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Abstract—Automatic kidney and tumor segmentation from CT
volumes is a critical prerequisite/tool for diagnosis and surgical
treatment (such as partial nephrectomy). However, it remains a
particularly challenging issue as kidneys and tumors often exhibit
large-scale variations, irregular shapes, and blurring boundaries.
We propose a novel 3-D network to comprehensively tackle
these problems; we call it 3DSN-Net. Compared with existing
solutions, it has two compelling characteristics. First, with a
new scale-aware feature extraction (SAFE) module, the proposed
3DSN-Net is capable of adaptively selecting appropriate receptive
fields according to the sizes of targets instead of indiscriminately
enlarging them, which is particularly essential for improving
the segmentation accuracy of the tumor with large scale vari-
ation. Second, we propose a novel yet efficient nonlocal context
guidance (NCG) mechanism to capture global dependencies to
tackle irregular shapes and blurring boundaries of kidneys and
tumors. Instead of directly harnessing a 3-D NCG mechanism,
which makes the number of parameters exponentially increase
and hence the network difficult to be trained under limited
training data, we develop a 2.5D NCG mechanism based on
projections of feature cubes, which achieves a tradeoff between
segmentation accuracy and network complexity. We extensively
evaluate the proposed 3DSN-Net on the famous KiTS dataset
with many challenging kidney and tumor cases. Experimental
results demonstrate our solution consistently outperforms state-
of-the-art 3-D networks after being equipped with scale aware
and NCG mechanisms, particularly for tumor segmentation.
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I. INTRODUCTION

K IDNEY cancer is now the ninth most common form of
cancer among men and the 14th most common form of

cancer among women. There are estimated to be more than
400000 newly diagnosed cases of kidney cancer worldwide
in 2018, according to the statistics conducted by the World
Health Organization [1]. Despite the high-incidence rate of
kidney tumors, patients are likely to be cured in the early
stages. Therefore, early detection is essential for increasing the
survival rate. Accurate kidney and tumor segmentation plays a
significant role in early detection and screening. On the other
hand, as clinical evidence has shown that partial nephrectomy
has a similar effect to radical nephrectomy in treating rela-
tively small tumors with a lower risk of cardiovascular events
from the long-term perspective [2], more and more partial
nephrectomy surgeries have been conducted in clinical prac-
tice. However, most of the cases are small tumors with about
15% metastasis rate, which demands a precise segmentation
and diagnosis for subsequent surgery planning [3]. Nowadays,
clinicians mainly rely on preoperative CT images to obtain
kidney tumor morphology, volume, and other information
to assess its complexity and aggressiveness. In this regard,
precise segmentation and correct classification of tumors sig-
nificantly affect the formulation of treatment plans as well as
the effectiveness of treatment.

Manual segmentation of kidney and tumors from CT vol-
umes by radiologists is time-consuming, tedious, and error-
prone, resulting in a growing demand for automatic approaches
in clinical practice. However, automatic kidney and tumor seg-
mentation from CT volumes remains a challenging problem
due to: 1) the diverse growth positions, sizes, and shapes
of kidney tumors; 2) the accompanying metastasis of tumor
cells; 3) the irregular shapes of kidney and tumor; and 4) the
blurring boundaries between kidney and adjacent organs and
between kidney and tumor (some challenging cases are shown
in Fig. 1). Considerable attempts have been made to address
the above problems to achieve accurate segmentation.
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Fig. 1. Typical challenging cases for kidney and tumor segmentation,
where tumors may appear with various scales, irregular shapes, and blurred
boundaries. Red and green regions indicate kidney and tumors, respectively.

Traditional kidney and tumor segmentation approaches are
often based on hand-crafted features, including intensities, tex-
tures, and shape priors [4]. For instance, Xie et al. [5] first
employed Gabor filters to extract texture features and then
used an expectation-maximization method to construct texture
models to segment kidneys from CT images. Gloger et al. [6]
proposed a multistep refinement approach to produce prob-
ability maps and then apply an extended level-set model to
improve the segmentation results. Jin et al. [7] first used a 3-D
generalized Hough transform (GHT) and a 3-D active appear-
ance model (AAM) to complete the localization and then
applied a modified random forest to yield the segmentation.
However, these traditional methods often require manually
adjusting parameters to obtain satisfactory performance and
these parameters are usually very sensitive to noise and
artifacts. More important, owing to limited representation
capability, these hand-crafted features cannot achieve sufficient
accuracy for clinical applications.

As deep learning develops, convolutional neural networks
(CNNs) have been widely applied in various medical image
segmentation tasks [8], [9]. Most existing medical image seg-
mentation approaches are developed based on U-Net [10],
which is an encoder–decoder architecture with multiple
skip connections that can harness both spatial information
and semantic information to improve the segmentation
performance. For the 3-D image segmentation task, it is better
to use a 3-D architecture rather than a 2-D network as the
latter cannot take full advantage of slicewise information. To
this end, Çiçek et al. [11] proposed the 3-D U-Net to seg-
ment the target region from volume data. Since then, multiple
3-D segmentation approaches have been proposed based on
the 3-D U-Net. Although these approaches achieved satisfac-
tory results in some applications, they still have some obvious
shortcomings, making them not clinically applicable in more
challenging applications. First, due to the fixed kernel sizes
and hence the limited receptive fields, most of these networks
cannot effectively tackle scale variation, particularly when the
variation is large. Second, some intrinsic characteristics in
medical imaging, such as the various shapes of the tumor in
different stages, the blurred boundaries caused by the invasion
of adjacent organs, and the existence of noise and artifacts,
make it difficult to achieve satisfactory segmentation results
only relying on local information. However, it remains a

challenging task to integrate effective multiscale schemes and
nonlocal guidance mechanisms into a 3-D network without
increasing computational complexity.

