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Fig. 1. Style transfer results of three different generative backbones trained under our framework, which can robustly and effectively handle various painting

styles. The input content image is shown in (a). The style reference is shown as the inset for each result. Our method can faithfully capture the style of

each painting and generate a result with a unique artistic visual appearance. Content image credit: Julia Volk/Pexels (Free to use) [Pexels 2023]. Style

image credits: (c) Jean-Baptiste-Camille Corot/National Gallery of Art (CC0), {(i) Claude Monet, (k)Pierre-Auguste Renoir, (m) Utagawa Hiroshige, (n) Paul

Cezanne}/The Art Institute of Chicago (CC0) [Art Institute of Chicago 2023].
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This work presents Unified Contrastive Arbitrary Style Transfer (UCAST),

a novel style representation learning and transfer framework, that can

fit in most existing arbitrary image style transfer models, such as CNN-

based, ViT-based, and flow-based methods. As the key component in image

style transfer tasks, a suitable style representation is essential to achieve

satisfactory results. Existing approaches based on deep neural networks

typically use second-order statistics to generate the output. However, these

hand-crafted features computed from a single image cannot leverage style

information sufficiently, which leads to artifacts such as local distortions

and style inconsistency. To address these issues, we learn style repre-

sentation directly from a large number of images based on contrastive
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learning by considering the relationships between specific styles and the

holistic style distribution. Specifically, we present an adaptive contrastive

learning scheme for style transfer by introducing an input-dependent

temperature. Our framework consists of three key components: a parallel

contrastive learning scheme for style representation and transfer, a domain

enhancement (DE) module for effective learning of style distribution,

and a generative network for style transfer. Qualitative and quantitative

evaluations show the results of our approach are superior to those obtained

via state-of-the-art methods. The code is available at https://github.com/

zyxElsa/CAST_pytorch.
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1 INTRODUCTION

If a picture is worth a thousand words, then an artwork may tell the

whole story. The art style depicts the visual appearance of an art-

work and characterizes how the artist expresses a theme and shows

his/her creativity. The features that identify an artwork, such as

the artist’s use of strokes, color, and composition, determine the

style [McArdle 2022]. Artistic style transfer, as an efficient way to

create a new painting by combining the content of natural images

and the style of an existing painting image, is a major research

topic in computer graphics and computer vision [Jing et al. 2020b].

The main challenges of arbitrary style transfer are extracting

styles from artistic images and mapping a specific realistic image

into an artistic one in a controllable way. The core problem for style

extraction is to find an effective representation of styles because

providing explicit definitions across different styles is difficult

in general. To build a reasonable style feature space, exploring

the relationship and distribution of styles is necessary to capture

individual and holistic characteristics. For the mapping, several

generative mechanisms are adopted to address different issues,

such as autoencoder [Huang and Belongie 2017; Liu et al. 2021b],

neural flow model [An et al. 2021], and visual transformer [Deng

et al. 2022]. In contrast to the goal of those methods, this article pro-

poses to improve arbitrary style transfer via a unified framework

that offers the guidance of proper artistic style representation and

works for various generative backbones.

Since Gatys et al. [2016] proposed to use the Gram matrix

as an artistic style representation, high-quality visual results are

generated by advanced neural style transfer networks. Despite

remarkable progress in the field of arbitrary image style transfer,

the second-order feature statistics (Gram matrix or mean/variance)

style representation has restricted the further development and

application. In Figure 1, the appearances of different artwork

styles vary considerably in terms of not only the colors and local

textures but also the layouts and compositions. Figure 2(d)–(f)

shows the results of three recently proposed state-of-the-art style

transfer approaches. Aligning the distributions of neural activation

between images using second-order statistics results in difficulty in

Fig. 2. Comparison with the latest style transfer methods: CNN-based

method AdaAttN [Liu et al. 2021b], neural flow-based method ArtFlow [An

et al. 2021], and ViT-based method StyTr2 [Deng et al. 2022], all of which

rely on second-order statistics. Our method can faithfully transfer styles

while ensuring structural consistency with the content images. Content

image credit (the 1st row): Pixabay/Pexels (CC0) [Pexels 2023]. Style image

(the 2nd and 3rd rows) credit: {Michel Ange Corneille, Claude Monet}/AIC

(CC0) [Art Institute of Chicago 2023].

capturing the color distribution or the spatial layouts or imitating

the specific detailed brush effects of different styles.

In this article, the core problem for neural style transfer, that

is, the proper artistic style representation, is revisited. The widely

used second-order statistics as a global style descriptor can distin-

guish styles to some extent, but they are not the optimal way to

represent styles. By second-order statistics, arbitrary stylization

formulates styles through artificially designed image features and

loss functions in a heuristic manner. The network learns to fit

the second-order statistics of the style image and the generated

image, instead of the style itself. Our key insight is that a person

without artistic knowledge has difficulty defining the style if

only one artistic image is given, but identifying the difference

between dissimilar styles is relatively easy. Therefore, exploring

the relationship and distribution of styles directly from artistic

images instead of using pre-defined style representations is worth-

while. This article proposes to improve arbitrary style transfer

with a novel style representation based on contrastive learning.

Specifically, this work presents a Unified Contrastive Arbitrary

Style Transfer (UCAST) framework for image style representa-

tion learning and style transfer, which consists of a generative

backbone, a parallel contrastive learning scheme, and a domain

enhancement (DE) module. Contrastive learning is introduced to

consider the positive and negative relationships between different

styles, and DE is used to learn the overall domain distribution of

artistic images. UCAST can be plug-and-play for most arbitrary

image style transfer methods to improve their performance.

Given that different images may share similar styles, consider-

ing similar styles is necessary in the style modeling, and the style

contrastive learning should tolerate highly similar samples. More-

over, compared with per-style-per-model methods and multiple-

style-per-model tasks, arbitrary image style transfer has the dif-

ficulty that when dealing with specific content-style pairs, the

content image and style image may not always be compatible with

each other. For instance, when using a realistic image with a large

smooth area as the content and an artistic image with rich texture
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as the style, undesirable artifacts may be observed in the stylization

output. Thus, an adaptive contrastive loss that is implemented with

a novel dual input-dependent temperature scheme is proposed.

