 7: Merge of S- and NS-regions. A ring of cells is extended to
provide overlapping region for determining the seamless cut-path.

However, the above optimization only binds the geometric bound-
aries of S- and NS- regions together. There may exist discontinuity
of image contents between the S- and NS- regions, since these two
types of regions are retargeted differently according to their own
natures. As demonstrated in Figure 5(c), the image content on the
boundary of the S-region may change after summarization. To re-
duce the discontinuity artifact, we grow the S-region outward by
extrapolating one ring of cells (Figure 7(b)). We do so in order to
generate an overlapping area with the NS-region, and determine a
seamless cut path using graphcut [Kwatra et al. 2003] to hide the
discontinuity artifact.

Both the cell contents and quads are extended to create the overlap-
ping area. The cell content can be extrapolated by replicating the
boundary cell content with its illumination adjusted according to
the extrapolated µ

′

i and σ
′

i . The vertex positions of imaginary quads
in the image domain are computed by extrapolation (Figure 7(b)).
These imaginary quads are mainly used for computing the transfor-
mation matrices T′s. They are not physically added to the mesh of
a S-region. Figures 7(a)&(c) compare the results without and with
hiding the discontinuity, respectively.

5 Results and Discussions
Figures 1, 8-14 shows our resized images. To validate our method,
we tested it on images with symmetry structure on both planar (Fig-
ures 8, 9, 11-14) and curve surfaces (Figures 1 & 10), without (Fig-
ures 8-9, 13) or with perspective projection (Figures 11-12, 14). In
all results, our summarization operator preserves the overall sym-
metry structure in terms of shape, perspective, and clarity. Pla-
nar (curved) structure remains planar (curved). The sizes of cells
are reasonably preserved, without over-squeezing/over-stretching
or uneven squeezing/stretching of cells over the lattice. Figure 12
shows the natural extensions of a house, both horizontally and ver-
tically, via our summarization operator. We have implemented our
method on a PC with 2 Xeon(TM) CPUs 3.20GHz, 12 GB RAM,
and nVidia Geforce GTX 280 GPU with 1GB video memory. The
timing statistics of resizing examples shown in this paper can be
found in Table 1. Even for the “BMW” example (Figure 1) that
contains three disjoint lattices (one for each cylindrical tower), the
time for symmetry detection and lattice formation is very small and
achieves a real-time rate.

Multiple S-regions Our method can simultaneously handle mul-
tiple disjoint S-regions when they are far away from each other.
They are simply summarized independently and merged to the NS-
region in a single pass (e.g. Figure 1). However, if two or more
S-regions are too close to each other (their extended rings of cells
overlap), they have to be summarized in multiple passes. In first
pass, a S-region is selected while all other S-regions are ignored
and regarded as part of the NS-region. The selected S-region is
summarized and merged with the resized NS-region to produce an
intermediate result R1. In the next pass, an unresized S-region is
selected, summarized, and merged to R1 to produce an incremental
result R2. This multi-pass operation continues until all S-regions
are resized. In practice, we prefer to first resize larger S-regions
than those smaller ones. Figures 13 and 14 show the examples of
such multi-pass resizing.

Visual Comparisons We compared our results to five state-of-
the-art methods, including warping [Wang et al. 2008], multi-
operator [Rubinstein et al. 2009], [Dong et al. 2009], Shift-
Map [Pritch et al. 2009] and Patch-Match [Barnes et al. 2009]. The
resized images produced by Shift-Map method are obtained via the
online program http://www.cs.huji.ac.il/projects/shiftMapFlash/.
Other compared results are obtained from the original authors. Fig-
ures 1, 8-11 and 14 show the comparisons. Since multi-operator
and warping approaches utilize only pixels with low-level salien-
cies when resizing images, they can do nothing on the preservation
of symmetry structures. Multi-operator may sometimes unevenly
scale the symmetry structure (Figure 8(b)) and crop the surround-
ing contents (Figures 1(b) and 11(b)). Warping over-squeezes or
stretches the homogeneous contents (Figures 1(d), 8(d) & 14(d)).
In contrast, our method preserves the symmetry structure via sum-
marization. Although Shift-Map and Patch-Match allow region-
wise deletion or insertion, they have no knowledge of symmetry.
Shift-Map may introduce obvious seams in some cases (Figures
1(c) and 9(d)); Patch-Match removes one of the birds and produces
the ghost shadow in Figure 9(c). With the knowledge of symmetry,
our method can reasonably summarize the lattice (curved and/or
perspectively viewed) without uneven scaling of cells or obvious
seams inside the lattice. Figure 14 shows an example being pro-
gressively reduced in size. Note that only our method produces
reasonable results, in particular, at the drastic resizing ratio.