Many solutions have been proposed to overcome
these shortcomings [12]. To tackle scale variation,
Kamnitsas et al. [13] proposed parallel convolutional
pathways to simultaneously incorporate local and global
information, which significantly improves segmentation
performance. Zhang et al. [14] applied multibranches with
different dilated rate kernels and merge the output fea-
tures to solve the limitation of insufficient receptive fields.
Feng et al. [15] fused features generated from different stages
using attention mechanisms to deal with scale variation.
However, most of these methods treat features with different
scales indiscriminately while it is more reasonable and
effective to adjust the weights of different scales according
to the inputs. Moreover, in the above schemes, it is usually
hard to decide the best number of branches and dilated rates.
Therefore, these schemes are still insufficient for segmentation
tasks involving large-scale variation, such as kidney tumor
segmentation.

On the other hand, to capture the long-range dependencies,
many nonlocal guidance mechanisms have been proposed,
aiming at leveraging nonlocal contexts to achieve better
performance [16]. Li et al. [17] designed a self-attention
module to model pixel relations regardless of their distance.
Wang et al. [18] introduced a flexible global aggregation block
into a 3-D U-Net to capture global dependencies by exploit-
ing feature relationships. Recently, Xie et al. [19] applied
a nonlocal mechanism in pulmonary lobe segmentation to
assess pneumonia severity and progression for COVID-19
diagnosis and treatment. These works have demonstrated that
nonlocal mechanism is able to dig more potentially useful
features to further improve segmentation accuracy. However,
while more or less improving the performance, these methods
also inevitably introduced a lot of computation and memory
costs, particularly in 3-D networks, which hampers them from
being used in clinical settings without sufficient computing
resources. To this end, how to effectively implement nonlo-
cal context guidance (NCG) within a 3-D network remains a
challenging issue.

In this article, we propose a 3-D CNN equipped with
a new scale-aware feature extraction (SAFE) module and
an efficient NCG for kidney and kidney tumor segmenta-
tion from Computed Tomography (CT) data. Different from
existing solutions that deal with scale variation by directly
fusing multiscale features, the proposed SAFE is capable of
adaptively selecting appropriate receptive fields according to
the inputs so that features of corresponding scales can be
effectively filtered by assigning them with higher weights.
Considering the segmentation accuracy of small tumors is
one of the main challenges in this task, we further highlight
the branch with small receptive fields when fusing the fea-
tures. We further propose a novel yet efficient NCG to capture
long-range dependencies to tackle irregular shapes and blur-
ring boundaries of kidneys and tumors. Instead of directly
harnessing a 3-D NCG, which makes the number of param-
eters exponentially increase and hence the network difficult
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to be trained under limited training data, we develop a 2.5-D
NCG mechanism based on projections of feature cubes, which
achieves a tradeoff between segmentation performance and
network complexity. We extensively evaluate our 3DSN-Net
on the famous KiTS dataset with many challenging kidney and
tumor cases. Experimental results demonstrate our solution
consistently surpasses state-of-the-art 3-D networks equipped
with scale aware and NCG mechanisms, particularly for tumor
segmentation.

Our contribution can be summarized as follows.
1) We propose a novel 3-D network, called 3DSN-Net, for

kidney and kidney tumor segmentation from CT data,
which is able to effectively tackle scale variation and
ambiguous boundaries via adaptive scale-aware feature
fusion and efficient NCG.

2) We propose an SAFE module to adaptively extract fea-
tures according to the size of the target instead of
indiscriminately fusing them regardless of the variation
of the feature scale.

3) We present an efficient NCG mechanism without bring-
ing a large number of parameters within a 3-D network
as the previous 3-D nonlocal modules, maintaining a
good balance between accuracy and efficiency.

4) We conducted extensive experiments to evaluate the
proposed 3DSN-Net on the famous public dataset KiTS.
Experimental results show that our method achieves
state-of-the-art performance and consistently outper-
forms other state-of-the-art 3-D networks, which demon-
strates the advantages and effectiveness of our method.

The preliminary vision of this work has been published
in [20]. In this article, we substantially revise the conference
version to introduce the proposed 3DSN-Net more thoroughly
yet clearly. The main modifications include that: 1) we intro-
duce the SAFE module to replace the depthwise separable
convolutions in the conference version; 2) we have improved
the methods with clearer elaborations for each step and added
more detailed descriptions; and 3) we have conducted more
ablation and comparison experiments using extra evaluation
metrics, and comprehensively discussed both contributions and
limitations of our 3DSN-Net.

II. RELATED WORK

A. Kidney and Kidney Tumor Segmentation

Most of the early studies on kidney and kidney tumor seg-
mentation are developed based on hand-crafted features. For
example, Gloger et al. [6] proposed a multistep refinement
approach to produce probability maps and then applied an
extended level-set model to improve the segmentation results.
Xie et al. [5] first employed Gabor filters to extract texture
features and then used an expectation-maximization method to
construct texture models to segment kidneys from CT images.
However, when the tumor shows a similar intensity with adja-
cent organs or has low contrast with the renal parenchyma,
these hand-crafted features cannot produce satisfactory results
to meet the clinical requirements. Recent works have demon-
strated the superior performance of deep CNNs for medical
imaging segmentation [9], [21], [22], [23], [24], [25], [26],

including kidney and kidney tumor segmentation [27].
da Cruz et al. [28] first used AlexNet to produce a probability
of whether a slice contains a kidney, then applied a modi-
fied 2-D U-Net for the kidney segmentation. Although this
approach can improve the segmentation accuracy compared to
traditional methods, it is difficult for a 2-D network to further
improve the performance without considering the slicewise
information. Recently, Yu et al. [29] have proposed a crossbar-
Net, which consists of both vertical and horizontal feature
encoder paths to simultaneously capture local and global
knowledge of the kidney tumors from two perpendicular direc-
tions. This network achieves much more satisfactory results
than its 2-D counterparts. However, how to efficiently extract
and harness multiscale information and nonlocal information
within a 3-D network remains a challenging task.

