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A [c6] sculpture in [s6] cartoon style.
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A flying [c3] bird in 
[s1] paper style.
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Flowers in  
[s2] yarn style.
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Fig. 1. By separately learning content and style in “partly learnable projection” (PLP), our method is able to generate images of customized content and

style aligned with various prompts while successfully disentangling content and style and maintaining high fidelity. We use the “\blend” instruction in

Midjourney for customized content-style generation.
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Personalized generation paradigms empower designers to customize vi-

sual intellectual property with the help of textual descriptions by adapting

pre-trained text-to-image models on a few images. Recent studies focus

on simultaneously customizing content and detailed visual style in images

but often struggle with entangling the two. In this study, we reconsider

the customization of content and style concepts from the perspective

of parameter space construction. Unlike existing methods that utilize a

shared parameter space for content and style learning, we propose a novel

framework that separates the parameter space to facilitate individual

learning of content and style by introducing “partly learnable projection”

(PLP) matrices to separate the original adapters into divided sub-parameter

spaces. A “break-for-make” customization learning pipeline based on

PLP is proposed: we first break the original adapters into “up projection”

and “down projection” for content and style concept under orthogonal

prior and then make the entity parameter space by reconstructing the

content and style PLP matrices by using Riemannian preconditioning to

adaptively balance content and style learning. Experiments on various

styles, including textures, materials, and artistic style, show that our

method outperforms state-of-the-art single/multiple concept learning

pipelines regarding content-style-prompt alignment. Code is available at

https://github.com/ICTMCG/Break-for-make.

CCS Concepts: • Computing methodologies → Image manipulation;

Additional Key Words and Phrases: Customize generation, content-style

fusion, text-to-image generation
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1 Introduction

Text-to-image (T2I) models based on diffusion technology [Ho

et al. 2020; Ho and Salimans 2021; Song et al. 2020] have demon-

strated remarkable proficiency in generating high-quality images,

expanding the imaginative capabilities of humans through textual

descriptions. Represented by Stable Diffusion [Rombach et al.

2022] and Midjourney [Midjourney 2023], various diffusion mod-

els and platforms have been widely applied in the field of creativity

design or digital content generation. Despite their outstanding

generalization ability, it is challenging for users to generate

specific visual concepts using only textual descriptions with

T2I models.

Customized generation approaches have thus been proposed for

subject-driven generation by techniques such as tuning the base

model with regularization [Ruiz et al. 2023], learning additional

parameters as pseudo words [Alaluf et al. 2023; Gal et al. 2022;

Voynov et al. 2023] or low-rank adaptations [Hu et al. 2021]. Most

of these approaches, however, only support generating images

depicting a single concept (e.g., objects, textures, materials, art

style, etc.), leaving the customized generation of multi-concept

images (e.g., specific content with a specific style) a challenging

task. For example, designers may wish to render specific objects

with different textures or materials to examine various effects.

Similarly, artists may want to render specific objects in their own

distinctive styles.

Multi-concept generation [Avrahami et al. 2023; Kumari

et al. 2023] aims to learn and generate different contents by

manipulating or constraining cross-attention mechanisms. How-

ever, the intricate nature of visual style, which is often entangled

with content, poses challenges in effectively decoupling content

and style concepts due to their shared parameter space and

lack of disentanglement strategies employed by these methods.

Recent work, such as ZipLoRA [Shah et al. 2024], merges two

independently fine-tuned content and style adaptations using a

loss function based on cosine similarity to alleviate the entan-

glement between content and style. Nevertheless, the merging

process often leads to interference between the parameters of

different adapters [Ortiz-Jimenez et al. 2023]. This oversight in

failing to optimally align the integrated parameters can result

in notable performance degradation of the merged model, lead-

ing to ineffective preservation of the distinct qualities of both

content and style [Yadav et al. 2023]. B-LoRA [Frenkel et al.

2024], published concurrently with the present work, proposes

a method for stylizing specific content by decomposing images

into style and content representations and optimizing different

LoRA layers. While this approach separates style and content in

an impressive way, it poses limitations in generating customized

content and style aligned with various prompts. Therefore, a

method is needed that decouples the learning of content and

style and recombines them in a generation process without

interference.

Here, we introduce a two-stage learning approach for cus-

tomized content-style generation, which we call “break-for-make”.

In the first stage, we propose “partly learnable projection”

(PLP) matrices to train content and style in separated sub-

parameter spaces of low-rank adapters. Specifically, we freeze cer-

tain parameters in both the “up projection” and “down projection”

matrices, allowing separate training of content and style within

their respective trainable parameter subsets. To avoid interference

between content and style after matrix multiplication by frozen

parameters, we initialize the frozen rows and columns within the

projection matrices to approximate orthogonal bases. To maintain

the generalization of the learned content/style PLPs, we utilize a

multi-correspondence projection (MCP) learning strategy to

learn unbiased content and style parameter spaces. Specifically, we

train customized content in “up projection” matrices with diverse

reference styles in “down projection” matrices and vice versa. This

approach avoids one-to-one binding between content and style,

thereby mitigating the overfitting of content/style PLPs when

composing with other corresponding PLPs. In the second stage, we

reconstruct a unified parameter space by combining the content

and style PLP matrices, followed by fine-tuning the integrated

adapter to achieve content-style customized results. To address

the challenges of balancing content and style learning while

mitigating concept overfitting and leakage from reference images,

we introduce a novel Riemannian preconditioning approach. This

method adaptively scales gradients of both content and style PLP

during the fine-tuning process and balances the learning of con-

tent and style features. We present our results in Figures 1(a) and

1(b); these results demonstrate our method’s capability to generate

high-quality, customized images that faithfully adhere to both con-

tent and style features across diverse content references and style

references.
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Our contributions can be summarized as follows.

— We separate the parameter space of low-rank adapters for

disentangling the content and style representations and

introduce a content-style customization learning pipeline.

— We propose a Partly Learnable Projection (PLP) with an

orthogonal frozen parameters strategy that enables the

disentanglement of content and style. During training,

a Multi-Correspondence Projection (MCP) mechanism

is proposed to maintain generalization and Riemannian

preconditioning is proposed to balance the content and

style training process.

— Extensive qualitative and quantitative experiments validate

the superior effectiveness of our approach over current

baseline methods, particularly in the realms of content and

style disentanglement and the preservation of content–style

fidelity.

2 Related Work

2.1 Text-to-Image Customization

Diffusion models [Ho et al. 2020] have demonstrated the capability

to produce high-quality images in T2I generation [Betker et al.

2023; Chang et al. 2023; Rombach et al. 2022; Saharia et al. 2022].

T2I customization aims to inject specific concepts or styles into

diffusion models to generate diverse images, including different

views, poses, scenes, and more [Chen et al. 2023; Gal et al. 2022,

2023; Huang et al. 2024; Ruiz et al. 2023; Wei et al. 2023; Zhang et al.

2023c]. To achieve this, numerous approaches have been proposed

across various aspects. Textual Inversion [Gal et al. 2022] employs

inherent parameter space to describe specific concepts and inverts

training images back to text embeddings. DreamBooth [Ruiz et al.