User study To further evaluate our method, we perform a user study
to score the results from different methods. 70 subjects from differ-
ent ages and backgrounds are invited to score 9 sets of the resized
images. In the experiment, we showed the original image, our result
and the image of a competitor, and ask which of the two resized im-
ages the participant prefers. Three methods, multi-operator, warp-
ing, and Shift-Map, are compared. Table 2 shows the statistics.
Each row shows the competition between our method and the one
indicating on that row. The “Mean of wins” indicates the num-
ber of times (or percentage) our method wins during the competi-
tions. From the statistics, our method generally outperforms than
all competitors, though participants may prefer the multi-operator
and warping methods when the resizing ratio is moderate. This is
because the homogeneous regions are not run out or the disconti-
nuity artifacts are less accumulated. Since all methods can produce
reasonable results in this scenario and participants may have dif-
ferent tastes, our method becomes less outstanding. On the other
hand, our method is more preferred if the resizing ratio is extreme.
This can be demonstrated by the comparison in Figure 14, in which
[Dong et al. 2009] and [Wang et al. 2008] were compared. In their
results, the windows are blurred and over-squeezed due to the dras-
tic scaling.

Limitations and Discussions The ability of our symmetry detec-
tion strongly relies on the ability of MSER. If MSER fails to iden-
tify a potential cell, our method will not be able to form any lattice.
Figure 15(a) shows one such example whose cells are obvious to
human, but not to MSER. Another major limitation is on the lat-
tice formation. We assume there is no self-occlusion inside the lat-
tice. If self-occlusion exists, it breaks the lattice structure and termi-
nates our lattice formation at the discontinuity (Figure 15(b)). Our
method may not be able to handle lattice structure that is not very
regular and nearly stochastic. We believe more sophisticated sym-
metry detection [Park et al. 2009] can be done, but at the expense of
speed performance. We cannot handle the overlapped lattices. An
image region can only belong to one lattice. Currently, we resize S-
and NS- regions using the same ratio without considering their rel-
ative prominence. It may be possible to define a metric to account
for the importance of symmetry as well as other image saliency, so
that we can scale each S-region more effectively. Besides, cells in
symmetry regions are mainly added or removed when resizing. The
content within the cell is not modified. Although a certain degree of
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(a) Original (b) Multi-operator (c) Shift-Map (d) Warping (e) Ours

Figure 8: “room”. Input size is 960 600, output size is 689 600.x x

(a) Original.     ©  IEEE 2009 (b) Multi-operator (d) Shift-Map (e) Warping (f) Ours(c) Patch-Match

Figure 9: “bird”. Input size is 600 450, output size is 300 400.x x

(a) Original (b) Multi-operator (c) Shift-Map (d) Warping (e) Ours

Figure 10: “ball”. Input size is 423 302, output size is 263 198.x x

(a) Original (b) Multi-operator (c) Shift-Map (d) Warping (e) Ours

Figure 11: “colosseo”. Input size is 768 1024, output size is 525 1024.x x

(a) Original, 800 533x (b) Extend 2 columns, 1095 533x (c) Extend 2 columns & 1 row, 1095 680x

Figure 12:  Extended “house”.
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(a) Multiple adjacent lattices, 452 373x (b) Summarized, 316 244x (c) Two adjacent lattices, 1024 683x (d) Summarized, 501 410x

Figure 13: Multiple adjacent different kinds of lattices are summarized in a multi-pass manner.