Our adaptive contrastive loss considers the similarities between

the target style image and other artistic images as well as the

similarities between the target style image and the input content

image to address the above problems.

This work extends the conference paper “Domain Enhanced

Arbitrary Image Style Transfer via Contrastive Learning” which

is published in ACM SIGGRAPH 2022 [Zhang et al. 2022b]. The

style transfer framework is improved with a novel parallel adap-

tive contrastive learning scheme with two temperature values

instead of one previously. The conference version is extended with

comprehensive experiments and demonstrates that our unified

framework UCAST can significantly improve the quality of the

stylized results for existing arbitrary image style transfer models.

Furthermore, our method is applied to video-style transfer.

Our contribution can be summarized as follows:

— A novel framework called UCAST, which can easily integrate

various types of style transfer backbones and lead to improved

visual quality in the stylization results, is proposed.

— A novel style representation learning method via contrastive

learning without employing the commonly used second-order

statistics of image features is proposed. Contrastive learning

and DE are introduced by considering the relationships between

styles as well as the global distribution of styles, which solves the

problem that existing style transfer models cannot effectively

leverage a large amount of available artistic images.

— Adaptive contrastive learning for arbitrary style transfer tasks,

which allows the model to be tolerant to similar styles and

improve the robustness of various content-style inputs, is

proposed.

2 RELATED WORK

Image style transfer. Traditional style transfer methods such

as stroke-based rendering [Fišer et al. 2016] and image filtering

[Wang et al. 2004] typically use low-level hand-crafted features.

Gatys et al. [2016] and the follow-up variants [Gatys et al. 2017;

Kolkin et al. 2019] demonstrate that the statistical distribution

of features extracted from pre-trained deep convolutional neural

networks can effectively capture style patterns. Although the

results are remarkable, these methods formulate the task as a

complex optimization problem, which leads to high computational

cost. Some recent approaches rely on a learnable neural network

to match the statistical information in feature space for efficiency.

Per-style-per-model methods [Johnson et al. 2016; Kwon and Ye

2022; Puy and Pérez 2019; Ulyanov et al. 2016; Zhang et al. 2023b]

train a specific network for each individual style. Multiple-style-

per-model methods [Chen et al. 2017; Dumoulin et al. 2017; Gao

et al. 2020; Zhang and Dana 2018] represent multiple styles using

a single model.

Arbitrary style transfer methods [Deng et al. 2022, 2020; Li et al.

2017; Liao et al. 2017; Svoboda et al. 2020; Wu et al. 2021a; Zhang

et al. 2022b] build more flexible feed-forward architectures to

handle an arbitrary style using a unified model. AdaIN [Huang and

Belongie 2017] and DIN [Jing et al. 2020a] directly align the overall

statistics of content features with the statistics of style features and

adopt conditional instance normalization. However, the dynamic

generation of affine parameters in the instance normalization layer

may cause distortion artifacts. Instead, several methods follow

the encoder-decoder manner, where feature transformation and/or

fusion is introduced into an autoencoder-based framework. For

instance, Lee et al. [2018] propose to embed images onto two

spaces and present an approach based on disentangled representa-

tion for producing diverse outputs without paired training images.

Li et al. [2019] achieve universal style transfer by developing a

cross-domain feature linear transformation matrix (LST) and

decoding from the transformed features. Park et al. [2019] provide

a flexible mapping of the semantically nearest style features onto

the content features by SANet. Park et al. [2020] propose the

Swapping Autoencoder that can encode an image into two inde-

pendent components and enforce that any swapped combination

maps to a realistic image. Deng et al. [2021] propose MCCNet

for efficient video style transfer by fusing input content features

and style features via multichannel correlation. Liu et al. [2021b]

present an adaptive attention normalization (AdaAttN) mod-

ule to consider both shallow and deep features for attention score

calculation. Wang et al. [2022] propose an aesthetic-enhanced

universal style transfer (AesUST) approach that incorporates

the aesthetic features to enhance the style transfer process and can

generate aesthetically more realistic and pleasing results. GAN-

based methods [Kotovenko et al. 2019a, b; Sanakoyeu et al. 2018a;

Svoboda et al. 2020; Zhu et al. 2017] have been successfully used

in collection style transfer, which considers style images in a

collection as a domain [Chen et al. 2021b; Lin et al. 2021; Wang

et al. 2023; Xu et al. 2021]. An et al. [2021] propose reversible

neural flows and an unbiased feature transfer module (ArtFlow) to

prevent content leaks during universal style transfer. Inspired by

the breakthrough of visual transformer (ViT), many researchers

have developed ViT for style transfer tasks. Wu et al. [2021a] pro-

pose a feed-forward style transfer method (StyleFormer) that in-

cludes a transformer-driven style composition module. Deng et al.

[2022] propose a ViT-based style transfer method (StyTr2) that

considers the long-range dependencies of input images to avoid

biased content representation. Zhang et al. [2022a] performed

exact matching of feature distributions and apply this method

to arbitrary style transfer.s Benefitting from the pre-trained text-

to-image generative models [2022], researchers have adopted dif-

fusion models for style transfer tasks [Huang et al. 2022a, b;

Zhang et al. 2023a]. Zhang et al. [2023a] propose an inversion-

based style transfer (InST) method , which can efficiently and

accurately learn the key information of an image, thus capturing

and transferring the artistic style of a painting without providing

complex textual descriptions.

Contrastive learning. Contrastive learning has been used in

many applications, such as image dehazing [Wu et al. 2021b],

context prediction [Santa Cruz et al. 2019], geometric predic-

tion [Liu et al. 2019], and image translation. Contrastive learning

is introduced in image translation to preserve the content of the

input [Han et al. 2021] and reduce mode collapse [Jeong and

Shin 2021; Kang and Park 2020; Liu et al. 2021a]. CUT [Park

et al. 2020a] proposes patch-wise contrastive learning by cropping
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Fig. 3. UCAST consists of a generator G , a parallel contrastive learning scheme relying on a MSP module, and a DE module. The generator is given the

content image Ic and the style image Is and generates images Ics and Isc . Then, Ics and Is are fed into the MSP module to generate the corresponding

style code z̃ and ẑ, which are used as positive samples in the style contrastive learning process. The style codes z− of other artistic images in the style bank

are used as negative samples. Ic is fed into the MSP module to generate the corresponding style code zc . We design an adaptive temperature module that

computes the temperature τ + of the positive sample and the temperature τ − of the negative samples on the style codes. The contrastive style loss LG
cont r a

is computed on the temperatures and the style codes. The DE module is based on the adversarial loss Ladv and the cycle consistency loss Lcyc . Style

image credit: Giovanni Battista Piranesi/AIC (CC0) [Art Institute of Chicago 2023].

input and output images into patches and maximizing the mutual

information between patches. Following CUT, TUNIT [Baek et al.

