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Abstract—This supplementary document provides more exper-
imental results together with the ground truth images, which
could not be fit in the main paper due to the page limit.

I. ABLATION STUDY

A. Comparison on Multi-Adversarial Architecture

Fig. 1 shows some results of multi-adversarial architecture
GS with three different discriminators. Fig. 1(b) is the result at
the final resolution level (256×256) with single discriminator
DS256. Fig. 1(c) and Fig. 1(d) are the results at the final
resolution level (256 × 256) with two discriminators DS128

and DS256 and with three discriminators DS64, DS128 and
DS256, respectively. It illustrates that deblurring effects can
be improved with the increase of adversarial constraint level.

B. Comparison on Different Unsupervised and Supervised
CNN-Based Methods

Fig. 2 shows the deblurring results by different meth-
ods. Compared with other classical methods, especially the
supervised CNN-based method [2] and unsupervised GAN-
based method [1], our method has obvious advantages for
motion deblurring. It also shows the effectiveness of our multi-
adversarial learning architecture.

C. Comparison on Different Components in Our Model

Fig 3 shows the visual effectiveness of different components
in our model. Fig 3(a) are the results by the original Cycle-
GAN (as baseline). Fig 3(b) are the results by the baseline
with multi-adversarial loss. Fig 3(c) are the results by item
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Fig 3(b) with edge input and edge loss. Fig 3 (d) are the
results by item Fig 3(c) with MSSIM and perceptual loss.
The experimental results show that the key components we
proposed in our deblurring model can effectively improve the
overall deblurring effect.

II. PERFORMANCE ON BENCHMARK DATASETS

A. Performance Comparison on Text Dataset

Fig. 4 presents several examples from the BMVC TEXT
dataset [3] to illustrate the qualitative comparisons of other
methods with ours. In Fig. 4, especially in the central character
part, our deblurring results can achieve the clearest characters.
These examples are sufficient to prove that our method can
achieve quite effective results on BMVC TEXT dataset [3].

B. Performance Comparison on Real Face Dataset

Fig. 5 presents the visual comparisons with other state-
of-the-art approaches on real blurred face images. In Fig. 5,
especially in the color border area, the deblurring results by
our method can reconstruct more structural information. These
examples are sufficient to prove that our method can achieve
quite effective results on face dataset [8].
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Fig. 1: Deblurred results of multi-adversarial generator. (a) Blurred images. (b) Results with single discriminator DS256. (c)
Results with two discriminators DS256 and DS128. (d) Results with three discriminators DS256, DS128 and DS64.

Fig. 2: Comparison of deblurred images by our unsupervised multi-adversarial deblurring method with other classical supervised
and unsupervised approaches. (a) Deblurring results by our method. (b) Deblurring results using unsupervised GAN-based
method [1]. (c) Deblurring results using supervised CNN-based method Sun et al. [2].
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Fig. 3: The visual effectiveness of different components in our model. (a) original CycleGAN (as baseline); (b) baseline +
multi-adversarial loss; (c) item (b)+edge input and edge loss; (d) item (c)+MSSIM+perceptual loss. The experimental results
show that the key components we proposed can effectively improve the overall deblurring effect.

Fig. 4: Comparison of deblurred images by our method and other popular approaches on the images from BMVC TEXT
dataset [3]. (a) Blurred images. (b) Deblurring results using Pan [4]. (c) Deblurring results using Pan [5]. (d) Deblurring results
using Xu [6]. (e) Deblurring results using Sun [2]. (f) Deblurring results using MS-CNN [7]. (g) Deblurring results using
CycleGAN [1]. (h) Our results. It shows the characters in our results are much clearer.

Fig. 5: Comparison of deblurred images by our method and other popular approaches on several images from face dataset [8].
(a) Blurred images. (b) Deblurring results using CycleGAN [1]. (c) Deblurring results using DiscoGAN [9]. (d) Deblurring
results using MS-CNN [7]. (e) Deblurring results using Pan [5]. (f) Deblurring results by our method.


	Ablation Study
	Comparison on Multi-Adversarial Architecture
	Comparison on Different Unsupervised and Supervised CNN-Based Methods
	Comparison on Different Components in Our Model

	Performance on Benchmark Datasets
	Performance Comparison on Text Dataset
	Performance Comparison on Real Face Dataset

	References

