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Abstract—Convolutional neural networks (CNNs) are widely used for embroidery feature synthesis from images. However, they are still
unable to predict diverse stitch types, which makes it difficult for the CNNs to effectively extract stitch features. In this paper, we propose
a multi-stitch embroidery generative adversarial network (MSEmbGAN) that uses a region-aware texture generation sub-network to
predict diverse embroidery features from images. To the best of our knowledge, our work is the first CNN-based generative adversarial
network to succeed in this task. Our region-aware texture generation sub-network detects multiple regions in the input image using a
stitch classifier and generates a stitch texture for each region based on its shape features. We also propose a colorization network with a
color feature extractor, which helps achieve full image color consistency by requiring the color attributes of the output to closely resemble
the input image. Because of the current lack of labeled embroidery image datasets, we provide a new multi-stitch embroidery dataset
that is annotated with three single-stitch types and one multi-stitch type. Our dataset, which includes more than 30K high-quality multi-
stitch embroidery images, more than 13K aligned content-embroidered images, and more than 17K unaligned images, is currently the
largest embroidery dataset accessible, as far as we know. Quantitative and qualitative experimental results, including a qualitative user
study, show that our MSEmbGAN outperforms current state-of-the-art embroidery synthesis and style-transfer methods on all evaluation
indicators. Our demo and dataset sample can be found on the website https://csai.wtu.edu.cn/TVCG01/index.html.

Index Terms—Multi-stitch embroidery synthesis, region-aware texture generation, style transfer, generative adversarial networks.
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1 INTRODUCTION

EMBROIDERY, an ancient art form, intricately weaves
threads into a fabric to create vivid patterns and tex-

tures through diverse stitch types. Historically manual, this
technique is evolving with technology. Increasingly, design-
ers employ automated tools like Wilcom ES to create em-
broidery designs. While these tools enhance speed, they still
require considerable time for designers to manually select
and adjust stitch types and colors to achieve the desired
artistic effect, often involving iterative adjustments and sub-
stantial time commitments. This work introduces a novel
approach utilizing generative neural network models that
not only accelerates this process but also enhances precision
in pattern replication and color fidelity—critical aspects in
embroidery. Unlike conventional approaches that prioritize
style transfer, our method ensures that each stitch in the
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generated embroidery aligns with professional standards,
supporting designers in producing work that meets high
aesthetic and technical criteria, and significantly reducing
the time spent on manual adjustments.

In the early days, some traditional methods [3]–[7] have
explored the influence of stitch types on embroidery tex-
tures. Our method draws partial inspiration from these
pioneering efforts. Traditional methods are commendable
for their ability to produce embroidery textures that closely
resemble real stitch styles and offer clear color and textural
fidelity that is highly valued in both digital entertainment
and law enforcement applications. However, the primary
limitation of traditional methods lies in their inability to
generate a diverse array of stitch types. While they excel at
producing highly realistic single-stitch textures, they often
fall short in replicating the complex multi-stitch effects
that modern embroidery design software can achieve. This
limitation significantly restricts their applicability in con-
temporary design practices that demand a richer and more
varied textural representation. Current general image-to-
image generation methods [8]–[14] have been adapted to
create embroidery images, but they exhibit notable deficien-
cies. Specifically, some of these methods struggle with color
accuracy, often resulting in a mismatch between the color
palette of the generated images and the original inputs.
Others fail to produce textures that authentically reflect the
intricate details of embroidery, thus lacking the depth and
realism required for high-quality embroidery design.

Recent advancements [1], [2] have employed neural net-
works specifically to generate embroidery images, aiming
to incorporate multiple stitch styles. These neural network-
based methods strive to accurately reproduce multi-stitch



Satin Stitch

Tatami Stitch

Flat Stitch

Satin Stitch

Tatami Stitch

Flat Stitch

Detail

Detail

(a) Real embroidery artwork (b) State-of-the-art result (c) MSEmbGAN

Fig. 1: MSEmbGAN synthesizes a multi-stitch embroidery image containing various styles similar to real embroidery.
Extant models cannot synthesize multi-stitch patterns and textures. (a) Real embroidery pieces often contain a variety of
stitch styles. (b) Comparisons of EmbGAN [1] (top) and Weis [2] (bottom) methods. (c) Our MSEmbGAN model synthesizes
multi-stitch embroidery images (i.e., flat, satin, and tatami stitches). For better visual effects, we filled the white regions in
the image with cloth patterns.

textures, essential for achieving the depth and realism seen
in traditional embroidery, yet with the versatility that mod-
ern applications require. Furthermore, when using neural
network-based style transfer models for multi-stitch embroi-
dery synthesis, these models are typically trained on exten-
sive datasets from similar domains. Although this training
enhances their performance, the datasets most applicable to
style transfer often do not contain the variety of patterns,
textures, and color features needed for authentic multi-
stitch embroidery tasks. As a result, these neural network-
based methods can struggle with stability in generating
complex embroidery textures, and the outcomes may de-
viate significantly from the expected ground truth textures.
For instance, studies such as those by [15] and [16], while
innovative, do not always effectively preserve the original
color integrity of the ground truth images, often leading
to color shifts. This highlights the ongoing challenge of
developing a neural network method that can both capture
the detailed characteristics of multiple stitches and maintain
the color accuracy of the original designs.