2021] adopts contrastive learning on images with similar semantic

structures. However, the semantic similarity assumption does not

hold for arbitrary style transfer tasks, which leads the learned style

representations to a significant performance drop. IEST [Chen

et al. 2021a] applies contrastive learning to image style transfer

based on feature statistics (mean and standard deviation) as style

priors. The contrastive loss is calculated only within the generated

results. Contrastive learning in IEST is an auxiliary method to

associate stylized images sharing the same style, and the ability

comes from the feature statistics from pre-trained VGG. CCPL [Wu

et al. 2022] introduces contrastive learning for video style trans-

fer by considering the frame-wise patch differences. Differently,

contrastive learning for style representation is introduced here by

proposing a novel framework that uses visual features compre-

hensively to represent style for the task of arbitrary image style

transfer.

Temperature is a critical parameter for the success of a

contrastive-learning-based method. Wang and Liu [2021] show

that the contrastive loss has a hardness-aware property, which

makes contrastive learning naturally focus on difficult negative

samples. Such hardness awareness helps learn separable, uni-

formly distributed features but also leads to the low tolerance

of semantically similar samples. The extent of penalties on hard

negative samples is determined by temperature τ . As the tempera-

ture decreases, the relative penalty concentrates more on the high-

similarity region, whereas as the temperature increases, the rela-

tive penalty distribution becomes more uniform, which means all

negative samples are penalized equally. Relations are built between

uniformity, tolerance, and temperature. Zhang et al. [2022b] intro-

duced vector decomposition for analyzing the collapse issue based

on gradient analysis of the l2-normalized representation vector

and proposed a unified perspective on how negative samples and

simple Siamese method alleviate collapse. Caron et al. [2021] inves-

tigated dual temperature from the perspective of knowledge dis-

tillation and proposed a simple self-supervised method, in which

the teacher adopts a lower temperature than the student to help in

knowledge distillation. Zhang et al. [2021] learn temperature as an

input-dependent variable. They consider temperature as a measure

of embedding confidence and propose temperature as uncertainty.

Zhang et al. [2022a] adopt dual temperature in a contrastive

InfoNCE for realizing independent control of two hardness-aware

sensitiveness. Previous temperature analysis works mainly focus

on the penalty’s unevenness of negative samples within an anchor

or the sum of penalties of different anchors within a training batch.

By contrast, this work simultaneously considers the proportion of

penalties between the positive sample and negative samples.

3 METHOD

3.1 Overview

Our unified framework for arbitrary image style transfer as a

separated network structure can be plug-and-play for most ar-

bitrary image style transfer models. As shown in Figure 3, our

UCAST consists of three key components: (1) a parallel contrastive

learning scheme that is applied to the style representation learning

and the style transfer process; (2) a DE scheme to further help learn

the distribution of the artistic image domain and (3) a generatorG
to generate the stylization output. (1) and (2) are used for learning

style features to measure the difference between artistic images

and realistic images. The parallel contrastive learning scheme

focuses on forcing the specific reference artistic image and the gen-

erated result to have the same style, whereas the DE scheme pays

attention to the holistic difference between the artistic domain and

the realistic domain.
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The main structure of our parallel contrastive learning scheme

is a multilayer style projector (MSP) trained to project features

of artistic images into style codes. The contrastive losses are

introduced to guide parallel optimization processes, including the

training of MSP and the generator. When training the generator,

adaptive contrastive loss implemented with dual input-dependent

temperature is introduced. By considering the similarities between

the style codes of the reference style image and other artistic

images, our adaptive contrastive loss is more tolerant to style-

consistent samples. The input-dependent temperature is also in-

fluenced by the similarities between the style codes of the tar-

get style image and the input content image, to increase the

robustness of various content-style pairs and prevent artifacts.

The DE scheme is accomplished by two discriminators for the

artistic domain and the realistic domain. Adversarial loss helps the

discriminator model the distribution of the corresponding domain,

and cycle consistency loss is adopted to maintain the content

information.

3.2 Parallel Contrastive Learning

3.2.1 Multilayer Style Projector. Our goal is to develop a unified

arbitrary style transfer framework that can capture and transfer

the local stroke characteristics and overall appearance of an artistic

image to a natural image. A key component is to find a suitable

style representation that can be used to distinguish different styles

and further guide the generation of style images. To this end,

an MSP module, which includes a style feature extractor and a

multilayer projector, is designed. Instead of using features from

a specific layer or a fusion of multiple layers, our MSP projects

features of different layers into separate latent style spaces to

encode local and global style cues.

Specifically, VGG-19 [Simonyan and Zisserman 2014] is adopted,

and the VGG-19 model pre-trained on ImageNet with a collec-

tion of 18,000 artistic images in fifty categories is finetuned. M
layers of feature maps in VGG-19 are selected as input to our

multilayer projector ( layers of ReLU1_2, ReLU2_2, ReLU3_3, and

ReLU4_3 are used in all experiments). Max pooling and average

pooling are used to capture the mean and peak values of features.

The multilayer projector consists of pooling, convolution, and

several multilayer perceptron layers, and it projects the style

features into a set of K-dimensional latent style code, as shown in

Figure 4.

After training, MSP can encode an artistic image into a set of

latent style code {zi |i ∈ [1,M], zi ∈ RK }, which can be plugged

into an existing style transfer network (i.e., replacing the mean and

variance in AdaIN [Huang and Belongie 2017]) as the guidance

for stylization. Next, how to jointly train MSP and style transfer

networks with a contrastive learning strategy is described.