2023] fine-tunes backbone models with specific token–images

pairs and a prior preservation loss. Custom diffusion [Kumari et al.

2023] optimizes a few diffusion model parameters to represent

new concepts/styles while enabling fast tuning for multiple

concepts jointly. LoRA [Hu et al. 2021], a parameter-efficient

fine-tuning approach first revealed for large language models,

has proven effective for customization by adapting only a few

adaptation parameters. LoRA’s lightweight nature and ability to

generate customized content/style without full model fine-tuning

make it highly flexible. Various LoRA-based methods have been

proposed for more effective and efficient training [Dettmers et al.

2023; Edalati et al. 2022; Hyeon-Woo et al. 2021; Valipour et al.

2023; Zhang et al. 2023a]. Po et al. [2024] design multiple LoRAs to

separately train different content and generate multiple contents

simultaneously in one image. By integrating adapter modules,

AdapterFusion [Pfeiffer et al. 2021]allows adaptation to down-

stream tasks via fine-tuning only the adapter parameters. Liu et al.

[2023] propose Cones, a layout guidance method for controlling

multiple instances of customized subject generation. Perfusion

[Tewel et al. 2023] introduces a new mechanism locking new

concepts’ cross-attention Keys to their superordinate category to

avoid overfitting, and a gated rank-1 approach to control a learned

concept’s influence during inference and combine multiple con-

cepts. NeTI [Alaluf et al. 2023] and ProSpect [Zhang et al. 2023b]

introduce an expanded text-conditioning space over diffusion time

steps for fine-grained control. These concept-customized genera-

tion methods primarily focus on the quality of generated outputs,

addressing general concept customization. In contrast, we focus

mainly on the fusion generation of customized content and style.

2.2 Customized Content–Style Fusion

The goal of content–style customization is to generate an image

that incorporates specific content and style based on reference

images while ensuring that the unique characteristics of both

content and style are distinctively represented and aligned with

prompts. Previous works jointly train content and style on

customized generation models [Gal et al. 2022; Kumari et al.

2023; Ruiz et al. 2023]. During inference, these methods generate

images blending both content and style based on given prompts.

However, these straightforward approaches do not optimize the

learning between content and style, often resulting in their entan-

glement in the generated results. DreamArtist [Dong et al. 2022]

employs a positive–negative prompt-tuning learning strategy

for customized generation and discusses content–style image

fusion in the experiments. SVDiff [Han et al. 2023] fine-tunes

the singular values of weight matrices and proposes a Cut-Mix-

Unmix data-augmentation technique to help multi-subject and

content–style image generation. Instruct-Imagen [Hu et al. 2024]

proposes a model that tackles content–style image generation by

fine-tuning pre-trained models with retrieval-augmented training

and multi-modal instruction-tuning. StyleDrop [Sohn et al. 2023]

improves the quality of generating stylized images via iterative

training with human or automated feedback. ProSpect [Zhang

et al. 2023b] leverages learning word embeddings specific to con-

tent and style, incorporating them at different diffusion time steps

to control customized content–style image generation. However,

relying on step-wise diffusion priors limits ProSpect’s gener-

ability across different content and visual styles. Recent work

featuring ZipLoRA [Shah et al. 2024] learns hybrid coefficients to

optimize conflicts arising when merging two separately trained

LoRAs, partially mitigating entanglement issues. However, it

concurrently modifies the distribution of learned parameters, sub-

sequently influencing reconstruction outcomes. Compared with

related approaches, our proposed “partly learnable projection”,

“multi-correspondence projection learning”, and “Riemannian

Preconditioning” strategies train content and style separately in

different sub-parameter spaces within low-rank adaptations with

data augmentation to disentangle content and style information.

3 Vanilla Solutions for Content-Style Customization

In this section, we first introduce the task definition of content–

style customization in image generation. Then, based on the typ-

ical customization method, low-rank adaptation fine-tuning [Hu

et al. 2021], we introduce and discuss initial solutions through joint

training or merging after independent training. Note that our pri-

mary focus is on methods based on low-rank adaptations, as these

are both efficient and effective for fine-tuning large T2I models.

Formulation. Content–style customization aims to generate im-

ages that effectively present user-specified content and style while

ensuring that their unique characteristics are distinctively repre-

sented [Shah et al. 2024; Zhang et al. 2023b]. Formally, given one

or a few content reference images Ic , style reference images Is , and

ACM Trans. Graph., Vol. 44, No. 2, Article 21. Publication date: April 2025.
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(a)  Joint  training

(b) ZipLoRA (ECCV2024)
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(c)  Orthogonal LoRA (CVPR2024)
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Fig. 2. Frameworks of existing approaches and ours for customized content–style image generation. Joint training LoRA will mix the parameter space of

content and style, leading to the entanglement of both. ZipLoRA [Shah et al. 2024] effectively merges independently trained content and style LoRAs.

However, the conflicting parameters between the content LoRA and style LoRA can lead to unfaithful reproduction of content and/or style after fusion.

Orthogonal LoRA [Po et al. 2024] focuses on multi-subject customization by learning orthogonal LoRAs for each subject. These adapters are composed in a

‘continual learning’ manner, in which different concepts do not influence each other. However, this approach leads to a failure in content–style fusion. Our

method trains content and style in separated parameter subspaces of LoRA, resulting in a disentangled and faithful fusion of content and style.

a prompt P , we aim to generate an output image Iout that contains

the same content as Ic , and has the same style as Is , while aligning

with the provided prompt P .

Given a weight matrixW0 ∈ Rm×n of UNet [Ronneberger et al.

2015] for a pre-trained diffusion model, each LoRA module consists

of an up-projection matrix Wup ∈ Rm×r and a down-projection

matrix Wdown ∈ Rr×n , where the rank r � min(m,n). Given an

input z, during training, the forward pass is

Iout =W0z +WupWdownz, (1)

and only Wup and Wdown are updated to find a suitable adapta-

tion ΔW = WupWdown . In this work, we incorporate LoRA mod-

ules into the cross-attention components of the diffusion model for

fine-tuning [Simo 2023]. After training, we can directly merge the

LoRA modules with the pre-trained weight matrix and obtain new

weightsW =W0 + ΔW , which can perform inference as usual.

Joint Training. A straightforward method for customized

content–style generation is jointly training LoRA modules with

customized content images and style images. In simple terms,

LoRA modulesW for learning specific content and style are trained

using a squared error loss function as follows:

L =
[��Ŵθ (zc |cc , t) − xc

��2
2

]
+
[��Ŵθ (zs |cs , t) − xs

��2
2

]
, (2)

where (zc , cc ,xc ) and (zs , cs ,xs ) are data-conditioning-target pairs

of the specific content and style (image latent, text embeddings,

and target images), respectively. t is diffusion process time t ∼

([0, 1]), and θ represents model parameters. However, this training

approach mixes the parameter spaces of content and style during

the training stage, resulting in the entanglement of content and

style when weights W multiplied with the input, as analyzed in

Figure 2(a).