Input size
Time of

symmetry
detection

1024 625x

1024 625x

1024 625x

768 625x

512 625x

256 625x

No of
disjoint
lattices

Output size
Total time
of resizing

Fig. 1 3516 820x999 820x 158 ms 331 ms

Fig. 8 960 600x 689 600x 1 62 ms 130 ms

Fig. 9 600 450x 300 400x 1 34 ms 80 ms

1Fig. 10 423 302x 263 198x 27 ms 75 ms

Fig. 11 768 1024x 525 1024x 1 52 ms 115 ms

Fig. 12(b) 800 533x 1095 533x 1 46 ms 103 ms

Fig. 12(c) 800 533x 1095 680x 1 46 ms 107 ms

Fig. 14(b) left 6 233 ms 601 ms

6 233 ms 606 ms

6 233 ms 629 ms

Fig. 13(b) 452 373x 316 244x 5 208 ms 563 ms

Fig. 14(b) center

Fig. 14(b) right

Fig. 13(d) 501 410x 2 175 ms 264 ms1024 683x

Table 1: Timing statistics.

Mean(%)of wins Std.dev.
95% confidence interval

Lower Bound Upper Bound

6.03 (67.00%)

7.07 (78.56%)

5.44 (60.44%)

1.91

1.42

2.05

6.485.58

6.74

4.96

7.40

5.92

Multi-operator

Shift-Map

Methods

Warping

Table 2: User study.

warping is caused by the forward and backward transformation be-
tween the original image and the rectified domain, the cell content
is generally unchanged. In the future, more sophisticated resizing
treatment to the cell content can be considered, especially when the
cells are enlarged.

6 Conclusion

We demonstrate that by understanding one more piece of semantics,
we can open one extra space for image resizing. Although compu-
tational understanding of general image semantics is hard, analysis
and acquisition of symmetry is feasible and practical for resizing
applications. The new space for resizing also leads to a new issue,
the seamlessness of image content at the boundary, as general im-
ages contain both symmetry regions and non-symmetry region, and
these two types of regions have to be resized differently. We pro-
posed a real-time symmetry detection system and methodology to
minimize the discontinuity artifact. Currently, we only tackle the
translational symmetry, our next step is obviously its extension to
other types of symmetry, e.g. rotational symmetry.

Acknowledgments
We thank the anonymous reviewers for their constructive com-
ments. We are also grateful to all participants who took part in

the user study. We thank the flickr contributors for sharing their
images. This project is supported in part by the Hong Kong Re-
search Grants Council of under General Research Funds (Project
No. CUHK417107), the CUHK Group Research Scheme 2009,
the Landmark Program of NCKU Top University Project (contract
B0008), and the National Science Council (contract NSC-99-2221-
E-006-066-MY3), Taiwan.

References

A, N.,  T, S. 2007. Extracting texels in 2.1d natural
textures. In ICCV, 1–8.

A, S.,  S, A. 2007. Seam carving for content-aware
image resizing. ACM Trans. Graph. 26, 3, 10.

B, C., S, E., F, A.,  G, D. B.
2009. PatchMatch: A randomized correspondence algorithm for
structural image editing. ACM Trans. Graph 28, 3.

C, F. J. 1986. A Computational Approach to Edge Detection.
IEEE Trans. PAMI 8, 6, 679–698.

C, L. Q., X, X., F, X., M, W. Y., Z, H. J.,  Z,
H. Q. 2003. A visual attention model for adapting images on
small displays. ACM Multimedia Systems Journal 9, 4, 353–364.

C, M.-M., Z, F.-L., M, N. J., H, X.,  H, S.-
M. 2010. Repfinder: Finding approximately repeated scene ele-
ments for image editing. ACM Trans. Graph 29, 3.

C, T. S., B, M., A, S.,  F, W. T. 2008. The
patch transform and its applications to image editing. In CVPR
’08.

C, D.,  M, P. 2002. Mean shift: A robust approach
toward feature space analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 24, 5, 603–619.

D, W., Z, N., P, J.-C.,  Z, X. 2009. Optimized
image resizing using seam carving and scaling. ACM Trans.
Graph. 28, 5, 1–10.

G, R., S, O.,  C-O, D. 2006. Feature-aware
texturing. In EGSR ’06, 297–303.

G̈, B.,  S, G. C. 1986. Tilings and patterns. W.
H. Freeman & Co., New York, NY, USA.

H, C.,  S, M. 1988. A combined corner and edge
detector. In Proceedings of the 4th Alvey Vision Conference,
147–151.

159:8        •        H. Wu et al.