3.2.2 Contrastive Style Representation Learning. A branch of

the parallel contrastive learning scheme is style representation

learning. The MSP needs to be trained to obtain a reasonable style

representation that is in the form of the style code {z1, z2, . . . , zM }.
However, the ground-truth style code for supervised training is

lacking. Therefore, contrastive learning is adopted, and a new

contrastive style loss is designed as an implicit measurement for

the MSP training.

When training the MSP module, an image I and its augmented

version I+ (random resizing, cropping, and rotations) are fed into

an M-layer style feature extractor, which is the pre-trained VGG-

19 network. The extracted style features are then sent to the multi-

layer projector, which is an M-layer neural network and maps the

style features to a set ofK-dimensional vectors {z}. The contrastive

representation learns the visual styles of images by maximizing the

mutual information between I and I+ in contrast to other artistic

images within the dataset considered as negative samples {I−}.
Specifically, the images I , I+, and N negative samples are mapped

intoM groups ofK-dimensional vectors z, z+ ∈ RK and {z− ∈ RK }.
The vectors are normalized to prevent collapsing, respectively. A

large dictionary of 4,096 negative examples is maintained using a

memory bank architecture following MOCO [He et al. 2020]. The

negative examples are sampled from the memory bank. Following

[Van den Oord et al. 2019], the contrastive loss function is defined

to train our MSP module as follows:

LMSP
contr a = −

M∑

i=1

log
exp(zi · z+i /τ )

exp(zi · z+i /τ ) +
∑N

j=1 exp(zi · z−i j
/τ )
, (1)

where · denotes the dot product of two vectors. The contrastive

loss between images is calculated, as opposed to CUT [Park et al.

2020a] that adopts contrastive learning by cropping images into

patches and maximizing the mutual information between patches.

3.2.3 Contrastive Style Transfer. The other branch of the paral-

lel contrastive learning scheme is the style transfer process. The

above contrastive representation provides a proper measurement

for the generator G to transfer styles between images. The loss

is computed using the contrastive representations of the output

image Ics and the reference style image Is , then Ics has a style

similar to Is :

LG
contr a = −

M∑

i=1

log
exp(z̃i · ẑi/τ )

exp(z̃i · ẑi/τ ) +
∑N

j=1 exp(z̃i · z−ij /τ )
, (2)

where z̃ and ẑ denote the contrastive representation of Ics and

Is , respectively. The specific generated and reference images are

taken as positive examples, and contrastive loss is utilized as guid-

ance to transfer styles, which is a one-on-one process. Differently,

the contrastive loss in IEST [Chen et al. 2021a] is calculated only

within generated results, and it takes a set of images as positive

examples, which could reduce the style consistency with the given

reference (see Figure 7).

3.2.4 Adaptive Contrastive Learning. The model needs to toler-

ate these style similarities because different artworks could have

similar styles. Contrastive learning seeks to minimize the distance

between positive samples and maximize the distance between

negative samples in the representation space. By gradient analysis,

[Wang and Liu 2021] demonstrate the gradients with regard to

negative samples are proportional to the similarity between the

particular negative sample and the anchor, proving the contrastive

loss is a hardness-aware loss function. Temperature τ controls

the distribution of negative gradients. Smaller temperatures tend

to focus more on the anchor point’s nearest neighbors, whereas

larger temperatures penalize negative samples equally. When the

temperature is fixed, the gradient’s magnitude with respect to a

ACM Transactions on Graphics, Vol. 42, No. 5, Article 169. Publication date: July 2023.
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Fig. 4. Overview of our MSP module, which includes a VGG-19-based style feature extractor E and a multilayer projector P . P maps the extracted features

to style codes {z} that are then saved in the style memory bank. Image credits: {Giovanni Battista Piranesi, Amedeo Modigliani}/AIC (CC0) [Art Institute

of Chicago 2023].

Fig. 5. Visualization of the embedding distribution of artistic images and generated results on a hypersphere. Style image credits (from left to right) ({Vincent

van Gogh, Katsushika Hokusai}/AIC (CC0) [Art Institute of Chicago 2023], Nicholas Acampora/NGA (CC0) [National Gallery of Art 2023].

positive sample is equal to the sum of gradients with respect to

all negative samples. Prior works of temperature analysis mainly

focus on the penalty’s unevenness of negative samples within an

anchor [Wang and Liu 2021] or the sum of penalties of different

anchors within a training batch [Zhang et al. 2022a]. Differently,

this work pays attention to the proportion of penalties between

the positive sample and negative samples.

Figure 5 shows the embedding distribution with four real paint-

ings and one generated image on a hypersphere. Figure 5(a) shows

that when the style of the reference image and the other artistic im-

ages served as negative samples vary differently, the punishment

of the fixed small temperature may work well. Different artistic

images may share similar styles. When similar style images act as

negative samples, as shown in Figure 5(b), the ideal embedding of

the generated image is separated from all the negative samples but

closer to the similar negative samples. However, the contrastive

loss with a fixed small temperature provides strong punishment

on similar samples due to the hardness-aware attribute, which

means the generated image may be pushed away from the similar

negative sample too much, which is not a reasonable embedding in

the hypersphere. Our adaptive contrastive style transfer approach

is aware of the negative samples that share a similar style with the

reference image. When high-similarity negative samples appear,

our approach will gain tolerance by increasing the temperature

accordingly. Figure 5(c) shows that, with the help of our adaptive

contrastive style transfer approach, the generator is guided under

a reasonable loss, and the generated image can achieve a better

embedding.

To further illustrate our adaptive temperature mechanism, the

similarities of the positive sample and the negative samples in
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Equation (2) are substituted with s+
i
= z̃i · ẑi , s−

ij
= z̃i · z−ij :

LG
contr a = −

M∑

i=1

log
exp(s+

i
/τ+)

exp(s+
i
/τ+) +

∑N
j=1 exp(s−

ij
/τ−)
, (3)

where τ+ and τ− indicate the temperatures of the positive samples

and the negative samples, respectively. The gradients are analyzed

with respect to positive samples and different negative samples.