Merging after Independent Training. Another primary method in-

volves independently training two LoRA modules—one dedicated

to content and the other to style—in the first stage. In the second

stage, these modules are merged with certain constraints. Given a

set of learned LoRA weights ΔWi optimized on content and style,

the merged weight is simply given by

Wmerдed =W0 +
∑

i

λiWi , (3)

where λi is a scalar representing the relative strength of content

and style. However, merging independent LoRAs can cause

parameter conflicts, in which influential values from one LoRA

may be obscured by redundant values from the other, reducing

overall effectiveness. ZipLoRA [Shah et al. 2024] learns mixing

coefficients for both content and style LoRAs to mitigate conflicts.

Nevertheless, to some extent, it affects the distribution of content

and style parameters learned during the training phase. Although

this approach shows improved disentanglement performance, the

fidelity of reconstruction is somewhat reduced, as analyzed in Fig-

ure 2(b). A recent work [Po et al. 2024] focuses on multi-content

customization by learning orthogonal LoRAs for each content.

The adaptors are composed in a “continual learning” manner—

different concepts do not influence each other. Thus, it is effective

for distinct objects/persons. However, such design exhibits con-

ceptual fusion when overlapping elements (i.e., content and style)

are presented due to a lack of feature/weight fusion/interaction.

On the other hand, orthogonal LoRA controls the disentangled

generation of two contents by designing two orthogonal up

projections. In contrast, our approach avoids interference from

redundant parameters by fixing a portion of the orthogonal

initialization in both the up and down projections, as analyzed

in Figure 2(c). This motivates us to pursue separate training for

content and style, subsequently integrating concepts with harmo-

nious fusion, aiming to achieve both precise reconstruction on

customized content and style as well as effective disentanglement.

4 Our Method

In this section, we first introduce our proposed PLP method, a

parameter separation training framework for LoRA that enables

better control over the training parameters. This facilitates the

generation of images that are more faithfully aligned with the

specified conditions while maintaining higher fidelity. We then

ACM Trans. Graph., Vol. 44, No. 2, Article 21. Publication date: April 2025.
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present MCP, a technique for training content and style represen-

tations during the customization process to mitigate overfitting

between the two. Finally, we introduce “Riemannian Precondi-

tioning” (RP), a technique that adaptively balances the learning

of content and style PLP by taking consideration of gradient

steps of each other. By utilizing the proposed PLP, MCP, and RP

methods, we enable the generation of customized content–style

images that achieve effective disentanglement of content and style

while also preserving a high degree of image fidelity and fusion.

4.1 Partly Learnable Projection

To address the aforementioned issues, we propose PLP matrices to

separate the LoRA module and search for the optimal content and

style parameters within distinct sub-parameter spaces. Specifically,

we consider a LoRA module ΔW with input dimension n, rank r ,

and output dimension m. The Wdown and Wup matrices of ΔW
are decomposed into two submatrices along the feature dimension,

respectively. TheWup can be formed as

Wup =
[
A B

]−1
, (4)

where

A =

⎡⎢⎢⎢⎢⎢⎣
A11 · · · A1r

...
. . .

...

Ad1 · · · Adr

⎤⎥⎥⎥⎥⎥⎦
,B =

⎡⎢⎢⎢⎢⎢⎣
B(m−d )1 · · · B(m−d )r
...

. . .
...

Bm1 · · · Bmr

⎤⎥⎥⎥⎥⎥⎦
. (5)

Similarly, theWdown matrix can be formed as

Wdown =
[
C D

]
, (6)

where

C =

⎡⎢⎢⎢⎢⎢⎣
C11 · · · C1d
...

. . .
...

Cr 1 · · · Crd

⎤⎥⎥⎥⎥⎥⎦
,D =

⎡⎢⎢⎢⎢⎢⎣
D1(n−d ) · · · D1n

...
. . .

...

Dr (n−d ) · · · Drn

⎤⎥⎥⎥⎥⎥⎦
. (7)

According to the rules of partitioned matrix multiplication, we

have that

ΔW =WupWdown (8)

=

[∑
r Ai,rCr, j

∑
r Ai,rDr, j∑

r Bi,rCr, j
∑

r Bi,rDr, j

]
, (9)

where d represents the feature dimension of the fixed parameters.

Adjusting the size of d implies modifying the ratio of frozen to

trainable parameters within the matrix, which is further discussed

in Section 5.7. After multiplication, we obtain a partitioned matrix,

which can be visualized as the original matrix decomposed into a

set of horizontal and vertical submatrices.

We propose PLP with orthogonal parameters for better disen-

tanglement of content and style during training. Specifically, the

matrices A and C in Equations (5) and (7) are kept frozen during

the training process. We initialize A and C as approximately or-

thogonal to reduce redundant parameters and achieve better dis-

entanglement of content and style:∑
r

Ai,rCr, j = 0. (10)

The upper-right part of ΔW in Equation (4.1) represents only the

parameters of submatrix D. Similarly, the lower-left part of ΔW in

Equation (4.1) represents only the parameters of submatrix B, and

the lower-right part of ΔW in Equation (4.1) relates to B and D,

allowing us to learn interactive features between them.

The forward pass during training yields

zout =W0z +

[
0

∑
r Ai,rDr, j∑

r Bi,rCr, j
∑

r Bi,rDr, j

]
z, (11)

where Ai,r and Cr, j are frozen during training.

Our partitioned matrices method separates content and style pa-

rameters, allowing input features to multiply with corresponding

parameters during training. This distinctly represents content and

style in different parameter subspaces, mitigating entanglement

while maintaining high fidelity.

As shown in Figure 2(d), after separating the LoRA module

and performing forward matrix multiplication, the resulting

partitioned matrices exhibit a zero top-left part due to orthogonal

vector multiplication, a top-right style submatrix, a bottom-left

content submatrix, and a bottom-right part for learning interac-

tive feature parameters. This approach avoids parameter conflicts

from merging methods and achieves disentangled content and

style representations. The interactive parameters enable the

generation of naturalistic fusion images with high visual quality.

Additional visualization analyses of the LoRA parameter spaces,

with and without the application of our proposed method, are

provided in the supplementary material.

4.2 Multi-Correspondence Projection Learning

When training a one-to-one mapping between a specific con-

tent and style, the content and style distribution tends to drift

away from the desired representation, leading to potential overfit-

ting issues and suboptimal performance when reconstructing the

content–style modules in the second stage for image generation.

To mitigate this problem between content and style during train-

ing, we introduce an MCP learning method involving diversified

content–style training data pairs. Specifically, when training for a

particular content, we update the parameters of B in Equation (5)

with the particular content image and update the parameters of D
in Equation (7) with various style images and vice versa. In sim-

ple terms, a LoRA modelW for learning specific content is trained

using a squared error loss function as follows:

L =
[��Ŵθ (zc |cc , t) − xc

��2
2

]
+

1

n
·

n∑
i=1

[���Ŵϕ (zs |cs , t) − xs

���2

2

]
, (12)

where (zc , cc ,xc ) and (zs , cs ,xs ) are data-conditioning-target

triplets of the specific content and diverse styles (image latents,

text embeddings, and target images), respectively. n represents

the number of different styles. t is the diffusion process time t ∼

([0, 1]), and θ represents the model parameters. The loss function

for training the style LoRA model is similar to Equation (12). This

training approach prevents overfitting issues that arise when learn-

ing specific content–style pairs, simultaneously enhancing the

method’s generalization ability and improving the effectiveness of

diverse content–style combinations, as illustrated in Figure 3. Af-

ter the first stage training, we obtain LoRAc and LoRAs , containing

learned parameters for specific content and style, respectively. We

then reconstruct LoRAf as fusion adapters by combining the up-

projection part of LoRAc with the down-projection part of LoRAs .
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Fig. 3. Illustration of the multi-correspondence projection. We present the

learned content distribution on the left of the top row. When training spe-

cific content and style in a one-to-one manner, the content will tend to

overfit to the specific style, as illustrated in the middle of the top row. By

leveraging our proposed multi-correspondence projection, we learn multi-

ple styles with the content in PLP and enhance the generalization of the

learned content.