This paper proposes the first convolutional neural net-
work (CNN)-based multi-stitch embroidery generative ad-
versarial network (MSEmbGAN) and a large annotated
multi-stitch embroidery dataset. In the field of deep learn-
ing, our work focuses for the first time on the influence of
both single and multiple stitches and generates superior
results, as shown in Fig. 1 Specifically, MSEmbGAN can
identify diverse stitch textures from different embroidery
regions in the input image and maintain consistent color fea-
tures in the resulting image. We propose two sub-networks
to achieve these effects. The region-aware texture generation
network generates the embroidery texture of the local region
corresponding to the suitable stitch, and the colorization
network optimizes the full embroidery image by maintain-
ing color consistency. Specifically, the region-aware texture
generation network can guarantee that each color region has
a specific embroidery stitch with our novel stitch classifier
to detect the multiple color regions of the input image and
mark the stitch type of the color regions. Meanwhile, the
colorization network contains a color feature extractor to
achieve full image color consistency by forcing the color
features of the result to approximate the input image as

much as possible. Owing to the lack of relevant datasets, we
also compile and annotate the field’s largest multi-stitch em-
broidery dataset for model training and testing. Each image
is assigned one of three single-stitch labels (i.e., satin, tatami,
or flat) or a multi-stitch label that reflects the appropriate
mixture of stitches. This dataset has more than 30K high-
quality multi-stitch embroidery images, including over 13K
aligned content embroidery images and over 17K unaligned
images. In summary, our work provides the following three
main contributions:

• We propose MSEmbGAN, the first learning-based
model to successfully synthesize multi-stitch embroi-
dery images that contain a variety of stitch textures
and colorful.

• We propose two collaborative sub-networks: a
region-aware texture generation network to ensure
that embroidery textures are diverse while main-
taining accurate stitch features, and a colorization
network to ensure color consistency between input
and output images.

• We built the largest multi-stitch embroidery dataset
available. It is also the first embroidery dataset that is
carefully annotated by single and multi-stitch labels.

Extensive experiments show that our MSEmbGAN can
generate embroidery images containing diverse stitches.
Moreover, our results are more realistic and vivid compared
with state-of-the-art (SOTA) embroidery synthesis methods,
as shown in Fig. 1. We establish two websites to showcase
partial samples of our multi-stitch embroidery dataset 1 and
a demo of our MSEmbGAN network 2, respectively.

2 RELATED WORK

2.1 Single-Stitch Embroidery Style Synthesis
Most existing embroidery-style synthesis models focus

on single-stitch embroidery-style synthesis. Zhou et al. [17]
first added new stitch attributes for each region. Subsequent
works gradually began to focus on the stitch styles of the

1. https://drive.google.com/drive/folders/1VEg01D0vmO82oAY
Hr9D7KzDUCRza-DmU?usp=sharing

2. https://csai.wtu.edu.cn/TVCG01/index.html
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generated images. For example, Yang et al. [18], [19] focused
on the nature of the stitch construct to uncover different
artistic styles related to random-needle embroidery. Qian
et al. [20] added noise to gray images and applied a style
transfer method to improve model training. Wei et al. [2]
used a semantic segmentation method to extract the target
content image from the embroidery synthesis process. Beg et
al. [1] proposed an unsupervised image-to-image translation
method to generate embroidery images, but the method can
only render single-stitch features.

There is a more sophisticated embroidery style called
random needle embroidery. The above general embroidery
generation methods cannot produce this embroidery pattern
well. For this reason, Yang et al. [21] proposed a multi-layer
rendering technique to specially generate random needle
embroidery patterns. Chen et al. [22] proposed a random
needle embroidery pattern generator that uses the Markov
chain model. Qian et al. [23] proposed a CNN containing
two loss functions to generate random needle embroidery
images. Since random needle embroidery cannot be used
to examine the combinations of multi-stitch texture, it can
only be deconstructed into single-stitch constituent styles.
Because the use of multi-stitch embroidery styles is more
common in practical applications, we begin to pay attention
to the generation of multi-stitch embroidery styles. In this
work, we focus on the effects of combined stitch types on the
quality and complexity of the generated embroidery images.
In our previous work [24], we implemented the embroidery
image generation using the embroidery channel attention. In
this work, we aimed to maintain color consistency between
the input images and output embroidery images. In contrast
to our previous work, in this paper, we add multi-stitch
features to the resulting images while maintaining color
consistency.

2.2 Multi-Stitch Embroidery Style Synthesis
Compared with single-stitch embroidery, multi-stitch

embroidery focuses on a rich variety of combined stitch
styles. Chen et al. [3] proposed a technique to automatically
generate embroidery patterns from line drawings. Other
works [4], [25] have supplemented the handling of lighting
issues during the embroidery rendering process. Despite
their advancements, these methods rely on the users to
setup the parameters about image segmentation and stitch
style [26], which makes them time-consuming and labo-
rious. These methods make it difficult for users without
professional knowledge to carry out embroidery design and
creation. In recent years, some methods have attempted
to address these concerns [7], [27] [2]. Unfortunately, these
works cannot generate dynamic and flexible stitch textures
owing to their reliance on traditional algorithms. Thus, we
consider the use of adversarial deep learning to ensure that
the generated stitch texture is both lifelike and retains the
color of the original image.

2.3 Image-to-Image Translation
Image-to-image translation [28]–[30], which maps one

image domain to another, is a hot research field. Cai et al.
[28] proposed an automatic retouching method for scratched
photographs under the context of scratch or background.