B. Multiscale Feature Extraction

As traditional 3-D U-Net is stacked by size-fixed con-
volutions, it is difficult to extract multiscale contextual
information. Recently, to overcome this limitation, many
works have been presented to fully exploit multiscale
information [30], [31], [32]. One stream of the studies
employed parallel pooling branches to capture multiscale
features [33], [34], [35]. For example, PSPNet [36] and
PoolNet [37] designed different pooling operations with var-
ious kernel sizes to generate features with rich regional
contexts. The other stream of investigations considered using
multibranch convolution with various kernel sizes to real-
ize the multiscale feature extraction [38], [39]. For example,
inception [40] and DeepLab [41] series designed different con-
volutional paths with various receptive fields to strengthen
the capability to capture multiscale contextual knowledge.
However, one main limitation of these existing solutions is
that the kernel size or the number of branches needs to be
fine-tuned to determine the best setting manually.

C. Nonlocal Mechanisms

Recently, nonlocal mechanisms have been widely applied to
semantic segmentation tasks as they are able to capture long-
range dependencies for better segmentation performance [42],
[43], [44], [45], [46], [47]. Wang et al. [16] employed an atten-
tion mechanism to model relationships between each position
and all other positions. Huang et al. [48] proposed an inter-
laced sparse nonlocal module to capture the global and local
dependencies, respectively. Zhu et al. [49] designed a symmet-
ric nonlocal block that integrates a pyramid sampling module
into the nonlocal mechanism to boost its efficiency. Besides,the
nonlocal mechanism has also been introduced in many real-
istic application scenarios [50], [51], [52], [53], [54]. For
example, Xia et al. [50] proposed to encode nonlocal part-to-
part correlations via second-order feature statistics for person
reidentification. Mei et al. [54] presented a nonlocal sparse
attention mechanism to retain long-range modeling capabil-
ity using sparse representation for image super-resolution.
However, most of these methods are designed and used in
2-D CNNs, and directly transferring them into 3-D CNNs may
exponentially increase the number of the parameters, making
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Fig. 2. Our proposed 3DSN-Net. An SAFE module is equipped in the encoder to enrich receptive fields in different layers and enhance multiscale feature
extraction, while an NCG module is employed in the skip connections to capture global context and fully exploit the long-range dependencies during the
feature selections.

3-D networks even more difficult to be trained under limited
training samples. In this regard, how to introduce nonlocal
mechanisms into 3-D networks while effectively managing
the computation and memory consumption requires careful
studies.

III. METHODOLOGY

The architecture of our proposed 3DSN-Net is illustrated
in Fig. 2, which is developed based on a typical 3-D U-Net.
The proposed 3DSN-Net is composed of two key components.
First, we propose a new 3-D SAFE module to adaptively
select suitable receptive fields in different layers to deal with
the targeting objects, particularly the tumors, with different
sizes. Second, we develop a novel and efficient NCG module
to exploit useful global dependencies based on the extracted
scale-aware features to achieve segmentation performance
improvement. Note that, we simply employ a 3-D trans-
posed convolution operation to upsample features in decoder.
Overall, we seamlessly combine the SAFE and NCG modules
in the proposed 3DSN-Net to systematically tackle the issues
of the task.

A. Scale-Aware Feature Extraction

Traditional 3-D networks for medical image segmentation
usually obtain a certain performance improvement by simply
enlarging the size of convolution kernels or using a pyramid
pooling scheme to roughly combine feature maps with differ-
ent scales. These approaches, however, often require intensive
experiments to determine the kernel size, the pyramid pool-
ing size, and/or the weighting parameters within the networks,
which is computation-intensive, time-consuming, and tedious,
and hence prohibits them from being deployed in clinical
practice.

We propose a new 3-D SAFE module to replace the
traditional convolution block in 3-D U-Net (as shown in

Fig. 3), which can capture multiscale information via multiple
branches containing different kernel sizes. Based on the fea-
ture maps with multiscale features acquired by different kernel
sizes, the proposed 3DSN-Net dynamically determines the
optimal kernel according to the size of the input kidney and
tumor without using additional supervision or tedious param-
eter adjustment. Although the features extracted by branches
in SAFE may be similar, the receptive field of the encoder is
large enough with rich variations by stacking the SAFE mod-
ules across the contracting path of 3-D U-Net. When each
SAFE module dynamically selects the optimal size of the
convolution kernel, the entire encoder can naturally achieve
the adaptive selection of receptive fields. It is worth noting
that the SAFE can be conveniently applied in 2-D segmenta-
tion networks by simply replacing 3-D convolutions with 2-D
convolutions.

For the given feature map X ∈ R
C×H×W×S, where H, W, S

and C denote height, width, slice, and channel, respectively,
we first apply 3-D convolutions to downsample feature maps,
and employ two 3 × 3 × 3 kernels with different dilated rates
(r = 1, 2) to capture multiscale features. When the size of the
feature map is too small, applying convolution operation with
a large dilated rate will probably cause the dilated convolution
to lose its effect, so we choose a relatively small dilated rate
here. By using the above dilated convolution operations, we
can generate two feature maps, which can be defined as U1
and U2. We further fuse the two branches of features based on
elementwise summation and obtain a feature map U containing
multiscale information; it can be described as

U = U1 + U2. (1)

Then, we perform the kernel selection based on U. To com-
pact the global information for the kernel selection, we further
conduct a global average pooling for each channel to obtain a
global feature vector p ∈ R

C×1×1×1. Here, we can use pc to
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Fig. 3. SAFE module. Based on a multibranch architecture composed of various convolution kernel sizes, we can capture various receptive fields information
and adaptively select the most suitable kernels according to the feedback of target sizes for the input kidney and tumors.

denote the cth element of p as

pc = Fgap(Uc) = 1

H × W × S

H∑

i=1

W∑

j=1

S∑

k=1

Uc(i, j, k) (2)

where Uc is the cth channel of U. Obviously, the size of Uc is
H ×W ×S. Then we harness a simple fully connected layer to
generate the guidance vector z for the kernel selection, which
can be written as

zi = Ffc(p) = Wiδ(W0(p)), i ∈ {1, 2} (3)

where W0 and Wi are both linear transformation weights, and
δ is the ReLU activation function. Considering the efficiency,
we also use the reduction between two fully connected layers
to minimize the parameters. The reduction rate can be defined
as d = max(C/g, L), which controls the linear transformation
matrices W0 ∈ R

d×C, and Wi ∈ R
C×d. Increasing g can reduce

the number of network parameters, but it also limits the repre-
sentation capability of the fully connected layers. On the other
hand, to prevent the generation of too small d when the num-
ber of feature channels is low, we set L to ensure that d is not
less than this minimum value. In our experiments, we can set
g = 8 and L = 8 to balance the accuracy and efficiency.