4.3 Gradient Scaling with Riemannian Preconditioning

We fine-tune LoRAf in the second stage with a few dozen steps

for better fusion of content and style. During fine-tuning, we ob-

serve a disparity in convergence rates between content and style

PLPs. This discrepancy often leads to concept overfitting and con-

cept leakage of either content or style. Overfitting can also result

in learned content or style representations that fail to generate

images well aligned with diverse prompts. Drawing from the Rie-

mannian metric, which simultaneously incorporates the objective

function and constraints within the matrix optimization [Mishra

and Sepulchre 2016; Zhang and Pilanci 2024], we introduce a dy-

namic preconditioner in each gradient step of PLP to adaptively

balance the learning of content and style features. Specifically, we

scale the gradients of content PLP and style PLP by employing an

r × r preconditioner for including the information of both; the pa-

rameter update is formulated as

Mt+1 = Mt − α
(
NT

t Nt

)−1 (
∇Mt

L
)
, (13)

Nt+1 = Nt − α
(
∇Nt

L
) (
MtM

T
t

)−1
, (14)

where M and N represent the learnable part of style PLP and

content PLP, respectively. (MtM
T
t )

−1 and (NT
t Nt )

−1 are our intro-

duced preconditioners, α is the learning rate, L is the training loss,

and t is the gradient step.

Compared with the standard AdamW optimizer [Loshchilov

and Hutter 2019], Riemannian preconditioning facilitates benefi-

cial information exchange between the up and down projections

during training. This exchange ensures that each partition is not

isolated but rather is informed by the other, leading to a more

holistic and effective training process, thereby improving the

overall quality and generalizability of the customized model, as

illustrated in Figure 14. Our method not only enhances the sta-

bility of LoRA training but also yields more coherent and diverse

generations that better capture the intended content and style

features.

5 Experiments

Datasets. For fair and unbiased evaluation, we use concept images

and style images from related works [Gal et al. 2022; Ruiz et al.

2023; Shah et al. 2024; Zhang et al. 2023b] together with diverse

images from the Internet. Our datasets include 30 content types

and 20 style types. For training content PLP, we collect three to

five images of the same content and five different styles, each style

consisting of one image. For training style PLP, we collect one to

three images of the same style and five different contents, each

content consisting of one image. The influence of the number of

references is discussed in the supplementary material.

Compared Methods. We compare our method against four

state-of-the-art customization approaches: textual inversion

(TI) [Gal et al. 2022], ProSpect [Zhang et al. 2023b], custom

diffusion (CD) [Kumari et al. 2023] and ZipLoRA [Shah et al.

2024]. TI and ProSpect are based on prompt tuning for frozen T2I

modes, meaning they can directly merge different concepts by

operating prompts. CD extends DreamBooth to learning multiple

concepts. ZipLoRA is the representative work for merging after

independent training. As official ZipLoRA codes have not yet been

released, we adopt a popular implementation [mkshing 2023],

which initially trains the content and style models separately and

performs LoRA merging. Furthermore, we implement the joint

training (JTtrain) fashion following [Simo 2023], where both

DreamBooth and LoRA are adopted for learning content and style

concepts into one model together.

Metrics. For quantitative comparisons, we mainly assess three

metrics: content alignment and style alignment between the

generated images and reference images, as well as prompt align-

ment between the generated images and the corresponding

prompts. Following quantitative experiment settings of ProSpect

[Zhang et al. 2023b] and ZipLoRA [Shah et al. 2024], we compare

cosine similarities between CLIP [Ilharco et al. 2021] features for

calculating style and prompt alignment and DINOv2 [Oquab et al.

2023] features for content.

Implementation Details. In our experiments, we utilize Stable Dif-

fusion XL v1.0 [Podell et al. 2023] with default hyperparameters

and set a base learning rate of 0.0001. During training, we set the

batch size to 1, text encoders of SDXL are kept frozen, and the

refiner of SDXL is not utilized. Based on the orthogonal fixed pa-

rameters we proposed, we train LoRA modules of the same input

and output feature dimensions, which means thatm in Equation (5)

equals n in Equation (7). The rank of LoRA is set to 64.

5.1 Main Results

In this section, we present qualitative and quantitative compar-

isons between our method and baseline approaches. In the supple-

mentary material, we showcase more of our results with diverse

content and styles.

Qualitative Comparison. We first present results of generating

the same content image with multiple style images in Figure 4.

Then, we present the same style image with multiple content im-

ages in Figure 5. Results indicate that our methods successfully dis-

entangle content and style in one image while maintaining a high

level of fidelity. JTtrain usually generates images of unnatural con-

tent style fusion (the result of “mountain” with “yarn style” and “oil

painting style” in Figure 4) and images of the mixed style (“vase”

and “teapot” with “glass style” in Figure 5). The observed entangle-

ment phenomenon aligns with the analysis presented in Section 3.
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Fig. 4. Qualitative evaluation and comparison of DB+LoRA, TI, ProSpect, CD, ZipLoRA, and our method in diverse styles. We present the results of cus-

tomized generation of the same content and different styles. Results indicate that our method generates harmonious fusion images of the content and style

while preserving the disentanglement of content and style, as well as maintaining high-level fidelity.
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[s1] glass style
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[s2] sticker style
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Fig. 5. Qualitative evaluation and comparison of DB+LoRA, TI, ProSpect, CD, ZipLoRA, and our method in diverse contents. The results indicate that our

method generates harmonious content–style fusion images with diverse contents while preserving the disentanglement of content and style as well as

maintaining high-level fidelity.
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Table 1. Comparison of Cosine Similarity between CLIP (for Style and Prompt) and DINO Features (for Content) of the

Generated Images and Reference Style, Content, and Prompt, Respectively

Methods JTtrain TI ProSpect CD ZipLoRA w/o MCP w/o Orth w/o RP Ours

Content alignment (↑) 0.5221 0.4942 0.4816 0.5181 0.5319 0.5175 0.5265 0.5119 0.5288

Style-alignment (↑) 0.5438 0.6092 0.6165 0.6345 0.6403 0.5835 0.6297 0.6615 0.6754

Prompt-alignment (↑) 0.3038 0.2836 0.3156 0.2778 0.3319 0.3971 0.4046 0.3908 0.4107

Average (↑) 0.4566 0.4623 0.4712 0.4768 0.5014 0.4994 0.5203 0.5214 0.5383

Our method has the best average score, indicating that our approach successfully customizes the generation of the target content and style
while aligning with the prompt.