Xu et al. [29] proposed a dual-task deep learning method to
simultaneously separate the effect and restore the content
from a cartoon animation. Xiao et al. [30] discovered an
intermediate domain that can bridge the large inherent gap
between two domains to convert a human portrait into
anime style. Previous to this, GANs are common and proven
effective tools [31] for image-to-image translation tasks.
Pix2Pix [13] is an image-to-image translation model that
leverages a conditional GAN [32]. CycleGAN [15] learned
the translation between two domains by introducing cycle
consistency loss without paired data. However, the above
methods cannot generate multi-stitch embroideries due to
the inability to input information on stitch types.

StyleGAN [33] can modify the resulting facial informa-
tion at latent code space, but we found it cannot achieve
fine results in embroidery synthesis tasks in our experi-
ment. The UNIT model [34] was designed based on the
assumption that different data spaces share the same latent
space. Hence, an image-to-image translation problem can be
treated as a latent space translation problem. MUNIT [14]
defined the shared latent space as content space and the
difference latent space as the style space that is used to per-
form multimodal image-to-image translation tasks. Some
methods [35], [36] forced the latent code to be converted
to a Gaussian distribution, whereas others [37], [38] added
conditional information based on a variational auto-encoder
(VAE). The diverse image-to-image disentangled represen-
tation translation (DRIT++) [16] also used a VAE to perform
the task of disentangling representations. However, these
methods cannot generate embroidery images with a variety
of stitches and lack the ability to handle complex patterns.
To address these problems, our MSEmbGAN provides a
region-aware texture generation network to generate multi-
stitch styles and a colorization network to solve the color
shift problem between input and output images.

3 METHOD

Our proposed MSEmbGAN comprises two sub-
networks: a region-aware texture generation network that
generates grayscale embroidery texture images êLfake, and a
colorization network that optimizes the color features of the
final result êfake.

To support multi-stitch embroidery image learning, we
decouple the region-aware texture generation network into
a stitch classifier module Cst, a stitch latent code generator
module Gslc, a content encoder EL

con and a texture generator
GL. Fig. 2 presents an overview of the MSEmbGAN archi-
tecture. To train the model to closely approximate the color
of the input image, we incorporate a color feature extractor
and a color consistency loss function.

In particular, the high-frequency features of embroidery
images are the key learning objectives of our network. We
use the Lab color space to help optimize the luminance L
and chrominance ab of the generated images.

Due to the complexity of the region-aware texture gen-
eration network, we apply two-step training for it. The
first step is to generate the embroidery texture, and the
second step is to reconstruct the color information. In this
paper, our task is to map the content image domain C to
the embroidery image domain E . MSEmbGAN is trained

3
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Fig. 2: Overview of the MSEmbGAN architecture. (a) MSEmbGAN contains two sub-networks, namely the region-aware
texture generation network (orange box) and the colorization network (yellow box). The region-aware texture generation
network consists of a stitch classifier module (blue box) and a stitch latent code generator (green box). (b) The stitch
classifier classifies the input image c into one of three stitch types, namely satin, tatami and flat, according to the shape of
the color regions Creg . (c) Given a random Gaussian distribution s and stitch-type labels, the stitch latent code generator
generates the latent code of the stitch texture.

with paired training data Xdata = {(ci, ei, sti)|ci ∈ C and
ei ∈ E , sti ∈ {s, t, f}, i = 1, 2, . . . , n}, where n is the
number of content-embroidery pairs in the training dataset
and st represents the stitch type. In Section 3.1, we introduce
the three basic embroidery stitches involved. We present the
network architecture of MSEmbGAN, including the sub-
networks, in Section 3.2 and introduce the optimization
strategy in Section 3.3. Finally, we further introduce the
training and testing mechanisms in Section 3.4.

3.1 Basic Embroidery Stitch
An embroidery artwork usually comprises diverse stitch

types and color forms expressed by embroidered patterns.
Specially, the stitch type directly determines the character-
istics of the final texture effect (see Fig. 1 and Fig. 3). In
order to enable the network to better extract features from
different types of stitches, we chose three distinct stitch
styles as the basic stitches, namely satin, tatami, and flat,
as illustrated in Fig. 3. The characteristics of these three
stitch types are described as follows: (1) Satin stitch (st=s)
is a commonly used embroidery stitch type. The needle is
dropped on both sides of the object’s outline, and the folded
line advances in a snakelike pattern. The angle, density,
and length of the satin stitch vary from object to object. (2)
Tatami stitch (st=t), which is also known as the Xiwen stitch,
resembles the tatami grass-weave pattern. The embroidery
stitch forms a block surface in the way of line walking to
form a unified and orderly needle group. (3) Flat stitch (st=f)
is another common embroidery stitch in which the needle
is continuously stitched along a linear path that traces a
pattern with varying expressions of thickness and shape.

3.2 Network Architecture
MSEmbGAN is partially inspired by the image-to-image

translation method DRIT++ [16] and follows the same rep-

Satin Stitch Tatami Stitch Flat Stitch

Fig. 3: Three different types of embroidery stitches. The
small images are vector graphics corresponding to the
stitches. The big images are embroidery patterns corre-
sponding to the stitches.

resentation model. In order to get higher-quality and more
expressive resulting images, we have greatly modified the
network architecture of the basic representation model. Our
MSEmbGAN first recognizes the stitch types within the
input image regions, generates corresponding embroidery
textures based on the identified stitch types, and finally
optimizes the overall color of the results.