Specifically, the gradients with respect to the positive similarity

s+
i

and the negative similarity s−
ij

are formulated as follows:

∂LG
contr a

∂s+
i

= −
M∑

i=1

1

τ+
·

∑N
j=1 exp(s−

ij
/τ−)

exp(s+
i
/τ+) +

∑N
j=1 exp(s−

ij
/τ−)
,

∂LG
contr a

∂s−
ij

= −
M∑

i=1

1

τ−
·

exp(s−
ij
/τ−)

exp(s+
i
/τ+) +

∑N
j=1 exp(s−

ij
/τ−)

.

(4)

Equation (4) shows the magnitude of the gradient with respect to

the positive sample is proportional to the sum of gradients with

respect to all the negative samples. By controlling τ− and τ+, the

strength of penalties on the positive sample and negative samples

can be changed.

This work proposes an input-dependent scheme to determine

temperature by considering the similarities between the style

code of the reference style ẑ and the style codes of other artistic

images z−
ij

. The more highly similar samples the memory bank

contains, the larger the temperature is. To achieve this, the sigmoid

function, which is a monotonic function with upper and lower

bounds, is used to represent temperature. Given that the sigmoid

function is centered at the point of the independent variable with

a value of 0, the image similarity (the independent variable of

the sigmoid function) needs to be normalized to a distribution

with a mean of 0. The distribution of image similarity is assumed

to follow a Gaussian distribution. The mean and variance of the

image similarity during training are then calculated to normalize

it. During training, the mean and variance of the distribution of

the data are approximated as the number of samples increases.

The recursive rules are as follows: The new mean is obtained

by weighting the average similarity of each new image with the

known mean similarity and then updating the average. Similarly,

the new variance is derived by weighting the difference between

each new image similarity and the known mean similarity with

the known variance, and then updating the variance. Our input-

dependent temperature is computed as follows:

τ− = t−r anдe ·
1

1 + exp(−(
∑N

j=1 д(s−
ij

) − μ−) · σ−)
+ t−

bound
,

д(s−ij ) =
⎧⎪⎨
⎪
⎩

s−
ij

for s−
ij
> s−

0 for s−
ij
≤ s−

,

(5)

where μ− and σ− indicate the estimation of the mean and standard

deviation of
∑N

j=1 д(s−
ij

), respectively. t−r anдe and t−
bound

denote the

range and lower bound of τ−. The commonly used temperature

variation in contrastive learning is used. t−r anдe is set to 1 and

t−
bound

is set to 0.05.

Arbitrary style transfer task often has the problem that the style

images may not always be suitable for the content image and

thus, increase undesired artifacts. For example, when transferring

a texture-rich style to a smooth content image, the model may

produce artifacts and distortion (e.g., the 4th row of Figure 7).

Therefore, various content-style pairs must be adaptively handled

to increase the robustness. To overcome the said problem, a

suitability-aware scheme is proposed to determine the tempera-

ture based on the similarity between the style code of the reference

image ẑ and the style code of the content image zc
i . When the

reference style and the content image are dissimilar, the penalty is

assigned more to negative samples to prevent artifacts from being

overly stylized:

τ+ = τ− · f (ẑ, zc
i ),

f (ẑ, zc
i ) = t+r anдe ·

1

1 + exp((ẑ · zc
i − μ+) · σ+)

+ t+
bound

,
(6)

where μ+ and σ+ indicate the estimation of the mean and standard

deviation of ẑ · zc
i ), respectively. t+r anдe = 1 and t+

bound
= 0.5

denote the range and lower bound of the scale factor of τ+.

3.3 Domain Enhancement

DE with adversarial loss is introduced to enable the network to

learn the style distribution. Recent style transfer models employ

GAN [Goodfellow et al. 2014] to align the distribution of generated

images with specific artistic images [Chen et al. 2021b; Lin et al.

2021]. The adversarial loss can enhance the holistic style of the

stylization results while it strongly relies on the distribution of

datasets. Even with the specific artistic style loss, the generation is

often not robust enough to be artifact-free.

Differently from these previous methods, the images in the

training set are divided into a realistic domain and an artistic

domain, and two discriminators, DR and DA, are used to enhance

them, respectively (see Figure 3). During the training process,

an image from the realistic domain is randomly selected as the

content image Ic and another image from the artistic domain as

the style image Is . Ic and Is are used as the real samples of DR

and DA, respectively. The generated image Ics = G (Ic , Is ) is used

as the fake sample of DA. The content and style images are then

exchanged to generate an image Isc = G (Is , Ic ) as the fake sample

of DR . The adversarial loss is determined as follows:

Ladv = E[logDR (Ic )] + E[log(1 − DR (Ics ))]

+ E[logDA (Is )] + E[log(1 − DA (Isc ))].
(7)

To maintain the content information of the content image in the

style transfer between the two domains, a cycle consistency loss is

added:

Lcyc = E[‖Ic −G (Ics , Ic )‖1] + E[‖Is −G (Isc , Is )‖1]. (8)

3.4 Video Style Transfer

To apply our method for video style transfer, the patch-wise

contrastive content loss in [Park et al. 2020a] is adopted to keep

the content consistency. The feature maps of the content image

and the stylized result are cut into feature patches. The patches at

the same specific location of the content image and the stylized

ACM Transactions on Graphics, Vol. 42, No. 5, Article 169. Publication date: July 2023.
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Fig. 6. Qualitative comparisons on different backbones trained under our UCAST framework. Style image (the 2nd row-6th rows) credit: Alfred Sisley/AIC

(CC0)[Art Institute of Chicago 2023], Vincent van Gogh/NGA (CC0) [National Gallery of Art 2023], {Paul Cezanne, Pierre-Auguste Renoir, Paul Cezanne}/AIC

(CC0)[Art Institute of Chicago 2023].

result are leveraged as positive samples while the other patches

within the input are leveraged as negatives:

Lc
contr a = −log

exp(v · v+/τ )

exp(v · v+/τ ) +
∑W

n=1 exp(v · v−n /τ )
, (9)

where v,v+ ∈ RK , v−n ∈ RK×W denote the content feature of the

generated image patch, content image patch, and negative image

patches, respectively.