TI struggles to accurately learn content/style features, leading to a

decrease in the fidelity of generated images (“mountain” with “Min-

imalism painting style” and “marble style” in Figure 4, the loss of

feature “transparent glass” in “glass style” in Figure 5). ProSpect

has achieved effective control over content and style to some ex-

tent; as seen in examples such as “vase” and “teapot” in Figure 5,

shape and material are presented in generated images. However, it

is constrained by its learning capability, which leads to low-quality

content–style customization results (the result of “mountain” with

“watercolor painting style” and “yarn style” in Figure 4). CD also en-

counters entangling issues between content and style. In cases of

“glass style” with “vase” and “teapot” in Figure 5, the reference im-

ages of content influence the style of the generated images. In the

case of ZipLoRA, the generated results may not accurately present

the reference content or style. For example, in instances such as

“vase” and “teapot” in Figure 5, the outputs of ZipLoRA lack the tex-

ture style of “transparent glass” in the reference set. In instances

of generating “mountain” with “oil painting” style and “blackboard

painting” style, the mountain cannot be generated faithfully as the

reference. This also reflects the manifestation of fidelity degrada-

tion due to parameter conflicts. Compared with the above meth-

ods, our method maintains a high level of fidelity and harmonious

content–style interaction when generating various styles for the

same content. Note that the instance of “sticker-style” images in-

cludes a dual style, encompassing both sticker and cartoon styles.

When evaluating it as the reference, our method successfully gen-

erates images in the sticker style. It simultaneously transfers the

content into a cartoon style while the results of other methods are

kept in a realistic style.

Quantitative Comparison. We present quantitative compari-

son results in Table 1, evaluating the content-alignment, style-

alignment, and prompt-alignment metrics. For each unique

content–style pair, we generate 10 images with random seeds. A

total of 6, 000 images are used for quantitative comparisons. Ad-

ditionally, we report the average of these three metrics, in which

higher values indicate better performance. Our method achieves

the highest average score among all baselines, suggesting that it

generates customized content–style images that align well with

the content and style references while corresponding to the given

prompt. Note that in the content-alignment metric, our score is not

the highest because ZipLoRA tends to generate images that retain

more features from the content reference images. However, this

could compromise the accurate expression of style and adherence

to the prompt in the generated images, affecting the effectiveness

of style transfer and prompt alignment, as indicated by the lower

style-alignment and prompt-alignment metrics for other methods

in Table 1. Additionally, the comparative display in Figures 4 and

5 supports this observation.

5.2 Editability Evaluation

We evaluate and compare the editability of our method against

other baselines by generating customized content–style fusion im-

ages using a diverse set of prompts. For a fair comparison, the

prompts and results of use of ZipLoRA are obtained from their orig-

inal paper. As illustrated in Figure 6, ZipLoRA is generally effec-

tive in generating customized content–style images that align well

with the provided prompts. However, in some details, ZipLoRA

tends to lose certain characteristics of the reference image, such as

the ears and mouth in the “wearing a hat” example and the over-

all appearance in the “in a boat” and “driving a car” examples. In

contrast, our method maintains better consistency with the refer-

ence image in these generated results. We show more generation

results from diverse prompts in the bottom two rows of Figure 6.

The results show high alignment with the prompts while maintain-

ing a high level of disentanglement between content and style as

well as preserving the fidelity of content and style representations.

Overall, our method exhibits superior editability compared with

existing baselines, enabling the generation of customized content–

style images that faithfully integrate the provided prompts while

retaining the desired characteristics of the reference content and

style.

5.3 Comparisons with Two-Stage Paradigms

For the task of customized content–style image generation, we

also evaluate other two-stage approaches that involve learning-

specific content/style in the first stage and subsequently learning

or editing style/content [Brooks et al. 2023; Hertz et al. 2022;

Mokady et al. 2023; Parmar et al. 2023] based on the previous

results in the second stage. In our experiments, we learn the con-

tent of reference images in the first stage and learn or edit style

in the second stage. We leverage Null-text Inversion [Mokady

et al. 2023], a state-of-the-art real-image editing method to edit

style in the second stage. The results are presented in Figure 7.

We observe that the two-stage training and editing methods share

similar drawbacks, primarily the entanglement between content

and style features. For instance, when generating the “glass”

style, the “teddy bear” retains plush features, and the “vase” and

“teapot” retain opaque material from the content reference. In the

case of the “sticker” style, these two methods only generate the

contours as the “sticker” style, while the content of the sticker still

reflects the realistic style depicted in the content reference image.
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A [c2] dog [s2] sticker style running        on mountain  reading books sleeping     practicing karate as a chef

A [c3] teddybear [s3] yarn style on chair              on water         driving a car  as a nurse graduated surfing

playing a ball    catching a frisbee   wearing a hat     with a  crown     riding a bicycle   catching a frisbee        in a boat driving a car
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playing a ball    catching a frisbee   wearing a hat      with a crown      riding a bicycle          in a boat          driving a car

����

�������

[s1] cartoon style

A [c1] dog

More results of our method 

A [c4] teapot [s4] marble style floating on river        on grass              turquoise    by window      on a picnic table   on top of snow

Fig. 6. Results of generating diverse customized content–style images. This indicates that our method exhibits excellent editing capabilities as well as

generalization capabilities to both content and style.

Furthermore, the editing-based approach often necessitates com-

plex prompts to accurately describe the features of the reference

image, thereby increasing the difficulty of precisely customizing

content-style generation. In contrast, our method effectively dis-

entangles the content and style of the reference image, blending

them together to generate high-quality customized content–style

images without the need for complex prompts. Our approach

demonstrates superior performance in achieving faithful content–

style fusion compared with the two-stage training and editing

methods.

5.4 User Study

We conduct a user study to assess the images generated by our

method and other baseline methods. A total of 60 participants (32

female and 28 male, between 14 and 65 years old) took part in the

survey, including 25 researchers in computer graphics or computer

vision. Each participant took part in the following three settings;

in total, we got 3, 600 votes.

— User Study I: alignment preference. In this setting, partici-

pants were shown the content and style inputs as well as

ACM Trans. Graph., Vol. 44, No. 2, Article 21. Publication date: April 2025.
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Fig. 7. Comparison with other two-stage content–style customization

paradigms. CC indicates custom content in the first stage. CC+CS indi-

cates custom style in the second stage based on CC. CC+ES indicates

editing style based on CC.

the results by all methods. They were asked to select the

generated images that most closely aligned with the given

content/style/both reference images. Statistics are shown in

Figure 8(a). The results indicate a strong preference for our

method’s outputs across all methods. This user study val-

idates our method’s effectiveness in learning disentangled

yet cohesive content–style representations from references.

It highlights our framework’s capabilities in accurately in-

terpreting and presenting targeted features from references

while seamlessly combining them per user intent expressed

through prompts.