So far, we can obtain rough feature selection based on the
guidance vector z1, z2 for two branches which are achieved by
simple fully connected layers. To utilize the guidance vector
z1, z2 for enabling the proposed 3DSN-Net network to adap-
tively determine the optimal kernel sizes, we apply a softmax
operator on the channelwise digits for highlighting the suitable
receptive field from branches (U1 and U2), respectively. The
normalized guidance vectors can be obtained as

[a, b] = Softmax(Concat(z1, z2)). (4)

Hence, we obtain two weighted feature maps V1 = a · U1 and
V2 = b·U2. Since the guidance vectors a and b are global and
comprehensive representations generated from original feature
maps U1 and U2 from two branches, we can adaptively achieve

the selection of features with different receptive fields by
multiplying it to U1 and U2. Thus, we can dynamically deter-
mine the optimal kernel size. As reported in GhostNet [55],
in the training procedures, we also find that several extracted
features in different channels could be very similar to each
other. In this regard, to achieve a more compact represen-
tation, we further reduce the channel number by squeezing
the feature maps V1 and V2. It is conducive to balancing
the increase of parameters brought by multiple convolution
branches, and simultaneously increasing the diversity and dis-
tinction of features across the channel. Specifically, we split
the feature across the channel dimension into several features
with the same number of channels, and compute elementwise
summation of these features to obtain a low-channel feature.
As feature maps extracted in the branch with smaller receptive
fields contain more diverse details, we retain more channels
for V1 in order to preserve these details. In our experiments,
two more compacted feature maps V′

1 and V′
2 are generated

by squeezing V1 and V2 to (1/2) and (1/4), respectively.
Finally, we figure out a feature map with rich multiscale

information by concatenating the two branches V′
1 and V′

2.
We further perform a 1 × 1 convolution to recover the feature
number, making it equal to the original input. For a stable con-
vergence, we further add a residual connection to generate the
final output V of our SAFE module, which can be written as

V = Conv1×1
(
Concat

(
V′

1, V′
2

)) + X′ (5)

where X′ denotes the residual part of the input feature X.

B. NCG Mechanism

Based on a 3-D network equipped with SAFE, we fur-
ther propose a new yet efficient NCG mechanism. Due to the
limited sizes of convolutional kernels, the features can only
capture local information between adjacent voxels, which is
incapable to extract valuable long-range information, making
it insufficient to tackle challenging cases with irregular shapes
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and blurred boundaries. To this end, we develop a nonlocal
attention mechanism to capture global long-range dependen-
cies to enrich the feature representation ability. Based on
the proposed nonlocal attention mechanism, we can extract
the key long-range yet high-level dependencies to achieve
segmentation performance improvement. The main challenge
of integrating nonlocal information in our 3-D network is
that considering the limited computational resources in clini-
cal settings, we cannot directly extend existing 2-D nonlocal
modeling techniques to 3-D versions, and apply them to the
3-D kidney and tumor segmentation, as the parameters will
exponentially increase, which makes the 3-D network diffi-
cult, if not possible, to be effectively trained. In this regard,
we introduce a somehow 2.5-D nonlocal attention mechanism
based on feature projections from three directions. Actually,
our NCG module generates the attention weights by multiply-
ing the query features with the normalized key features, and
then employs the attention weights to achieve different degrees
of activation within features from three projection directions.
Therefore, our NCG is essentially an attention module. Note
that our NCG module is specially designed for 3-D networks,
which is not suitable for 2-D segmentation tasks.

The proposed NCG module is illustrated in Fig. 4.
Concretely, we feed our NCG with a feature map U =
{U1, . . . , Uc}, whose size is H × W × S with H = W for
a cube volume. We then project the feature cube (3-D feature
maps) into three projection views, which can be formulated as

Vh(i) = 1

H

H∑

i=1

Uc(i, j, k) (6)

Vw(j) = 1

W

W∑

j=1

Uc(i, j, k) (7)

Vs(k) = 1

S

S∑

k=1

Uc(i, j, k). (8)

By projecting 3-D feature maps into 2-D, three feature maps
are generated, including Vh ∈ R

C×W×S, Vw ∈ R
C×H×S, and

Vs ∈ R
C×H×W . To encode the pixelwise correlation, we com-

pute the pixel relationship vector q ∈ R
C×1×1 within the 2-D

feature maps as

qtc =
Nt∑

j=1

e(WVtc (j))

∑Nt
m=1 e(WVtc (m))

Vtc(j), t ∈ {h, w, s} (9)

where t denotes three different dimensions of h, w, and s,
respectively, and Nh = S × W, Nw = S × H, Ns = H × W,
respectively. After performing three equal transforming oper-
ations across three different dimensions, we employ a fully
connected layer to obtain more nonlinear features, which can
be written as

zt = F̃fc2(qt) = W4δ(W3(qt)) (10)

where δ is the ReLU activation function and zt ∈ R
C×1×1.

Likewise, we also reduce the model parameters via a reduc-
tion ratio g set to 8. Given the zt ∈ R

C×1×1. We then
project zt to three different dimensions and fuse the features

via pixelwise summations. Additionally, we further prevent
network degradation via the addition of a residual connection

Ot = zt · Vt + Vt, t ∈ {h, w, s}. (11)

Ultimately, we employ dimension broadcasting elementwise
summation operation (i.e., sum fusion shown in Fig. 4) to fuse
three 2-D feature maps Oh, Ow, and Os into a 3-D feature map,
whose size is the same as the original volume.