3.5 Network Training

Our full objective function for training of the generator G and

discriminators DR and DA is formulated as follows:

L (G,DR ,DA) = λ1Ladv + λ2Lcyc + λ3LG
contr a + λ4Lc

contr a ,

(10)

where λ1, λ2, λ3, and λ4 are weights to balance different loss terms.

We set λ1 = 1.0, λ2 = 2.0, λ3 = 0.2, and λ4 = 1.0 are set in our

experiments.

4 EXPERIMENTS

We compare UCAST with several state-of-the-art style trans-

fer methods, including AdaIN [Huang and Belongie 2017], Art-

Flow [An et al. 2021], MCCNet [Deng et al. 2021], AdaAttN [Liu

et al. 2021b], IEST [Chen et al. 2021a], StyleFormer [Wu et al.

2021a], and StyTr2 [Deng et al. 2022]. All the baselines are trained

using publicly available implementations with default configura-

tions. The comparison of inference speed is shown in Table 1. In

all our experiments, our results are generated by using AdaIN as

backbone, if no specific annotation is given.

Implementation details. A total of 100,000 artistic images in dif-

ferent styles are collected from WikiArt [Phillips and Mackintosh
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Table 1. Statistics of Inference Speed and Quantitative Comparison with State-of-the-art Methods

Method Inference time Content loss↓ LPIPS↓ Deception Rate↑ User Study I User StudyII

(ms/image) Precision↓ Recall↓
StyleTr2 87 0.123 0.311 54.7% 38.3% 59.0% 56.7%

StyleFormer 8 0.176 0.329 53.2% 39.6% 67.2% 63.4%

IEST 184 0.134 0.305 58.7% 41.3% 65.6% 58.6%

AdaAttN 130 0.125 0.304 50.8% 38.9% 63.0% 58.3%

MCCNet 29 0.137 0.308 45.3% 36.2% 73.6% 70.8%

ArtFlow 168 0.121 0.314 44.2% 39.4% 58.8% 55.5%

AdaIN 11 0.160 0.336 51.0% 27.8% 72.4% 64.6%

UCAST+AdaIN 11 0.117 0.302 64.2% - 39.2% 36.3%

UCAST+StyleTr2 87 0.122 0.311 68.2% - - -

UCAST+ArtFlow 168 0.121 0.251 62.0% - - -

The results of user study I represent the average percentage of cases in which the result of the corresponding method is preferred over ours.
The results of user study II show the accuracy and recall of being selected as fake paintings by the participants. The best results are in bold
and the second-best results are underlined.

2011], and 20,000 images are randomly sampled as our artistic

dataset. A total of 20,000 images from Places365 [Zhou et al. 2018]

are randomly sampled as realistic image dataset. Our framework

is trained and evaluated on those artistic and realistic images. In

the training phase, all images are loaded with 256× 256 resolution.

The number of feature map layers M is set to be 4. The dimension

K of style latent code is set to 512, 512, 512, and 512 for the four

different layers, respectively. Adam [Kingma and Ba 2015] is used

as optimizer with β1 = 0.5, β2 = 0.999, and a batch size of 4. The

initial learning rate is set to 1 × 10−4 and linear decayed linear for

total 8 × 105 iterations. The training takes about 18 hours on an

NVIDIA GeForce RTX3090.

4.1 Effectiveness on Various Backbones

Our UCAST, as a separate network structure, can be plug-and-

play for most arbitrary image style transfer models. In our ex-

periments, UCAST is adapted to AdaIN [Huang and Belongie

2017], ArtFlow [An et al. 2021], and StyTr2 [Deng et al. 2022].

AdaIN [Huang and Belongie 2017] is a CNN-based style transfer

model that includes a fixed VGG network to encode the content

and style images, an adaptive instance normalization layer to

align the channel-wise mean and variance of content features to

match those of style features, and a CNN decoder to invert the

AdaIN output to the image spaces. ArtFlow [An et al. 2021] is a

neural flow-based model that consists of reversible neural flows

and an unbiased feature transfer module. Neural flows are a type

of deep generative model that learns the precise likelihood of high-

dimensional observations via a series of invertible transformations.

StyTr2 [Deng et al. 2022] is a ViT-based model that contains two

transformer encoders for the content image and the style refer-

ence, respectively, a multilayer transformer decoder for content

sequence stylization, and a CNN decoder.

The comparison results are shown in Figure 6. When trans-

ferring style images of ink and wash, as shown in the 1st row,

the three backbone methods cannot faithfully generate the brush

strokes and the empty background. By training under the UCAST

framework, all the enhanced methods can generate high-quality

ink and wash images with smooth empty backgrounds and vivid

strokes. When dealing with watercolor image, as shown in the 2nd

row, the backbones cannot capture the feeling of color blooming.

Given that the sky in the content image is a large empty area

which the style image does not have, the three backbones tend to

generate evident artifacts. Being trained under UCAST can reduce

the artifacts and transfer the unique strokes of watercolor. In the

3rd and 4th rows, the backbones fail to transfer the sharp lines

in the style reference, whereas UCAST improves the details of

the generated images significantly. UCAST can also help all the

backbones generate vivid brush strokes of oil paintings, as shown

in the 5th row.

4.2 Qualitative Evaluation

4.2.1 Image Style Transfer. First, the qualitative results of our

method against the selected state-of-the-art methods are presented

in Figure 7. The comparison shows the superiority of UCAST

in terms of visual quality. AdaIN often fails to generate sharp

details and introduces undesired patterns that do not exist in style

images (e.g., the 4th, 6th, 9th, and 11th rows). ArtFlow sometimes

generates unexpected colors or patterns in relatively smooth re-

gions in some cases (e.g., the 2nd, 3rd, and 8th rows). MCCNet

can effectively preserve the input content but may fail to capture

the stroke details and often generates haloing artifacts around

object contours (e.g., the 2nd, 5th, 9th rows). AdaAttN cannot well

capture some stroke patterns and fails to transfer important colors

of the style references to the results (e.g., the 1st, 5th, and 6th

rows). Although the generated visual effects of IEST are of high

quality, the usage of second-order statistics as style representation

causes color distortion (e.g., the 1st and the 4th row) and cannot

capture the detailed stylized patterns (e.g., the 5th and 7th rows ).

