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In the supplementary material, we present the quantitative eval-
uation of other attributes, the examples of the user study, and
preliminary.

1 QUANTITATIVE EVALUATION OF OTHER ATTRIBUTES
Table 1 shows the quantitative evaluation of attribute-aware gen-
eration campared with Textual Inversion (TI) [Gal et al. 2023],
DreamBooth [Ruiz et al. 2023] and InST [Zhang et al. 2023]. For
material, style, and layout, we selected 8 concepts as references.
Each concept comes with three results.

2 USER STUDY
A screenshot of our user study web pages is shown in Fig. 1. Options
A and B show the results generated by our method and by one of
the comparative image style transfer methods. The comparative
method tested in each question and the order of the options are
both random.
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Table 1. CLIP-based evaluations. The best results are in bold, and the
second best results are underlined. *Baseline: the reference image.

Metric Text Similarity↑ Image Similarity↑
Method ProSpect DreamBooth TI ProSpect DreamBooth TI
Material 0.2243 0.1878 0.2125 0.7424 0.7701 0.5598

Metric Text Similarity↑ Image Similarity↑
Method ProSpect InST ProSpect InST
Material 0.3011 0.2840 0.6632 0.6117

Metric Text Similarity↑ Image Similarity↑
Method ProSpect Baseline* ProSpect Baseline
Material 0.2478 0.0982 0.6977 1

3 PRELIMINARY
The diffusion model continuously adds noise to the initial data distri-
bution 𝑥0 and finally makes the data distribution into independent
Gaussian distributions. The forward diffusion process is defined as:

𝑞 (𝑥𝑡 | 𝑥𝑡−1) = N
(
𝑥𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼

)
,

𝑞 (𝑥1:𝑇 | 𝑥0) =
𝑇∏
𝑡=1

𝑞 (𝑥𝑡 | 𝑥𝑡−1) .
(1)

𝑞(𝑥𝑡 ) can be derived by reparameterization:

𝑥𝑡 =
√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝑧𝑡−1 = . . . =

√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝑧, (2)

where 𝑥𝑡 denotes the intermediate latent map at a time step 𝑡 , 𝑧
denotes the added noise, 𝛽𝑡 denotes the standard deviation, and
𝛼𝑡 = 1 − 𝛽𝑡 denotes the noise intensity. The standard deviation 𝛽𝑡
of the noise added at each time step is specified and increases as
𝑡 increases. The mean value of the noise added at each time step
is adjusted according to 𝛽𝑡 , to ensure that 𝑥𝑇 converges stably to
N(0, 1). From xt =

√
𝛼𝑡x0 +

√
1 − 𝛼𝑡 z can get that q (xt | x0) =

N
(
xt;

√
𝛼tx0, (1 − 𝛼 𝑚𝑎𝑡ℎ𝑟𝑚𝑡 ) I

)
As noise is added, 𝑥𝑡 gradually ap-

proaches pure Gaussian noise x0 = 1√
𝛼t

(
xt −

√︁
1 − 𝛼 tzt

)
. We specu-

late that the attribute tendency of diffusion is to add noise standard
deviation 𝛽𝑡 gradually.
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1.【Content】This task aims to generate new images that contain the same content as 
the reference image, and also match the text condition.
【Text】The cat wearing a chef outfit.
【Reference 】

Please choose the option that achieved the best results:

Fig. 1. Screenshot of our user study web page.

The Fourier transform is a classic transformation widely used in
digital image processing. It transforms a signal from the time domain
into the frequency domain, facilitating the identification of subtle
features and the processing of challenging components. Grayscale
images consist of discrete points in two dimensions, and the Two-
Dimensional Discrete Fourier Transform (2D-DFT) is commonly
used in image processing to obtain the frequency spectrum of an
image that reflects its degree of grayscale variation. The center of
the Fourier spectrum represents the low-frequency signal, whereas
higher frequencies are represented by points closer to the edge.
High-frequency signals typically correspond to edges and noise in
the image, while the smooth areas of the image correspond to low-
frequency signals. We can easily manipulate the high-frequency or
low-frequency information of the image in the frequency domain to
complete operations such as image denoising, image enhancement,
and edge extraction. The Discrete Fourier Transform (DFT) of an
image is formulated as:

𝐹 (𝑢, 𝑣) =
𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑓 (𝑥,𝑦)𝑒− 𝑗2𝜋 (𝑢𝑥/𝑀+𝑣𝑦/𝑁 ) , (3)

where𝑀 and 𝑁 denote the length and height of the image, respec-
tively. 𝐹 (𝑢, 𝑣) denotes the frequency domain image, and 𝑓 (𝑥,𝑦)
represents the time domain image. The range of u is [0, 𝑀 − 1], and
the range of 𝑣 is [0, 𝑁 − 1]. The Inverse Discrete Fourier Transform
(IDFT) of an image is formulated as:

𝑓 (𝑥,𝑦) =
𝑀−1∑︁
𝑢=0

𝑁−1∑︁
𝑣=0

𝐹 (𝑢, 𝑣)𝑒 𝑗2𝜋 (𝑢𝑥/𝑀+𝑣𝑦/𝑁 ) . (4)
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