C. Loss Function

In the task of kidney and kidney tumor segmentation, the
small target is one of the main challenges. Although Dice loss
is widely used for medical image segmentation, it is unstable
when dealing with small target segmentation. When the small
target has several pixel misclassifications, it will cause signif-
icant changes in Dice, resulting in dramatic gradient changes
and unstable training. To achieve a stable convergence during
training, we employ a combination of cross-entropy [56] and
Dice loss [57] with the same weighting

L = − 1

N

C∑

c=1

N∑

n=1

(
yn,c log pn,c + 2yn,cpn,c

y2
n,c + p2

n,c

)
(12)

where yn,c and pn,c denote the target label and prediction
probabilities for class c of the nth pixel. Moreover, similar
to UNet++ [58], we utilize deep supervision to make the
network converge more stably. Concretely, we apply multiple
segmentation heads on features of each stage of our networks
to obtain outputs of the corresponding stage. Then we compute
the losses between outputs of each stage and ground truths to
supervise networks with different semantic scales. The overall
loss is the weighted summation of all losses, whose weights
are set as in UNet++ [58].

IV. RESULTS

A. Dataset and Implementation Details

We conducted extensive experiments to verify the proposed
3DSN-Net on the famous KiTS dataset [59], which includes
210 3-D CT data scans. We randomly selected 42 scans in
the KiTS dataset as validation set, and train the model on the
remaining 168 CT scans. As the images have different sizes
and spacings, we resampled the images to an isotropic and
uniform spatial resolution of 192×192. At the same time, we
clipped the CT intensity values to fall into the range of
[1%, 99%] percentile and normalized them to [–1, 1]. We
performed three different kinds of data augmentations, includ-
ing random flipping, randomly rotating, and adding noise.
To do so, we can obtain a more diverse dataset for a more
comprehensive evaluation of kidney and tumor segmentation.
Moreover, to evaluate the generalization of our method, we
also applied our method on the LiTS dataset [60], consisting
of 131 annotated 3-D CT data scans. We randomly selected
26 scans in the LiTS dataset as validation set, and train the
model on the remaining 105 CT scans. In our experiments, we
also performed resampling and data augmentations similar to
the KiTS dataset.

We initialize our networks via the Kaiming initialization
method [61]. Additionally, we apply Adam optimizer [62] dur-
ing the training process, where the initial learning rates are
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Fig. 4. Proposed NCG module. To effectively capture long-range dependencies among high-level features while suppressing the worthless local redundant
relationships, a 2.5D nonlocal mechanism based on projections from three directions is developed.

set to 0.001 for the KiTS dataset and 0.0005 for the LiTS
dataset with the Cosine Annealing scheduling strategy. In our
experiments, we set the batch size to 2 and train our proposed
3DSN-Net for 600 epochs.

B. Evaluation Metrics

We employed four metrics to verify the effectiveness of
the proposed method, including volume-based metrics and
surface distance-based metrics. The volume-based metrics
include Dice coefficient (DICE), and relative absolute volume
difference (RAVD) which can be written as

DICE = 2|P ∩ Y|
|P| + |Y| (13)

RAVD = ||P| − |Y|
|Y| | (14)

where P and Y denote the prediction of the network and
ground truth, respectively. DICE is calculated based on the
overlapping volume between prediction and ground truth,
while RAVD is calculated based on the overlapping area
between prediction and ground truth.

On the other hand, to meet the requirement of real appli-
cations, we also use surface distance-based measures metrics,
such as average symmetric surface distance (ASSD), and 95%
Hausdorff Distance (95HD, in voxel), which are crucial for
surgical operations. ASSD and 95HD can be formulated as
follows:

ASSD =
∑

x∈BP
dis(x, BG) + ∑

y∈BG
dis(y, BP)

|BP| + |BG| (15)

dis(x, A) = min
y∈A

dis(x, y) (16)

where BP and BG denote the boundary of P and G, respec-
tively. dis(x, A) represents the distance from voxel x to voxel
set A, where dis(x, y) denotes the Euclidean distance. The

HD can measure the symmetric surface distance between the
ground truth and prediction, which can be written as

disH(A, B) = max
x∈A

min
y∈B

dis(x, y) = max
x∈A

dis(x, B) (17)

HD = max{disH(BP, BG), disH(BG, BP)} (18)

where disH(A, B) is used to define the maximal distance
between two sets A and B by calculating a point in the first to
the nearest point in the other one. Note that, we used the 95th
percentile of the asymmetric HD instead of the maximum to
alleviate the effects of outliers.

C. Ablation Studies

1) Ablation Studies on SAFE and NCG: To verify the
effectiveness of the SAFE and NCG modules on the proposed
3DSN-Net, we performed a series of ablation studies on the
KiTS dataset. The 3-D U-Net is used as the baseline in our
ablation studies. By adding different components to the base-
line, we can quantitatively verify the effectiveness of the SAFE
and NCG.

Some typical cases of our ablation studies are shown in
Fig. 5. Fig. 5(d) illustrates that the 3-D U-Net failed to han-
dle the challenging cases with various scales, irregular shapes,
and blurring boundaries. By adding the NCG module, which
aims to capture long-range dependencies to achieve the seg-
mentation performance improvement, Baseline+NCG method
outperforms the 3-D U-Net in handling kidney and tumors
with blurring boundaries [as shown in Fig. 5(e)]. By adopt-
ing suitable scales for kidneys and tumors and encoding more
effective features using the SAFE module, Baseline+SAFE
method obtains better segmentation accuracy than the base-
line 3-D U-Net, particularly for the cases with various scales
(as shown in column (f) of Fig. 5). By seamlessly integrat-
ing SAFE and NCG in the proposed 3DSN-Net, we can
not only extract richer multiscale features but also capture
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Fig. 5. Visual comparisons of ablation studies. Red and green regions indi-
cate kidney and tumors, respectively. (a) Input. (b) Blow up. (c) Ground
truth. (d) Baseline (3-D U-Net). (e) Baseline + NCG. (f) Baseline + SAFE.
(g) Baseline + NCG + SAFE.