ACM Transactions on Graphics, Vol. 29, No. 6, Article 159, Publication date: December 2010.



(d) Warping

(b) Ours

(a) Original, 1024 625x

(c) Optimized carving and scaling

Figure 14: Progressively reduced “metlife.” From left to right:
768×625, 512×625, 256×625.

H, J., L, M., E, A. A.,  L, Y. 2006. Discover-
ing texture regularity as a higher-order correspondence problem.
In ECCV (2), 522–535.

K, V., S̈, A., E, I. A., T, G.,  B, A. F.
2003. Graphcut textures: Image and video synthesis using graph
cuts. ACM Transactions on Graphics, SIGGRAPH 2003 22, 3
(July), 277–286.

L, T. K., M, J. 1996. Detecting, localizing and group-
ing repeated scene elements from an image. In ECCV (1), 546–
555.

L, W.-C.,  L, Y. 2007. A lattice-based mrf model for dy-
namic near-regular texture tracking. IEEE Trans. Pattern Anal.
Mach. Intell. 29, 5, 777–792.

L, H., X, X., M, W.-Y.,  Z, H.-J. 2003. Automatic
browsing of large pictures on mobile devices. In Proceedings of
ACM International Conference on Multimedia, 148–155.

L, Y., C, R. T.,  T, Y. 2004. A computational model
for periodic pattern perception based on frieze and wallpaper
groups. IEEE Trans. Pattern Anal. Mach. Intell. 26, 3, 354–371.

L, D. G. 2004. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision 60, 2, 91–

(a) Fail to identify cells. (b) Occlusion breaks the lattice.
Figure 15: Failure cases.

110.

M, J., C, O., U, M.,  P, T. 2002. Robust wide
baseline stereo from maximally stable extremal regions. In In
British Machine Vision Conference, 384–393.

P, M., B, K., C, R. T.,  L, Y. 2009. De-
formed lattice detection in real-world images using mean-shift
belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 31,
10, 1804–1816.

P, Y., K-V, E.,  P, S. 2009. Shift-map image
editing. In ICCV’09.

R, M., S, A.,  A, S. 2008. Improved seam
carving for video retargeting. ACM Trans. Graph. 27, 3, 16.

R, M., S, A.,  A, S. 2009. Multi-operator
media retargeting. ACM Trans. Graph. 28, 3, 23.

S, A., A, M., DC, D., S, D.,  C-
, M. 2006. Gaze-based interaction for semi-automatic photo
cropping. In Proceedings of CHI, 771–780.

S, D. 1978. The plane symmetry groups: Their
recognition and notation. The American Mathematical Monthly
85, 6, 439–450.

S, J.,  T, C. 1994. Good features to track. IEEE Confer-
ence on Computer Vision and Pattern Recognition, 593–600.

S, D., C, Y., S, E.,  I, M. 2008. Sum-
marizing visual data using bidirectional similarity. In CVPR ’08.

S, B., L, H., B, B. B.,  J, D. W. 2003. Auto-
matic thumbnail cropping and its effectiveness. In Proceedings
of UIST, 95–104.

W, Y.-S., T, C.-L., S, O.,  L, T.-Y. 2008. Opti-
mized scale-and-stretch for image resizing. ACM Trans. Graph.
27, 5, 118.

W, Y.-S., F, H., S, O., L, T.-Y.,  S, H.-P.
2009. Motion-aware temporal coherence for video resizing.
ACM Trans. Graph. 28, 5.

W, Y.-S., L, H.-C., S, O.,  L, T.-Y. 2010. Motion-
based video retargeting with optimized crop-and-warp. ACM
Trans. Graph. (Proceedings of ACM SIGGRAPH) 29, 3.

W, L., G, M.,  C-O, D. 2007. Non-
homogeneous content-driven video-retargeting. In ICCV ’07.

Z, Y.-F., H, S.-M.,  M, R. R. 2008. Shrinkability
maps for content-aware video resizing. In PG ’08.

Z, G.-X., C, M.-M., H, S.-M.,  M, R. R. 2009.
A shape-preserving approach to image resizing. Computer
Graphics Forum 28, 7, 1897–1906.

Resizing by Symmetry-Summarization        •        159:9

ACM Transactions on Graphics, Vol. 29, No. 6, Article 159, Publication date: December 2010.