To achieve the above functions, we propose two sub-
networks. The region-aware texture generation network
detects multiple color regions of the input image c and
generates the gray-scale single-stitch embroidery images
êLfake|st (L means the luminance and st means the stitch
type) according to the shape features of each local color
region {ri}Ni=1 (N is the total number of the regions).
The colorization network further refines the overall image
êLfake, ensuring that the color of the generated multi-stitch
embroidery image closely approximates the the color of the
input image. In the rest of this section, we describe the
architecture of the two sub-networks in detail.
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3.2.1 Region-Aware Texture Generation Network

The region-aware texture generation network consists
of a stitch classifier, a stitch latent code generator, and
a texture generator, as shown in Fig. 2. Given an input
image c ∈ C, the stitch classifier module extracts its shape
feature and applies the quick shift algorithm [39] and stitch
classification algorithm Creg to divide the input image into
regions {ri}Ni=1 and assign the {ri}Ni=1 corresponding 0/1
masks {bi}Ni=1 to the regions, where N is the total number
of the color regions. This process results in a set of stitch
masks labeled with the stitch type st.

Then the stitch latent code generator generates the stitch
latent code zs|st for each region. Through the above steps,
the region-aware texture generation network generates the
gray-scale single-stitch embroidery images êLfake|st corre-
sponding to st for each color region according to the masks
labeled for each region.

We define parameter λw as the region-width threshold,
which bounds the size of the circle kernel Kλw to erode
the binary mask image of ri. Meanwhile, the stitch type per
region, denoted by sti, are split as follows:

sti =


f ∥bi ⊖Kλf ∥1 = 0,

s ∥bi ⊖Kλf ∥1 ̸= 0 and ∥bi ⊖Kλw∥1 = 0,

t ∥bi ⊖Kλw∥1 ̸= 0.

(1)

where ri is the region to be filled by the satin stitch when
sti = s. Otherwise, it is filled by the tatami stitch when
sti = t or the flat stitch when sti = f . The symbol
(ri ⊖Kλw) indicates that the region ri is eroded by a circle
kernel Kλw with diameter λw, and Kλf indicates the circle
kernel of diameter λf . Obviously, λw > λf because the
region of tatami stitch is the widest. The region mask set can
be divided into three sets (i.e., {bi|st=s}Si=1, {bi|st=t}Ti=1 and
{bi|st=f}Fi=1) according to the stitch types. Each set of region
masks are then merged into corresponding sub-images, as
shown in Fig. 4. Overall, the input image c ∈ C is split into
three sub-images (i.e., cs, ct, and cf ) according to the stitch
types of embroidery:

cs = (
∑
i

bi|s) ∗ c, ct = (
∑
i

bi|t) ∗ c, cf = (
∑
i

bi|f ) ∗ c

(2)

where ∗ represents element-wise multiplication. The sub-
images {cs, ct, cf} are then transferred to colorization net-
work as inputs to generate single-stitch embroidery textures
of type st ∈ {s, t, f}.

The stitch latent code generator module consists of resid-
ual blocks Fslc and a random Gaussian noise generator. It
generates zs|st based on the stitch type, st, and random
prior stitch texture latent code s ∼ N (0, I). This process
can be expressed as zs|st = Fslc(s, st).

The region-aware texture generation network that
generates the stitch texture corresponding to the stitch
type of each segmented region consists of four parts:
an embroidery encoder EL

emb, a content encoder EL
con,

a luminance generator GL and a texture discrimina-
tor DL, where L is the luminance channel and ab is
chrominance channel of the Lab color space. Conse-
quently, we obtain a grayscale reconstructed embroidery
image êLrecon|st = GL(Fslc(E

L
emb(e

L, st), st), EL
con(c

L))

(a) Segmented Mask (b) 𝒄𝑠
𝐿 (c) 𝒄𝑡

𝐿 (d) 𝒄𝑓
𝐿

Fig. 4: Examples of intermediate processes for the stitch
classifier: (a) visualization of 0/1 masks merged by three
stitch types (red: satin, blue: tatami, green: tatami, gray:
none); (b) grayscale content subimage of the satin stitch;
(c) grayscale content subimage of the tatami stitch; and (d)
grayscale content subimage of the flat stitch.

and a grayscale generated single-stitch embroidery image
êLfake|st = GL(zs|st, E

L
con(c

L)).

3.2.2 colorization network
The colorization network adds the color information

to the generated grayscale multi-stitch embroidery image
êLfake fused from the grayscale single-stitch embroidery
images êLfake|st, so we can obtain the final embroidery
image êfake. The network consists of a luminance encoder
EL

lum, a chrominance encoder Eab
chr , a chrominance gen-

erator GLab, and a color feature extractor EXcolor. The
luminance encoder EL

lum encodes the luminance channel
of the generated embroidery image êLfake. The chromi-
nance encoder Eab

chr encodes the chrominance channel of
the input image cab. The embroidery image êfake is gener-
ated from the chrominance generator GLab. Thus, êfake =
GLab(EL

lum(êLfake), E
ab
chr(c

ab)). Finally, we use the hyper-
parameter λlum to adjust the brightness of the resulting
images: êfake = λlumêLfake + êabfake. In our experiment, we
set λlum = 0.9.

3.3 Optimization
The total loss function contains two parts that corre-

spond to the two sub-networks. The texture generation loss
encourages the region-aware texture generation network
(Section 3.3.1) to synthesize the texture êLfake|st that matches
the stitch type st. The color consistency loss encourages
the colorization network (Section 3.3.2) to add color details
similar to the input image to the generated image for further
optimization.

3.3.1 Texture Generation Loss
To speed up the convergence of the network, we provide

a two-step training process for the region-aware texture
generation network. In each step, the region-aware texture
generation network is optimized by a step loss function.
Now we describe the two training steps separately.