TABLE I
STATISTICAL COMPARISONS OF ABLATION STUDY ON SAFE

AND NCG MODULES (IN MEAN±SD)

more long-range dependencies, which makes our 3DSN-Net
outperform other competitors in these challenging cases, as
shown in Fig. 5(g).

Furthermore, we conducted a quantitative comparison by
gathering the mean Dice (kidney), Dice (tumor), RAVD,
ASSD, and 95HD values of different approaches tested on
the KiTS validation dataset. As illustrated in Table I, where
the best results are highlighted in bold, we can easily observe
that both Baseline+SAFE and Baseline+NCG methods are
superior to the conventional 3-D U-Net, which clearly demon-
strates the effectiveness of our SAFE and NCG modules. We
can also observe the complementariness of the SAFE and
the NCG modules. On the one hand, in terms of volume-
based metrics (Dice and RAVD), the Baseline+SAFE obtains
better performance than Baseline+NCG, indicating the capa-
bility of the SAFE module in tackling the scale variation
for covering more areas of the targets. On the other hand,
in terms of distance-based metrics (ASSD and 95HD), the
Baseline+NCG generally outperforms the Baseline+SAFE,
indicating the capability of the NCG module in dealing with
blurring boundaries by capturing more long-range dependen-
cies. As shown in the bottom row of Table I, the proposed
3DSN-Net obtains the best statistical performance for all 5
evaluation metrics in the ablation studies, demonstrating that
the integration of SAFE and NCG modules is able to reinforce
each other and achieves better segmentation results.

2) Ablation Studies Inside SAFE: To verify the effective-
ness of different components within the SAFE module, we
further conducted ablation experiments inside the SAFE. As
the proposed SAFE module can be easily expanded into more

TABLE II
STATISTICAL COMPARISONS OF ABLATION STUDY INSIDE

SAFE MODULE (IN MEAN±SD)

branches, we first conducted an experiment to evaluate the
impact of branch numbers on the segmentation accuracy of
the SAFE module. Concretely, we compared the performance
of 3-branch SAFE and 2-branch SAFE. In the experiment,
3-branch SAFE is also based on the same convolution kernel
size but with different dilated rates (r = 1, 2, 4) in dif-
ferent branches, respectively. As shown in Table II, we can
observe that experimental results that the accuracy of 3-branch
SAFE is lower than that of 2-branch SAFE, which indicates
that two branches are sufficient in dealing with the task of
kidney and tumor segmentation. In theory, the performance
of the 3-branch SAFE should be better than that of the 2-
branch SAFE, because the number of parameters of the model
increases, and the additional dilated rate branch increases the
selection space of the receptive fields. However, the amount
of samples in medical image datasets is usually limited, and
the dataset KiTS used in the experiment only contains 210
cases of 3-D CT scans, which easily leads to overfitting of the
model. That is why we obtain a relatively poor performance
for the 3-branch SAFE. Our experimental results in Table III
show that, whether using (1, 2) scheme or (1, 6) scheme,
adding an extra branch not only fails to improve the segmen-
tation performance but causes a slight decline in accuracy,
which indicates that adding redundant branches increases the
complexity of the model and exacerbates the risk of model
overfitting, resulting in a decrease in segmentation accuracy.
We further compared the segmentation performances between
the 2-branch SAFE and 3-branch SAFE on the additional
LiTS dataset [60]. Experimental results show that the seg-
mentation Dice for liver and tumor drops from 0.968 and
0.668 to 0.965 and 0.661, further demonstrating that the
3-branch scheme is likely to bring model overfitting for our
3-D network architecture. Based on the experimental results,
we used 2-branch SAFE in the proposed 3DSN-Net. We also
conducted an ablation study based on the 2-branch SAFE
to validate the effectiveness of the channel squeezing. As
shown in Table II, we can clearly see that SAFE with chan-
nel squeezing generally outperforms the SAFE without it in
all five metrics. As pointed out by GhostNet [55], there exists
a number of redundant channels with very similar extracted
features in traditional networks. By squeezing the channels
in our extracted feature maps, we can obtain a more com-
pact feature representation. More importantly, as the channel
squeezing can also enhance the distinction of each channel in
a diverse feature map, we can hence improve segmentation
performance in kidney and tumor segmentation. Besides, we
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Fig. 6. Visual comparisons with different state-of-the-art methods. Red and green regions represent kidneys and tumors, respectively. The size of tumors
gradually increases from top to bottom. (a) Input. (b) Blow up. (c) Ground truth. (d) 2.5D P-UNet. (e) 3-D U-Net. (f) 3-D nnU-Net. (g) 3-D Res-UNet.
(h) 3-D Attention-UNet. (i) 3-D Dense-VNet. (j) 3-D Nonlocal UNet. (k) Proposed 3DSN-Net.

TABLE III
STATISTICAL COMPARISONS OF ABLATION STUDY ON

DILATED RATES (IN MEAN±SD)

also replaced the SAFE modules with atrous convolutions with
dilated rate 2 to form a new competitor Baseline+AtrousConv,
as shown in Table II. We can obviously obverse that the seg-
mentation performance of this method is significantly worse
than those using SAFE, regardless of whether SAFE uses
2-branch, 3-branch or has no channel squeezing. The exper-
imental results further demonstrate the effectiveness of our
proposed SAFE module.