StyleFormer cannot well capture some stroke patterns and tends

to generate artifacts in the results (e.g., the 1st, 6th, and 8th rows).

StyTr2 cannot well transfer the unique style of the reference

images and also tends to generate artifacts(e.g., the 1st, 3rd, and 4th

rows). In particular, these state-of-the-art methods cannot capture

the leaving blank characteristic of the Chinese painting style in

the 1st row of Figure 7 and fail to generate results with a clean

background.
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Fig. 7. Qualitative comparisons with several state-of-the-art style transfer methods, including StyTr2 [Deng et al. 2022], StyleFormer [Wu et al. 2021a],

IEST [Chen et al. 2021a], AdaAttN [Liu et al. 2021b], MCCNet [Deng et al. 2021], ArtFlow [An et al. 2021], AdaIN [Huang and Belongie 2017]. Content image

credits (the 1st–3rd rows): {Pixabay, Thaís Sarmento, Pixabay}/Pexels (Free to use) [Pexels 2023]. Style image credits (the 4th–7th rows): {Vincent van Gogh,

Claude Monet, Philip William May, Childe Hassam}/AIC (CC0) [Art Institute of Chicago 2023].
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Fig. 8. Linear interpolation results of multiple styles. The input style

images are shown in the four corners. Image credits (from left to right,

from top to bottom): {Philip William May, Claude Monet, John Constable,

Childe Hassam}/AIC (CC0) [Art Institute of Chicago 2023], Nicholas

Acampora/NGA (CC0) [National Gallery of Art 2023].

In comparison, UCAST achieves the best stylization perfor-

mance that balances the characteristics of style patterns and

content structures. Instead of using second-order statistics as a

global style descriptor, an MSP module is used for style encoding

with the help of a DE module for effective learning of style

distribution. Thus, UCAST can flexibly represent vivid local stroke

characteristics and the overall appearance while preserving the

content structure. For instance, as shown in Figures 1, 2(c) (the 1st

row), and 7 (the 1st row), UCAST successfully captures the large

portion of empty regions in the style images, and it generates a

stylization results that have salient objects in the center and blank

space around. As shown in Figure 7, besides commonly used oil

paintings (the 2nd, 3rd, and 5th rows), UCAST can also generate

high-quality results of line drawing (the 2nd row), cartoon (the 7th–

9th rows), aquarelle (the 6th and 11th rows), crayon drawing (the

10th row) and color pencil drawing (the 12th row).

4.2.2 Style Interpolation. The feature maps among four style

images with equivalent weights are interpolated. Figure 8 shows

interpolation can be done among arbitrary styles by providing

the decoder with a convex mixture of feature maps converted to

various styles. Smooth intra-domain (vertically) and inter-domain

(horizontally) interpolation results are obtained.

4.3 Quantitative Evaluation

The content loss [Li et al. 2017], LPIPS [Chen et al. 2021a], and

deception rate [Sanakoyeu et al. 2018b] are used, and two user

studies are conducted to evaluate our method quantitatively. The

two user studies are online surveys that cover art/computer sci-

ence students/professors and civil servants.

For content loss and LPIPS, a pre-trained VGG-19 is used, and

the average perceptual distances between the content image and

the stylized image are computed. The statistics are shown in

Table 1. For deception rate, a VGG-19 network is trained to classify

ten styles on WikiArt. Then, the deception rate is calculated as the

percentage of stylized images predicted by the pre-trained network

as the correct target styles. The deception rate for the proposed

UCAST and the baseline models are reported in the 2nd column of

Table 1. As observed, UCAST achieves the highest accuracy and

surpasses other methods by a large margin. As a reference, the

mean accuracy of the network on real images of the artists from

WikiArt is 78%.

User Study I. We compare UCAST with seven state-of-the-art

style transfer methods to evaluate which method generates results

that are most favored by humans. For each participant, 50 content-

style pairs are randomly selected, and in each question, the stylized

result of UCAST and one of the other methods are displayed

in random order. Firstly, the purpose of the style transfer task

is introduced to the participants, i.e., transferring the style of a

painting image to a photo to generate a picture with corresponding

content and style. For each question, the participant is asked to

choose the better image that learns the most characteristics from

the style image and maintains the semantic information of the

content image. There is neither a training period nor specific

guidelines (e.g., the definition of the “characteristics”) given that

most of the participants are familiar with image synthesis or art

analysis. In this manner, the faithful preference results of profes-

sionals can be obtained. Finally, 3,800 votes are collected from

76 participants (52 computer graphics or computer vision re-

searchers, 12 artists, and other 12 people with different back-

grounds). The percentage of votes for each method is reported

in the 6th column of Table 1. These results demonstrate that

UCAST achieves better style transfer results. Moreover, according

to the statistics, UCAST obtains significantly higher preferences in

categories of sketch, Chinese painting, and impressionism.

User Study II. A novel user study is designed to evaluate the

stylized images quantitatively, which is called the Stylized Au-

thenticity Detection. For each question, participants are shown

ten artworks of similar styles, including two to four stylized fake

paintings, and asked to select the synthetic ones. Within each

single question, the stylized paintings are generated by the same

method. Each participant finishes 25 questions. Finally, we collect

2,000 groups of results collected from 80 participants (55 computer

graphics or computer vision researchers, 12 artists, and other

13 people with different backgrounds), and the average precision

and recall are used as the measurement for how likely the results

are recognized as synthetics. The percentage of votes for each

method is reported in the 7th column of Table 1. The paintings

generated by UCAST have the lowest chance to be decided by

people as fake paintings. Moreover, the precision and recall of

UCAST are less than 50%, which means users could not distinguish

the real ones from the fakes, and they select more real paintings as

synthetics during the testing.

4.4 Video Style Transfer

We compare our method with seven baselines on video style

transfer and show the stylization results in Figure 9. The heat

maps of differences between different frames are visualized to
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Fig. 9. Qualitative comparison on video style transfer. The first column shows the input video frame and the rest of the columns show the stylization results

generated by different style transfer methods. The heat map of differences between the current frame and the previous adjacent frame are shown beneath

each frame.