In the reconstruction step, inspired by the work of
[16], we apply an embroidery reconstruction process to
encourage the network to retain the color information of
the input image. The step loss is formulated as follows:

LL
step−1 =LL

recon + λKLLL
KL (3)

where λKL are weights of the given Kullback–Leibler (KL)
divergence loss LL

KL. The above loss forces the latent code
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generated by the embroidery encoder EL
emb to approximate

the Gaussian distribution.
In this step, we use the KL divergence loss LKL [35], [36]

during training to push the distribution of the embroidery
texture latent code toward a Gaussian distribution N (0, I):

LKL = Ec∼Xdata

∑
[E(c) log

E(c)

n
]

=
1

2
[µTµ+

∑
(σTσ − log(σTσ)− 1)]

(4)

where the encoder E outputs the mean µ and the logarithm
of covariance log(σTσ) of the latent code, and n ∼ N (0, I)
is an eight-dimensional random vector. The latent code z
can be sampled by z = µ + n ∗ (σTσ). To force the
reconstructed embroidery image êLrecon|st to approximate
the input image eLst, we use the following reconstruction
loss LL

recon to optimize the network:

LL
recon(E

L
emb, E

L
con, G

L,Fslc)

=E(cL,eL,st)∼Xdata
[∥eLst − êLrecon|st∥1]

(5)

where ∥ ∗ ∥1 is the L1-norm whose output is sparse to
prevent over-fitting.

In the generation step, the sampled random latent code
s ∼ N (0, I) replaces the embroidery encoder EL

emb to
generate embroidery results. Unlike the work of [16], we
sample a latent vector s ∼ N (0, I) as the texture represen-
tation and reconstruct it. Additionally, we add stitch type
of the input content sub-image st as a condition to our
region-aware texture generation network to generate the
corresponding fake texture sub-image. The generation step
loss is as follows:

LL
step−2 =− LL

advD + LL
advG + λlatentLL

latent (6)

where λlatent is a hyper-parameter that is used to balance
each term in the above formula.

In this step, we reconstruct the the resulting image in
the latent space. The latent regression loss LL

latent is used to
construct an invertible mapping between the image space
and latent space:

LL
latent(E

L
emb, E

L
con, G

L,Fslc)

=E(cL,eL,st)∼Xdata
[∥ŝrecon|st − s∥1]

(7)

where the reconstructed texture latent code is ŝrecon|st =
EL

emb(ê
L
fake|st, st). Instead of using normal GAN [31], we

use the Wasserstein GAN (WGAN) [40] to alleviate the
vanishing gradient problem (see Section 4.1). The following
adversarial loss is used to approximate the ground truth
embroidery:

LL
advD(DL)

=E(cL,eL,st)∼Xdata
[DL(eLst)−DL(êLfake|st)]

LL
advG(E

L
emb, E

L
con, G

L,Fslc)

=E(cL,eL,st)∼Xdata
[DL(êLfake|st)]

(8)

3.3.2 color consistency Loss

With embroidery stylization, it is crucial to ensure that
the generated images preserve the color of the input images.

(a) Training Pipeline (step-1)

(b) Training Pipeline (step-2)
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Fig. 5: Two training steps of the region-aware texture gener-
ation network: (a) In Step 1, the KL divergence loss encour-
ages the stitch texture representation q(EL

emb(e
L
st, st)|eLst, st)

with stitch type st to approximate a prior Gaussian distri-
bution, N (0, I); (b) In Step 2, we construct an invertible
mapping between the image and latent space.

MSEmbGAN uses the high-level feature maps of the pre-
trained color feature extractor EXcolor to measure the color
preservation of generated embroidery images.

To extract the high-level color feature of an image, the
color feature extractor EXcolor is pre-trained by the color
consistency loss. Then the color feature of the input and
output images are extracted separately by EXcolor. We
define the color consistency loss Lcol to encourage the color
similarity of the high-level features between the input and
resulting images:

Lcol(EXcolor)

=E(c,e)∼Xdata
[∥EXcolor(c)− EXcolor(e)∥1]

(9)

In addition, we define the content loss Lcon to encourage
the color feature of the generated embroidery images to ap-
proximate those of the corresponding input content images:

Lcon(E
L
lum, Eab

chr, G
Lab)

=Ec∼Xdata
[∥EXcolor(c)− EXcolor(êfake)∥1]

(10)

3.4 Training & Testing
The details of the two-step training pipeline are shown

in Fig. 5. In Step 1, we use a reconstruction network to retain
as many of the original image features as possible. The dis-
tribution of the latent texture code q(EL

emb(e
L
st, st)|eLst, st)

is encouraged to approximate a random prior Gaussian
distribution N (0, I). In Step 2, we use the prior Gaussian
distribution s ∼ N (0, I) instead of the latent texture code
EL

emb(e
L
st, st) to generate embroidery without the dataset.

The GAN framework is used to generate the embroidery
images êfake|st and reconstruct s to ŝrecon|st.
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Fig. 6: Due to the vanishing gradient problem, the embroi-
dery texture of output images gradually disappears. Hence,
the generator will eventually stop working. From left to
right, epochs = 387, 413, 491, 537, 679, and 686 in order.

In the testing pipeline, we add a stitch classifier to our
framework in the second step of the training pipeline, as
shown in Fig. 1. After we pass the input image into the test-
ing network, the stitch classifier separates the content image
and corresponding stitch types of the single stitch sub-
region. Then the corresponding single-stitch texture map
is generated through the region-aware texture generation
network. Afterwards, we fuse the three single-stitch texture
images into a multi-stitch texture image. Finally, we obtain
the final resulting image after the color information is added
to the multi-stitch texture image through the colorization
network.