3) Ablation Studies on Dilated Rates: To further analyze
the effect of different combinations of dilated rates in differ-
ent branches of the SAFE module, we also performed ablation
experiments with different dilated rates. Concretely, we experi-
mentally adjust the dilated rates and observe their performance
changes. In the experiment, we test the performance of
schemes with dilated ratios of (1, 2), (1, 2, 3), (1, 2, 4), (1, 6),
and (1, 6, 12), respectively, where the (1, 2) scheme is our
adopted strategy. As shown in Table III, we can observe that
we can obtain relatively better results when the dilated rates
of (1, 2) are applied in SAFE. After we add a branch, we can
clearly see a drop in segmentation performance in most met-
rics, regardless of whether the dilated rate of the additional
branch is 3 or 4, although the decline is not significant. As
mentioned before, adding redundant branches not only fails
to improve the segmentation performance but increases the
complexity of the model and exacerbates the risk of model

overfitting. Moreover, with the dilated rates of (1, 6), we
obtain worse performance than the (1, 2) scheme, although
the (1, 6) scheme theoretically achieves a larger receptive field.
We believe that applying convolution operation with a large
dilated rate probably causes the dilated convolution to lose its
effect when the size of the feature map is too small, because
the range of dilated convolution at most positions crosses the
boundary of the feature map. The segmentation performance
with dilated rates (1, 6, 12) naturally declines further, because
the features of the extra branches are likely to have little
feature scale variety due to the excessive dilated rate of 12.

D. Comparisons With State-of-the-Art Methods

We compared the proposed 3DSN-Net with six state-of-the-
art 3-D segmentation networks, including 3-D U-Net [11],
3-D Res-UNet [63], 3-D Att-UNet [64], Dense V-Net [65],
Nonlocal UNet [18], and one-stage 3-D nnU-Net [66], and
a 2.5D segmentation network P-UNet [67], to further evalu-
ate the performance of the proposed approach in kidney and
tumor segmentation. We implemented the seven competitors
based on the same preprocessed dataset produced by nnU-Net
framework [66]. For a fair comparison, both qualitative and
quantitative results are collected using identical data augmen-
tations, and under identical dataset settings and computational
environments.

Fig. 6 shows the segmentation results of some typical chal-
lenging cases yielded by the seven state-of-the-art methods
as well as our approach. By projecting 3-D images from
three directions, the 2.5-D P-UNet fuses the segmentation
results of three perpendicular 2.5-D Res-UNets. However, lim-
ited to the capability of the 2.5-D segmentation network, it
is still difficult to obtain satisfactory segmentation results.
Although 3-D networks can extract information from 3-D
images more efficiently, there also have their own limitations.
It is clearly observed that the 3-D U-Net cannot handle kidneys
and tumors appearing with relatively small scales, irregular
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Fig. 7. Visual surface distance comparisons with different state-of-the-art methods: (a) ground truth, (b) 2.5D P-UNet, (c) 3-D U-Net, (d) 3-D nnU-Net,
(e) 3-D Res-UNet, (f) 3-D Attention-UNet, (g) 3-D Dense-VNet, (h) 3-D Nonlocal UNet, and (i) proposed 3DSN-Net.

shapes, or blurring boundaries. One-stage 3-D nnU-Net suffers
from similar problems, although it achieved better segmenta-
tion performance than 3-D U-Net benefited from its network
configurations. Thanks to a set of residual structure blocks,
which can extract more representation features than tradi-
tional convolutional blocks, the 3-D Res-UNet gained better
segmentation performance than the 3-D U-Net. However, it
still cannot tackle these challenging cases due to the lim-
ited receptive fields. By adding a gated attention mechanism,
the 3-D Attention-UNet can effectively select distinguishing
features, and hence outperform the 3-D U-Net and the 3-D
Res-UNet. However, the gated attention mechanism still can-
not capture long-range global information. By introducing a
set of dense blocks, 3-D Dense-VNet further enhanced the
kidney and tumor segmentation with a much more power-
ful encoder. Similar to the previous methods, it also suffered
from lacking long-range global information, resulting in unsat-
isfactory results in challenging cases with large/small scales
and irregular shapes. More recently, based on a nonlocal
mechanism for weighting the features with global contexts,
3-D nonlocal U-Net further improved the tumor segmentation
accuracy with a global aggregation block. However, without
effectively aggregating multiscale receptive fields in the fea-
ture extractions and efficiently extracting nonlocal long-range
global contexts, all the above competitors still cannot obtain
a satisfied kidney and tumor segmentation performance in
many challenging cases. By seamlessly integrating the SAFE
and NCG in the proposed 3DSN-Net, we can observe that
our method generally surpasses the seven competitors in the
challenging cases with varying scales, irregular shapes, and
blurring boundaries for the kidney and tumors (as shown
in the last column of Fig. 6), manifesting the effectiveness
of combining the SAFE and NCG for kidney and tumor
segmentation. The Fig. 6 shows that our method can deal
with tumors of varying scales, while other competitors tend
to predict the size of the tumor to be smaller when the

TABLE IV
STATISTICAL COMPARISONS WITH DIFFERENT STATE-OF-THE-ART

METHODS (IN MEAN±SD)

tumor boundaries are blurred. Additionally, we also visualize
the corresponding surface distance between the prediction of
each comparison method and the ground truth, as shown
in Fig. 7. It is also observed that our approach consistently
obtains higher-segmentation performance than the other seven
competitors.

We further performed statistics on the average Dice
(kidney), Dice (tumor), RAVD, ASSD, and 95HD values of
different approaches evaluated on the KiTS validation dataset.
Notice that all the statistical comparisons are based on five-
fold cross-validation. Table IV shows the statistical results
for all competitors. For both volume-based metrics or sur-
face distance-based metrics, it is obviously observed that our
method consistently surpasses the other seven competitors,
achieving the best kidney Dice value of 0.97, tumor Dice
of 0.87, RAVD of 0.02 voxels, ASSD of 0.33 voxels, and
95HD of 1.40 voxels. Compared with the 3-D U-Net that is
widely used for medical imaging segmentation, our 3DSN-Net
obtained 1.1%, 6.5%, 9%, 45.9%, and 56.9% improvements
in the metrics of kidney DICE, tumor DICE, RAVD, MSSD,
and 95HD, respectively, indicating the effectiveness of our
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TABLE V
STATISTICAL COMPARISONS WITH DIFFERENT STATE-OF-THE-ART

METHODS ON LITS DATASET (IN MEAN±SD)

TABLE VI
COMPLEXITY COMPARISONS WITH STATE-OF-THE-ART METHODS

SAFE and NCG modules in capturing multiscale features and
harnessing the global contexts.