Table 2. Quantitative Evaluation of Temporal Consistency on 50 Rendered Clips

Ours StyTr2 StyleFormer CAST IEST AdaAttN ArtFlow MCCNet AdaIN

Temporal Loss↓ 0.0322 0.0350 0.0352 0.0439 0.0460 0.0367 0.0329 0.0441 0.0489

The best results are in bold.

assess the stability and consistency of synthesized video clips. Our

approach outperforms existing style transfer methods in terms of

stability and consistency by a significant margin. This result can be

attributed to three points: (1) Our style representation and domain

distribution learning offer proper guidance to prevent the model

from distorted texture patterns. (2) The cycle consistency loss en-

hances the consistency of the synthesized video clip. (3) The added

patch-wise contrastive losses offer a strong content consistency

constraint which motivates the same object in a different frame to

have the same stylization results.

Video consistency. The widely used temporal loss [Wang et al.

2020] is employed to quantitatively analyze the temporal consis-

tency of stylized videos. Given two adjacent frames I t
c and I t−1

c in

a T-frame input clip and I t
cs and I t−1

cs in a T-frame rendered clip,

the temporal loss is defined as follows:

Ltempor al = averaдe ( | |O ◦ (WI t−1
c →I t

c
(I t−1

cs ) − I t
cs ) | |), (11)

where O is an occlusion mask:

O = |WI t−1
c →I t

c
(I t−1

cs ) − I t
cs | > 10. (12)

Table 2 shows our method achieves the best temporal consistency.

4.5 Ablation Study

Contrastive style loss. We remove the contrastive style loss from

Equation (10) to train the model. As shown in Figure 10(b), the

model without our contrastive style loss cannot capture the color

and the stroke characteristics of the style image compared with

the full model. The brushstrokes of watercolor in the style image

almost disappear in the 1st row. The sharp lines and edges in

the 2nd row become smooth and murky. The brown color of the

whole image generated in the 3rd row does not appear in the style

image.

We replace the adaptive temperature from Equation (3) with

constant temperature to train the model. Figure 10(c) shows that

when dealing with difficult content-style pairs, the model without

our adaptive temperature tends to generate artifacts. For instance,

the black artifact appears in the sky of the 1st row and 3rd row.

By introducing input-dependent temperature, the full UCAST can

capture and transfer the unique style of cartoon. In the 2nd row, the

sharp lines and flat color fillings in the style image are faithfully

transferred to the results while the simplified model generates

result with mixing style. The content details of the women’s

face are well preserved by the full model. With the contrastive

style loss and adaptive temperature, our full model can faithfully

transfer the brushstrokes, textures, and colors from the input style

image.

Domain enhancement. Our full UCAST uses DE for realistic and

artistic images separately. We train a simplified UCAST model

without DE module. Figure 11(d) and (h) shows the color of the

style images are faithfully transferred, but the generated images

do not appear like real paintings. A simplified UCAST model is

trained using one discriminator that mixes realistic and artistic

images together (mix-DE). Figure 11(e) shows the results generated

by the mix-DE model are acceptable, but the stroke details in

the generated images are weaker than those ones by the full

UCAST model. This fact is due to the existence of a significant

gap between the artistic and realistic image domains. All images
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Fig. 10. Ablation study on adaptive contrastive learning. From left to right: (a) content image; (b) style image; (c) AdaIN; (d) UCAST without contrastive

loss; (e) UCAST without adaptive temperature; (f) full UCAST. Content image credit (the 2nd row): Airam Dato-on/Pexels (Free to use) [Pexels 2023].

Fig. 11. Ablation study on DE. From left to right: (a) content image; (b) style reference; (c) AdaIN; (d) UCAST without DE; (e) UCAST using mixed DE; (f)

UCAST using one DE without the realistic domain; (g) UCAST trained with the asymmetric cycle consistent loss by only reconstructing the realistic images;

and (h) the full UCAST model. Style image (1st row) credits: Michel Ange Corneille/AIC(CC0) [Art Institute of Chicago 2023].

from the realistic domain are abandoned for ablation (one-DE). As

shown in Figure 11(f), the results generated by the one-DE model

lack details.

To better evaluate the improvement of the contrastive style loss

on the style transfer task, the latent promotion of cycle consistency

loss is excluded from network training because the reconstruction

of artistic image may imply style information. UCAST is trained

with an asymmetric cycle consistent loss, which only reconstructs

the realistic images. The decoder of the style transfer network is

unaffected by the reconstruction of the artistic image. Figure 11(g)

shows that removing realistic image reconstruction will lead to

slightly degraded stylization results.
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Fig. 12. Typical failure cases of UCAST. Content image credits: {David

Gomes, Simon Robben} (Free to use)/Pexels [Pexels 2023].

4.6 Limitations

UCAST has limited capability in the fine-grained controllability of

specific objects. If an object in the style image is in a specific color,

sometimes it fails to transfer the color in a semantic matching

way. For example, in the first row of Figure 12, the red color of

the eyes in the style image is not transferred to the eyes in the

content image but appears in some regions of the clothes in the

generated image. A possible improvement would be to analyze

the semantic information represented by different dimensions of

the style code to enhance the controllability of the model. UCAST

also has difficulty to producing large geometric change, like the

example shown in the second row of Figure 12, where UCAST fails

to transfer the special face shape in the style image to the content

image.

5 CONCLUSION AND FUTURE WORK

In this work, a novel unified framework, namely, UCAST, is

presented for the task of arbitrary image style transfer. Instead

of relying on second-order metrics such as Gram matrix or

mean/variance of deep features, image features are used directly

by introducing an MSP module for style encoding. A parallel

contrastive learning scheme is developed to leverage the available

multistyle information in the existing collection of artwork and

help train the MSP module and the generative style transfer net-

work. An adaptive contrastive learning is proposed for style trans-

fer implemented by a dual input-dependent temperature. A DE

scheme is further suggested to effectively model the distribution

of realistic and artistic image domains. The extensive experimental

results demonstrate our proposed UCAST method is effective

for various generative backbones and achieves superior arbitrary

style transfer results compared with state-of-the-art approaches.

In the future, the contrastive style learning will be improved by

considering artist and category information.
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