4 EXPERIMENTAL RESULTS

4.1 Implementation Details

We implement MSEmbGAN with PyTorch [41] and con-
duct experiments on a computer with a v100 GPU. We
use RMSprop optimizer [42] with exponential decay rates
β1 = 0.5, β2 = 0.999, a batch size of 2, and a learning rate
of 0.0002. The input and output channels of the encoders
and the generators are EL

emb : 1, EL
con : 1, GL : 1, EL

lum : 1,
Eab

chr : 2, and GLab : 3. The color feature extractor, pre-
trained for 200 epochs with color consistency loss, produces
color consistency loss to jointly optimize the framework. We
train the MSEmbGAN until 800 epochs or upon network
convergence. For proper training of the region-aware tex-
ture generation network, we set the hyper-parameters to
λKL = 0.001 in Eq. (3) and λlatent = 10 in Eq. (6).

As shown in Fig. 6, during network training, we find that
the vanishing gradient problem rose when epochs > 470.
To solve this problem, we use the WGAN [40] instead of
the regular GAN with the RMSprop [42] optimizer instead
of Adam [43]. This framework can make the discriminator
Lipschitz continuous. The color feature extractor consists of
seven convolution layers with a stride of 2 and a kernel
size of 3 × 3, followed by one convolution layer with a
stride of 1 and a kernel size of 1 × 1. Besides, we add
a spectral normalization block [44] for each convolution

layer. For detailed network architecture, please refer to the
supplemental material.

4.2 Multi-Stitch Embroidery Dataset

We create more than 30K images by the professional
embroidery software (Wilcom 9.0) including the embroidery
images and the corresponding content images. All images
are resized to the resolution of 256× 256. We contribute our
multi-stitch embroidery dataset to the research community.
Our dataset is annotated with one multi-stitch type and
three single-stitch types, and the embroidery images are
rendered by professional embroidery design software, as
shown in Fig. 7. The dataset contains a total of 30K aligned
or unaligned embroidery and content images. The detailed
distributions of different stitches are shown in Fig. 8. For
making our multi-stitch embroidery dataset, the steps for
embroidery dataset image-making are as follows:

Draw content image. Before constructing an embroidery
plate, our embroidery artists must draw a content image
containing embroidery color information as a template.
Most content images are simple in color and unambiguous
in shape, allowing for faster network convergence.

Stitch Design. For content images with different shapes,
a stitch must be selected to fill each region. Embroidery
designers match an appropriate stitch type to the shape of
each region. Additionally, each stitch’s related parameters
(e.g., spacing and direction) must be reasonably set for the
subsequent embroidery rendering task.

Create Embroidery Dataset. Our embroidery designers
use professional embroidery software (Wilcom 9.0) to design
and create embroidery patterns and render corresponding
embroidery images. These results are the embroidery im-
ages in the dataset and the ground-truth images in our
work. See more information about our dataset in the sup-
plemental material.

4.3 Quantitative and Qualitative Comparision

4.3.1 Quantitative Evaluation
We compare our method with the recently published

stylization methods: Pix2Pix [13], CycleGAN [15], MUNIT
[14], and DRIT++ [16]. We quantify the comparison results
and calculate the learned perceptual image patch similarity
(LPIPS) [45] and Fréchet inception distance (FID) [46], as
shown in Table 1. Specifically, to better measure human
perceptual similarity, we calculate the LPIPS distance on the
entire test set to measure the perceptual similarity between
the generated embroidery images and the real ones. Com-
pared with other methods, our method had a lower LPIPS
distance, which means our resulting embroidery images are
closer to the real embroidery images perceptually. We also
use FID to measure the feature distribution of our generated
embroidery images and ground truth. We also evaluated the
FID scores, and the results show that the embroidery image
generated by our MSEmbGAN is closest to the ground truth.

We use our method and four comparison methods to
generate 100 images respectively and calculate the time
required by each method for generate one image. In order to
enhance the stitch styles in the resulting embroidery images,
we added some extra modules compared to other methods.
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Fig. 7: Images of our Multi-stitch Embroidery Dataset is annotated with four kinds of labels corresponding to three kinds of
single-stitch types (i.e., satin, tatami, and flat) and a multi-stitch type that refers to a mixture of the three single-stitch types.
Our dataset has aligned and unaligned parts, and the aligned part includes the content and corresponding embroideries.
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Fig. 8: Data distribution of the multi-stitch embroidery
dataset. Each stitch type in our dataset contains paired and
unpaired parts.

TABLE 1

Average LPIPS and FID distance between ground truth
images and generated embroidery images on the entire test
dataset of the four comparison methods, the two ablation
models and our MSEmbGAN on the entire test dataset.

Methods LPIPS FID

CycleGAN [15] 0.296 153.49
Pix2Pix [13] 0.432 239.89
MUNIT [14] 0.332 146.14
DRIT++ [16] 0.305 171.15

w/o Creg , Gslc 0.318 146.43
w/o SG, SC 0.305 138.25

MSEmbGAN 0.262 122.44

All testing was performed on an NVIDIA GeForce RTX 2060
GPU with images at a resolution of 256x256 pixels. Despite
these enhancements, the results in Table 2 show that our
MSEmbGAN does not have a large speed gap compared to
other models.

TABLE 2

Average time consuming of the four comparison methods
and our method.