— User Study II: success rate. Diffusion models are known to be

highly sensitive to the initial seed noise, which can substan-

tially influence eventual results. To assess the robustness

and reliability of our framework across varying initializa-

tions, we conduct A/B testing, analyzing the impact of dif-

ferent seed images on the generated outputs. We randomly

generate nine seeds for each question and randomly select

one baseline method. The selected and our methods gener-

ate nine images according to the nine seeds. Participants

were asked to judge which set of nine images contained

more content–style customized generated images. Statistics

are shown in Figure 8(b). Evaluation results indicate that

our method generates more content–style customized im-

ages than other methods, suggesting a higher success rate

in satisfying image generation.
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Fig. 8. User study results.

— User Study III: consistency. Besides the reliability of given

input references, consistency among generated outputs is

also crucial for real-world applications. We evaluate the gen-

eration stability across multiple samples produced by our

method and baseline methods in the same setting as User

Study II. Participants are required to assess the coherence

and style congruency within each set of nine outputs. Sta-

tistics are shown in Figure 8(c). Our results demonstrate a

remarkably high degree of consistency, with the vast ma-

jority of samples exhibiting faithful adherence to the speci-

fied content semantics and style attributes across the entire

set. In contrast, baseline methods often suffer from greater

sample variance, producing results that appear substantially

more divergent from the intended prompt, both in terms of

content and style preservation.

5.5 Comparison with Concurrent Work

B-LoRA [Frenkel et al. 2024], published concurrent to the present

work, proposes a method for image stylization by decomposing

images into style and content representations and optimizing dif-

ferent LoRA layers. However, our approach differs from B-LoRA

in several significant aspects. Firstly, while B-LoRA primarily fo-

cuses on image stylization, our work aims to enable customized

content-style generation, allowing for the synthesis of images with

diverse poses, scenes, views, and other content variations. Sec-

ondly, whereas B-LoRA decomposes images into style and content

representations and optimizes separate LoRA layers for each, our

method trains LoRA in content and style sub-parameters using our

proposed PLP and MCP techniques. This integrated approach fa-

cilitates a more seamless fusion of content and style components

while maintaining high fidelity of reference content and style. We

present a comparison of our method and B-LoRA in Figure 9. B-

LoRA exhibits limitations in generating customized content and

style aligned with various prompts. For example, B-LoRA’s results

with prompts such as “driving a car” and “catching a frisbee” show
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Fig. 9. Comparison with concurrent work. Our method can generate cus-

tomized images with high fidelity to the content reference, style reference,

and diverse prompts. Moreover, our results demonstrate stronger consis-

tency in preserving both content and style. The results of B-LoRA are from

[Frenkel et al. 2024].

less fidelity to the content reference, whereas the “with crown”

prompt displays lower fidelity to the style reference. In contrast,

our method learns content and style using the proposed PLP and

MCP techniques in separate parameter spaces of LoRA, enabling

the generation of disentangled content and style with high fidelity

and alignment to various prompts. Moreover, our results demon-

strate stronger consistency in preserving content and style when

generating images conditioned on different prompts.

5.6 Comparison with Joint Training for Accommodating
Multiple Concepts

As the proposed MCP leverages multiple content and style refer-

ences for training to mitigate overfitting, for fair comparison, we

also accommodate multiple style and content concepts for JTtrain

with two settings. In the first setting, we leverage multiple style

and content concepts for training in the first stage, and fine-tuning

with the specific content-style pair in the second stage. In the

second setting, the first stage involves training a specific style

in the down projection while using multiple content in the up

projection, and vice versa. In the second stage, the trained down

projection (style) is combined with the up projection (content) for

fine-tuning. Both settings leverage Riemannian Preconditioning

for gradient scaling. The results are shown as JTtrain-II and

JTtrain-III in Figure 10 and quantitative results in Table 2.

From Figure 10 we can see that, for JTtrain-II, training a vari-

ety of style and content concepts jointly within a shared param-

eter space in the first stage complicates the accurate learning of

reference features, resulting in an inability to effectively represent

the reference features in the second stage (e.g., the shape of the

floating on river

skateboarding

with a hat

Reference JTtrain-II OursJTtrain-IIIJTtrain

Fig. 10. Comparison of results from our method with JTtrain methods ac-

commodated with multiple style and content concepts. JTtrain leverages

the specific content–style pair for training. JTtrain-II leverages multiple

style and contents for training in the first stage, and fine-tuning with the

specific content–style pair in the second stage. JTtrain-III trains specific

style in down projection with multiple contents in up projection and vice

versa, then combines the trained down projection (style) with up projec-

tion (content) for fine-tuning.

Table 2. Comparison with Joint Training for Accommodating

Multiple Concepts

Methods Content (↑) Style (↑) Prompt (↑) Average (↑)

JTtrain 0.5221 0.5438 0.3038 0.4566

JTtrain-I 0.5095 0.5317 0.3027 0.4479

JTtrain-II 0.5237 0.5572 0.3102 0.4637

Ours 0.5288 0.6754 0.4107 0.5383

“teapot” and the material of its handle, the identity of the “teddy

bear”, and the identity and flat cartoon style of the “dog”). Re-

sults of JTtrain-II have even worse alignment than JTtrain, since

JTtrain only uses the specific content–style pair. For JTtrain-III,

although specific style and content are learned within the LoRA

down and up projections in the first stage, the parameter space re-

mains mixed after projection multiplication, resulting in outputs

that cannot maintain high fidelity to the references after combin-

ing and fine-tuning in the second stage (e.g., the fine texture of

the “teapot”, the yarn art style of the “teddy bear” and the identity

of the “dog”). As shown in Table 2, compared with our method,

the alignments of JTtrain-II significantly decrease, indicating low

fidelity to both the image references and the prompts. JTtrain-III

achieves slightly better results than JTtrain-II owing to improved

concept learning in the first stage. However, the mixed parameter

space still leads to suboptimal performance.

5.7 Ablation Study

The Optimal Dimension d for the Fixed Parameters. The hyperpa-

rameterd , as the row dimension of the fixed parameters, represents

the proportion of fixed parameters in the parameter subspace.

Without loss of generality, we set d as 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4,
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Fig. 11. Cosine similarity between features of output and reference style,

content and prompt of different ratios for d. When d = 0.5m, the average

cosine similarity of the features reaches its maximum, indicating optimal

alignment between the generated results and the reference content, style,

and prompt. The vertical axis on the right side of the chart represents the

line labeled “Avg.”.

7/8, and all of the dimensions for the corresponding pre-trained

weights (n or m). We report the content-alignment, style-

alignment, and prompt-alignment metrics for various values of d
in Figure 11. From the histogram, we observe that as the value of d
increases and the style alignment and prompt alignment gradually

rise, reaching their peaks whend = 0.5m, then gradually declining.

The average of the three alignments reaches its maximum at a ratio

of 0.5, indicating that the optimal alignment occurs at a ratio of 0.5

with better customized content–style images. This finding aligns

with our theoretical framework introduced in Section 4, where

a 1:1 ratio between fixed and trainable parameters results in the

“content parameter subspace” and “style parameter subspace” hav-

ing the maximum number of trainable parameters, thus reaching

the maximum learning capacity and achieving the best generation

effect. It is noteworthy that at a ratio of 0.5, the content alignment

is not maximal. This is because the results of other ratios present

a weaker learned style (as indicated by lower style alignment

in the histogram) and are entangled with the content to some

extent.