To validate the generalization capability of our proposed
method, we have further applied our method on the LiTS
dataset for liver and tumor segmentation and conducted the
statistical comparison experiment to compare our method
with other state-of-the-art methods based on five-fold cross-
validation. As shown in Table V, we can obtain 0.96 in liver
Dice, 0.66 in tumor Dice, 0.15 in RAVD, 1.58 voxels in ASSD
and 6.37 voxels in 95HD, which outperforms other competi-
tors in all 3-D segmentation metrics. The experimental results
further demonstrate the generalization of our network.

On the other hand, we also compare our approach with
other competitors in terms of parameter amounts, floating-
point operations per second (FLOPs), memory overhead, and
inference time, to analyze the complexity. The collected
parameter amounts, FLOPs, memory overhead, and infer-
ence time for different competitors are shown in Table VI.
Different from other approaches that usually exchange the
performance gains with computational resources expense,
our method only requires 19.1M parameters, 138 GFLOPs,
403-MB memory, and 51-ms inference time. Obviously, our
approach gains better statistical performance than the other
seven competitors in terms of FLOPs and inference time.
Compared with other state-of-the-art methods, our approach
not only consistently surpasses the competitors with regard
to segmentation accuracy but also preserves a relatively effi-
cient network, which is conducive to model deployment
considering the limited computational resources in clinical
practice.

TABLE VII
STATISTICAL COMPARISONS WITH STATE-OF-THE-ART METHODS IN THE

CHALLENGE LEADERBOARD

E. Comparisons With Multistage Methods in the
Challenge Leaderboard

We have submitted our results obtained from the proposed
approach of this revised paper, and compared our approach
with the multistage methods reported in the kidney and kid-
ney tumor segmentation competition leaderboard (as shown
in Table VII). For the KiTS2019 competition leaderboard,1

we found that all solutions are ranked based on mean kidney
tumor dice. We can clearly observe that only little differ-
ences appear in the dice of kidneys among different methods.
However, for the segmentation accuracy of kidney tumors, the
gap among different methods has gradually widened, which is
more valuable for clinical applications. Although our method
is a single-stage method, our method still ranked third in tumor
dice of 0.8515, which is only 0.4% behind the first place.
Obviously, multistage schemes might be more competitive in
tumor region refinement, but they usually also require much
heavier parameters, which also demand much more compu-
tational resources. Based on only a single-stage scheme, our
method can efficiently integrate the SAFE module and the
NCG module into the 3-D U-Net to achieve accurate kidney
tumor segmentation. Compared with the multistage schemes,
which commonly require more than one model for inference,
our method is much more lightweight and memory efficient.
More importantly, our method is an end-to-end method, which
is also more suitable for clinical applications.

F. Discussion and Limitation

From the comparative experiments with state-of-the-art
approaches, existing approaches cannot achieve satisfactory
segmentation results in this task due to two major challenges
of various scales and blurred tumor boundaries in kidney
and tumor segmentation. Although recent approaches propose
many PPM-like or multibranch schemes to capture multiscale
features to deal with various scales problem, these methods
need carefully designed to fit different situations. Therefore,
we design an SAFE module that can adaptively select the
optimal receptive field from multiscale context information to
segment various scales of kidneys and tumors. Moreover, to
better handle the situations of boundaries blurred and adja-
cent problems, we introduce the nonlocal mechanism to extract
global long-range dependencies to highlight the target region

1https://kits19.grand-challenge.org/evaluation/challenge/leaderboard
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Fig. 8. Failure cases. Red and green regions indicate kidney and tumors,
respectively.

with a global perspective. By seamlessly integrating SAFE
and NCG modules, our SNCG-Net can not only fully capture
multiscale features but also extract richer nonlocal context,
which is proved to be very effective for the challenging kidney
and tumor segmentation task.

Although our approach outperforms the state-of-the-art
approaches, the proposed 3DSN-Net still failed to deal with
some extremely challenging cases. For the cases where even
humans still cannot distinguish the kidney cysts from kidney
tumors, or the cases, including very large tumors accompanied
by other organ adhesions (as shown in Fig. 8), our 3DSN-Net
still cannot accurately segment the kidney and tumors. As
our training data only contains very limited cysts cases, it is
almost impossible for the network to distinguish the charac-
teristics of cysts from real tumors. For the cases with different
organ adhesions, we can further expand the receptive fields
and make full use of nonlocal information to improve the
segmentation performance. From our studies, we find that
effectively and efficiently harnessing long-range dependencies
in 3-D networks is a potential way to improve segmenta-
tion performance. As the proposed 3DSN-Net can tackle most
challenging cases except for some extreme cases, it has the
capability to serve as an effective auxiliary instrument for
diagnosis and surgical planning.

V. CONCLUSION

In this article, we presented an automatic approach to seg-
ment kidneys and tumors from 3-D CT volumes based on
an NCG network with scale aware. Unlike conventional 3-D
U-Net, we first utilize an SAFE to achieve the adaptive selec-
tion of receptive field, which efficiently improves the ability
to identify multiscale targets when segmenting kidneys and
tumors from 3-D CT volumes. We also propose an NCG
mechanism to capture long-range dependencies for feature
selections by simultaneously encoding spatial context and
recalibrating channel weights. Thanks to the NCG, we can
merely use skip connections bridging encoder and decoder
in our 3-D U-Net to compensate high-level semantic fea-
tures with valuable spatial knowledge, achieving more accurate
3-D segmentation. We visually and statistically compare our
method with state-of-the-art methods on the KiTS dataset that
includes various kidney and tumor cases, demonstrating the
advantages and effectiveness of our approach.
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