Methods consuming / ms

CycleGAN [15] 214
Pix2Pix [13] 187
MUNIT [14] 230
DRIT++ [16] 260

MSEmbGAN 243

4.3.2 Qualitative Evaluation

We further compare the embroidery images synthesized
by our MSEmbGAN, Pix2Pix [13], CycleGAN [15], Multi-
modal UNsupervised Image-to-image Translation (MUNIT)
[14] and DRIT++ [16], as shown in Fig. 9. Note that all meth-
ods were trained on our multi-stitch embroidery dataset.

According to the results in Fig. 9, the resulting image of
CycleGAN [15] tends to lose color features (i.e., color shift).
Although the large regions are filled with embroidery pat-
terns, the textures are missing. The resulting images of Cy-
cleGAN lost the texture features of the tatami stitch, which
means the accuracy of CycleGAN is lower than that of
the supervised method, and CycleGAN is unable to restore
embroidery stitches. The resulting images of the Pix2Pix
method [13] only retain the content features of the input
image and do not look like embroidery images, especially
in terms of texture features and visible artifacts. Moreover,
the results have almost no embroidery textures and have
lost parts of the color information. With MUNIT [14], the
textures of the generated embroidery images are relatively
smooth and lack the proper embroidery textures. Because
the model of MUNIT cannot accurately predict the contours
of the embroidery pattern, some noise is generated. For
more complex patterns, contours are incorrectly recognized,
and some color information is distorted. In some light-
colored regions, the embroidery texture cannot be effectively
synthesized. The results of DRIT++ [16] only retain a small
part of the embroidery texture, and the color features are
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Input MSEmbGANMUNITCycleGAN Pix2Pix DRIT++

Fig. 9: Comparison of stitch styles generated by MSEmbGAN and four other style-transfer networks (i.e., CycleGAN [15],
Pix2Pix [13], MUNIT [14], and DRIT++ [16]). We use the region-aware texture generation network to maintain stitch texture
authenticity and color fidelity, making the results generated by our MSEmbGAN possess highly diverse stitch textures.
The results of MSEmbGAN are better than those of existing methods in terms of texture and color. Specifically, the textures
of our results are more similar to real embroidery textures, and the color are closer to those of the input images.

(a) Input (b) Guan et al. 2021 (c) MSEmbGAN

Fig. 10: Comparison with the state-of-the-art embroidery
synthesis method: (a) input image; (b) result presented in
the original paper of Guan et al. [7]; (c) result of our
MSEmbGAN with the same input.

completely lost. The texture and color styles of the original
embroidery image are obvious, but due to the interference
among features, the common end-to-end network cannot
retain the original color features well, which leads to messy

textures [13] and inconsistent colors [16]. Moreover, the
difficult training process of DRIT++ often leads to mode
collapse. Notably, the baseline DRIT++ lacks texture feature
processing functions, so the style of the generated embroi-
dery image is randomly selected. Furthermore, the textures
of different stitches cannot be accurately reflected according
to the texture style of the input embroidery image.

As shown in Fig. 9, at present, there are varying degrees
of color-shift issues when using neural networks to generate
embroidery images. Since the brightness of our resulting
images are slightly adjusted (See Section 3.2.2), the color of
the resulting images generated by our MSEmbGAN are the
closest to the input image among all the comparison meth-
ods. In terms of the embroidery texture and color features,
the resulting images of our MSEmbGAN are most similar
to the ground-truth images (see Fig. 9). Our method is even
superior to SOTA embroidery synthesis methods [7] because
it maximizes the color features of the input image and forces
the resulting textures to become clear and realistic, as shown
in Fig. 10. Please refer to the supplemental material for
additional qualitative evaluation.

Our previous work, [24], is the state-of-the-art method
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TABLE 3

Result of our user study, where higher score means better quality. Row 1 and 2 represent the mean and standard error of
the embroidery quality score, row 3 and 4 represent the mean and standard error of the color quality score, and row 5 and

6 represent the mean and standard error of the image quality score.

Methods CycleGAN [15] Pix2Pix [13] MUNIT [14] DRIT++ [16] MSEmbGAN

Embroidery quality, mean / std 2.670 / 0.848 2.696 / 0.810 2.367 / 0.819 2.822 / 0.785 3.834 / 0.721
color quality, mean / std 2.659 / 0.905 2.937 / 0.750 2.751 / 0.812 2.347 / 0.847 3.734 / 0.702

Image quality, mean / std 2.739 / 0.865 2.438 / 0.878 2.731 / 0.822 2.865 / 0.763 3.711 / 0.714

(a) Input (c) MSEmbGAN(b) Yang et al. 2022

Fig. 11: Comparison with our previous work: (a) input
image; (b) results of our previous method [24]; (c) results of
our MSEmbGAN. We zoom in and compare some regions
of the images in the yellow boxes in (b) and (c).

for embroidery generation using neural networks. Although
the color of the resulting images of [24] is consistent with the
color of the input image, the results of MSEmbGAN also
incorporate multi-stitch features. As shown in Fig. 11, the
texture of the resulting images generated by MSEmbGAN
has more diverse stitch types.

Performance on high-resolution images. We apply our
model to high-resolution image generation to synthesize
resulting images with high-fidelity colors and textures, as
shown in Fig. 12. Due to the application of fully convolu-
tional network, MSEmbGAN can process input images of
any size.

Illustration of Controllability As shown in Fig. 13, the
distribution of stitch types in the synthetic embroidery im-
ages can be adjusted by changing the region width threshold
λw.