Orthogonal Fixed Parameters. To demonstrate the effectiveness

of the orthogonal fixed parameters designed to enhance the

content and style fidelity of generated images, we conduct an ex-

periment to remove the orthogonal fixed parameters and replace

them with randomly fixed parameters. We present the results

in Figure 12 for comparison. Without adding the orthogonality

prior to the fixed parameters, it leads to decreased fidelity for

the generated images. For instance, in the case of “vase”, “teapot”,

and “teddy bear”, the generated images no longer preserve the

original content details, and the style has also changed. In the case

of the “sticker style”, the generated images lose the cartoonish

style of the contents present in the reference. We also present

quantitative results in Table 1. After ablating fixed parameter

orthogonalization, although the content alignment slightly

increases, the style alignment decreases significantly, and the

average alignment decreases as well. Note that the slight increase

[s1] glass style [s2] sticker style

�������� �	������� �������� �	�������

Fig. 12. Ablation study evaluating the impact of the proposed orthogonal

fixed parameters. The w/o Orth shows results without orthogonal fixed

parameters, while the with Orth demonstrates the improved image qual-

ity achieved by our full method incorporating orthogonal fixed parameters.

The visual comparison highlights the effectiveness of orthogonal fixed pa-

rameters in enhancing the content and style fidelity of generated images.

in text alignment is due to the increase in content alignment, as

the prompts emphasize describing the image content.

Multi-Correspondence Projection Learning. We conduct two abla-

tion studies with different experimental settings to evaluate the

impact of the proposed MCP. In the first setting, we train the tar-

get content PLP (e.g., “vase”) with the style references (e.g., “glass

style”) in a one-to-one manner. In the second setting, we train the

model on the target content with a non-target style (e.g., “yarn

style” or “painting style”) and then combine the content PLP with

the trained style (e.g., “glass style”) PLP. The results are shown as

w/o MCP-I and w/o MCP-II in Figure 13. We can observe that in

the first setting, the generated images exhibit a degree of overfit-

ting to the reference images (e.g., “teapot” with “chair legs” from

the style reference image), resulting in a decrease in fidelity to the

content or style, thereby reducing the quality of the outputs. In

the second setting, the results exhibit some features (e.g., the color

from “yarn style” or “painting style”) of the style trained in the

first stage. As the final model does not incorporate this style, this

is mainly due to the fact that, without MCP, the “yarn style” and

“painting style” influence the parameter space of the content dur-

ing the training stage. We present the results of our method in with

MCP. By comparing, we can observe that, with MCP, we can effec-

tively avoid overfitting and generate images with more disentan-

gled content and style. We also present quantitative comparisons

in Table 1. Without MCP, the content, style, and prompt alignment

decrease significantly, indicating that our method with MCP can

faithfully preserve the content and style of the reference images

while achieving a high degree of alignment with provided prompts.

Gradient Scaling with Riemannian Preconditioning. In our

ablation study, we evaluated the impact of Riemannian pre-

conditioning by comparing it with the conventional AdamW

optimizer [Loshchilov and Hutter 2019]. Figure 14 illustrates the

comparative results. Using the conventional AdamW optimizer,

we observe significant overfitting to the patterns of reference

images (e.g., the poses of “teapot” and “teddy bear”, and have no

ACM Trans. Graph., Vol. 44, No. 2, Article 21. Publication date: April 2025.



21:14 • Y. Xu et al.

[s1] glass style
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[s2] yarn style [s3] painting style
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Fig. 13. Ablation study evaluating the impact of the proposed Multi-

Correspondence Projection (“MCP”). We train specific content (e.g.,

“vase”) and style (e.g., “glass”) in a one-to-one manner and direct infer-

ence after training. Results are presented in the w/o MCP-I column. We

train specific content (e.g., “vase”) and style (e.g., “yarn” or “painting”) in

a one-to-one manner and then combine the content (e.g., “vase”) adapter

with style (e.g., “glass”) adapter in the second stage, then inference with

the combined adapters. We present results trained with “[s2] yarn style”

in the w/o MCP-II-[s2] column and trained with “[s3] painting style” in

the w/o MCP-II-[s3] column. The visual comparison highlights the effec-

tiveness of MCP in enhancing the details while preserving the disentan-

glement of content and style as well as maintaining high-level fidelity.

interaction with “water” or “skateboard”), leading to suboptimal

alignment with different prompts and limiting the model’s ability

to generalize across different prompts. We can also observe subject

leakage from the reference images in the bottom row of the figure

(e.g., a plant from the style reference unexpectedly appears in the

result of “cartoon dog”). In contrast, our method demonstrates

markedly improved performance through balanced training

content and style in up and down projections with Riemannian

preconditioning. The results show better alignment with input

prompts while preserving the intended content and style features.

Quantitatively, as shown in Table 1, the conventional AdamW

optimizer results in decreased content-alignment, style-alignment,

and prompt-alignment scores compared with our approach, thus

validating the crucial role of Riemannian preconditioning over

conventional optimization techniques in mitigating overfitting

and enhancing the model’s generalization capabilities.

Concepts Learning Ablation. We aim to evaluate the learning

effect of the desired content or style compared to the baseline

stable diffusion model. To achieve this, we employ pseudo words

for training and inference of specific content and style. For

comparison, we describe content and style using prompts for

generation. The results presented in Figure 15—solely relying

on prompts to describe the desired content or style without

learning these representations—fail to capture detailed features

from reference images, leading to unfaithful generation of the

customized content and style.

floating on river

��
��
�

skateboarding

with a hat

����� ��	 
� ���
�
�

Fig. 14. Ablation study results demonstrating the effectiveness of Rie-

mannian preconditioning. RP indicates the Riemannian preconditioning,

results with our proposed Riemannian preconditioning method exhibiting

improved prompt alignment and better content-style fusion.

“A teddybear
in paper style”

“A [c1] teddybear
in paper style”

“A teddybear
in [s1] paper style”

“A [c1] teddybear
in [s1] paper style”
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Fig. 15. Comparison of results with and without learning concepts. We

present output images generated with and without learning reference

content or style in orange (by our method) and green (by DreamBooth

method) boxes, respectively. We also show images directly generated by

the basic Stable Diffusion-XL model in the blue box. The prompts used

for inference are displayed at the top. Without learning content or style in

pseudo words, models that rely solely on prompts cannot generate desired

content or styles faithfully.

5.8 Computational Time Costs

We evaluate computational time costs by calculating the average

time consumption on a single NVIDIA A100 GPU. We design two

application scenarios to evaluate computational time costs with

baseline methods. In the first scenario, a new style or content con-

cept is given and needs to compose with a trained content or style

concept. In the second scenario, both style and content concepts

are given new. Results are presented in Tables 3 and 4, respectively.