4.4 User Study

The evaluation of embroidery image quality is often
affected by users’ subjective factors, so we conduct user
studies to get subjective feedback from users. We prepare
14 images, and each of them is processed using our method
and four SOTA methods: [13], [15], [14], [16]. We invite 25
candidates to score each image in the range of 1–5 points
according to the following criteria:

Embroidery quality: whether the resulting images have
embroidery-related features and vivid textures.

color quality: the color similarity between input and
resulting images.

Image quality: the degree of texture distortions, color
shifts, high-frequency noise, and other artifacts.

We collected 5,250 scores and calculated the average and
standard error of each criteria, as shown in Table 3. The
results clearly show that our method is superior on all
three criteria. The results of the user study indicate that
our region-aware texture generation network does a great
job of generating various embroidery stitch textures stably,
which leads to superior embroidery quality scores. In ad-
dition, with our colorization network, our method can also
obtain the highest color quality evaluation scores. Because
our method adds global information when generating local
embroidery textures, we have the smallest standard error
in all three criteria, which indicates that the comprehensive
performance of our method is more stable. This is due to the
fact that the stitch latent code generator can successfully sta-
bilize the stitch texture generation process in local regions.

4.5 Ablation Study
We conduct an ablation study to identify the impacts of

the stitch latent code generator module with stitch classifier
and the colorization network with color feature extractor
and content loss. The quantitative evaluation results of our
ablation study are shown in Table 1.

4.5.1 Effect of Stitch Classifier and Stitch Latent Code Gen-
erator

In this task, we ablate the region-aware texture gener-
ation network (i.e., stitch classifier, stitch latent code gen-
erator) and retain other parts of MSEmbGAN as shown
in Fig. 14(b). Specifically, We use the original baseline [16]
instead of the region-aware texture generation network. We
removed the Creg and stitch type st and use the embroidery
encoder EL

emb instead of stitch latent code generator Gslc.
The quantitative evaluation results of this ablation study

are shown in Table 1, which reflects the efficacy of these
modules. The stitch classifier is the key to classifying re-
gions according to shape features, and it allows the texture
generation network to accurately capture the specific stitch
features of each color region. Meanwhile, the stitch latent
code generator generates the corresponding texture latent
code according to the input stitch type. Without the stitch
classifier and the stitch latent code generator, the resulting
embroidery images synthesized by the network suffer from
two major problems. First, the texture styles in the resulting
images are singular, and the multi-stitch characteristics are
not preserved. Second, we observe an unstable and abnor-
mal texture generation process.
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Fig. 12: Resulting images of our method with different inputs. Given the high-resolution images, our network demonstrates
great performance. The resolution of the input and output images are all 1024×1024. The resulting images we generate are
similar in texture and color to the real image, especially the colors are quite close to that of input images. All the resulting
images contain various embroidery stitch styles. For a better visual effect, we fill the white regions in the result with cloth
patterns.

4.5.2 Effect of colorization network and color consistency

As shown in Fig. 14, we ablate the colorization network
and its color consistency (i.e., color feature extractor and
color consistency loss), as shown in Fig. 14(c). Furthermore,
we remove the colorization network (CN) with color con-
sistency (CC), including the color feature extractor EXcolor

and color consistency loss. Meanwhile, we set the input and
output of the region-aware texture generation network to
the lab channel.

Without the colorization network and the corresponding

color consistency, the embroidery results synthesized by
our MSEmbGAN cannot maintain the color features, which
results in obvious color shifts. Specifically, there is a great
difference in the color distribution between the resulting
images and the input images.

The colorization network helps the preservation of color
information on the basis of the region-aware texture gener-
ation network. Meanwhile, the color consistency contains a
pretrained color feature extractor EXcolor and color con-
sistency loss Lcol. These modules are used to guide the
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(b) Result in different 𝜆𝑤(a) Input

Tatami stitch

Satin stitch

𝜆𝑤 = 10 𝜆𝑤 = 15 𝜆𝑤 = 20 𝜆𝑤 = 25

Fig. 13: Stitch distribution is adjusted by the region width threshold: λw = 10, 15, 20, and 25 from left to right. As the
threshold increases, the distribution of the tatami stitch becomes larger. Users can balance the distribution of the tatami
and satin stitches by adjusting the region width threshold. The filling textures in some regions vary with the threshold
value λw. We filled the white regions in the results with cloth patterns.

color features of the resulting images to approximate the
corresponding input images.

5 CONCLUSION

In this paper, we propose the field’s first CNN-based
GAN for multi-stitch embroidery synthesis. Our MSEmb-
GAN model can generate realistic embroidery images con-
taining diverse (multiple) stitches synthesized from input
images. In the backbone of GAN, we design a region-aware
texture generation network that learns an appropriate stitch
for each color region according to its shape features and
synthesizes the corresponding embroidery texture. We also
proposed a colorization network that maintains the color
consistency between synthesized and input images. More-
over, our model contributes a new high-quality multi-stitch
embroidery dataset containing 30K multi-stitch embroidery
images with mixed or single-stitch styles. The qualitative
and quantitative results show that our method outperforms
SOTA models in generating high-quality multi-stitch em-
broidery images with more realistic textures. Moreover, our
method affords more diverse stitches with clearer textures
and more stable colors for the resulting images. However,
our method sometimes fails when dealing with complex
images, and we plan to address the problem in our future
work. We also plan to extend our work so that the model can
handle more comprehensive embroidery problems, such as
3D embroidery synthesis.
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