In the first scenario, except for JTtrain and CD, the first-stage

training can be done separately for content and style. Thus, in our

method, given a new style, the style PLP can be independently

trained (with the specific style reference and multiple content
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Table 3. Comparison of Time Cost when Given a New Style or

Content Concept

Method Time Cost Method Time Cost

JTtrain 28 min 41 s CD 18 min 41 s

TI 27 min 4 s ZipLoRA 21 min 39 s + 8 min 46 s

Prospect 28 min 47 s B4M 21 min 58 s + 2 min 25 s

Table 4. Comparison of Time Cost When Given Both New Style and

Content Concepts

Method Time Cost Method Time Cost

JTtrain 28 min 41 s CD 18 min 41 s

TI 27 min 4 s ×2 ZipLoRA 21 min 39 s ×2 + 8 min 46 s

Prospect 28 min 47 s ×2 B4M 21 min 58 s ×2 + 2 min 25 s

Our method achieves the most balance between required time and generation
quality. We have greatly saved time, especially compared with the two-stage
method (e.g., ZipLoRA).

references) for an average of 21 min 58 s in the first stage and

then combined with a pre-trained content PLP for a fine-tuning

average of 2 min 25 s. The total average time cost is 24 min 23 s,

which is more efficient than ZipLoRA’s 30 min 25 s (21 min 39 s

for style training plus 8 min 46 s for fine-tuning). Conversely, the

process works similarly for a new content concept. Results are

presented in Table 3.

In the second scenario, when both the given content and style

concepts are new, the style PLP and content PLP need to be inde-

pendently trained in the first stage. As a result, the training time

in the first stage is 21 min 58 s on average for each, totaling 43

min 56 s. The second stage remains the same as the first scenario

and the total average time cost is 46 min 21 s on average, which is

more efficient than ZipLoRA’s 52 min 4 s (21 min 39 s for training

each style LoRA and content LoRA plus 8 min 46 s for fine-tuning).

Results are presented in Table 4.

Compared with ZipLoRA, B4M significantly reduces the fine-

tuning time in the second stage while improving the generation

quality.

6 Applications and Discussions

6.1 Applications

We demonstrate the effectiveness and versatility of our technique

across various applications, including content–style customization

of diverse textures and portraits.

Application I: Content-Style Customization of Various Textures.

Our technique enables the synthesis of high-quality content with a

wide variety of user-controlled textures and materials, which can

be leveraged for customized product visualization, digital content

creation, or material design applications. We present results for

different textures (knit texture, burlap texture, denim texture, and

fabric texture) in Figure 16. The visualized results indicate that our

method is capable of customizing generation for a diverse range of

textures while maintaining content consistency with the reference

images. With our approach, designers can easily showcase their

products with custom material and textile options tailored to cus-

tomer preferences. Compared with traditional rendering pipelines

requiring extensive modeling and material setup, our data-driven

approach significantly streamlines this process.

Content

St
yl

e

Fig. 16. Application I. Content-style customization of various textures, in-

cluding knit, burlap, denim, and fabric texture.

Portrait

St
yl

e

Fig. 17. Application II. Content-style customization of portraits.

Application II: Content-Style Customization of Portraits. Another

compelling application of our technique is enabling users to gen-

erate stylized portraits adhering to diverse artistic styles and vi-

sual domains. This capability opens up new creative avenues for

digital artists, as well as opportunities in areas such as virtual pro-

duction and artificial intelligence–assisted artwork creation. For

digital artists and creative professionals, our framework efficiently

synthesizes portrait imagery in various artistic styles with fine

user control. Figure 17 illustrates examples in which we tasked

artists to create stylized portraits using our approach in styles

such as sticker, watercolor painting, and flat cartoons. Compared

with manual digital painting, our approach dramatically acceler-

ates this creative process while still allowing users to guide stylistic

aspects and maintain consistent facial identities. A key advantage

of our approach is its ability to generalize stylized portrait synthe-

sis across numerous visual domains while still allowing users to

control diverse scenes, poses, etc.

Application III: Content-Style Customization of Modern Arts.

Our proposed method has significant applications in the realm

of computational arts and content customization, as presented

in Figure 18. One compelling application is the customization of

hypnotic line art. Hypnotic line art is an emerging art form that

uses intricate interwoven lines and patterns to create mesmerizing

visual effects [Yeh et al. 2020]. Our method could allow artists to

customize this content (e.g., a dog) based on user-specified input
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Hypnotic line art Portrait map art

Fig. 18. Application III. Content-style customization of hypnotic line art

[Yeh et al. 2020] and portrait map art [Zhang et al. 2023d].

[c] vase [s] glass style
[c] vase in [s] glass style 

with flowers
... on a table

Fig. 19. Bad cases. Sometimes our method struggles with cases in which

overlapping opaque elements should be visible through the transparent

regions.

images and prompts. This opens up possibilities for generative

art pieces, animated line art visualizations driven by data inputs,

and unique branding/design elements. Another application

domain is portrait map art [Zhang et al. 2023d], in which stylized

geographic maps are used to compose portraits or other imagery.

This kind of modern art form is created by British portrait artist

Ed Fairburn. Our technique could be employed to customize

these map portraits through the road networks, terrain features,

and map elements to emphasize specific visual qualities of the

input portrait. This could produce visually striking artwork while

preserving recognizable characteristics of the depicted portrait.

Map portraits have applications in data visualization, creative

cartography, and modern pop art.

6.2 Bad Cases and Limitation

Bad Cases. While our proposed method demonstrates considerable

promise in addressing customized content and style fusion, it is es-

sential to acknowledge instances in which certain artistic styles in-

volve transparency or see-through elements, such as a “glass style”,

as shown in Figure 19. While our method can learn and apply trans-

parent attributes to the overall content, it may struggle with cases

in which overlapping opaque elements should be visible through

the transparent regions. For instance, if a user prompts “with flow-

ers” in a glass vase rendering, our current approach may fail to

depict the flower stems properly inside the transparent vase body.

This is because, during training, the model does not learn to de-

compose the scene into explicit occluded and visible components

based on transparency. As a result, when opaque elements such

as flower stems would normally be perceivable through the trans-

parent glass regions, they may be omitted or masked out incor-

rectly. Handling such cases would require explicit modeling of oc-

cluded scene components and line-of-sight visibility, which is not

currently captured in our framework. This limitation highlights

challenges in photorealistic compositing for styles involving trans-

parent surfaces or volumes.

Limitations. While our method performs well on content–style

customization, generating images with complex or rare content/

style solely by using textual prompts remains challenging. Specifi-

cally, our method leverages the class priors in the T2I model when

learning the content or style of given images (e.g., “a [c1] dog”

leverages “dog” as a class prior, “[s1] yarn style” leverages “yarn”

as a class prior) [Ruiz et al. 2023]. When the customized content

or style images are highly complex or rare, obtaining accurate pri-

ors through simple prompts becomes challenging, leading to a de-

crease in the fidelity of the generated images.

7 Conclusion

We introduce Break-for-make (B4M), a novel separated LoRA train-

ing framework that enables composable content–style customiza-

tion. Our approach disentangles content and style representations,

allowing independent recombination of content and style LoRA

projections. When evaluated against state-of-the-art methods, our

method demonstrated superior disentanglement capabilities, si-

multaneously preserving high fidelity to the content and style

reference and alignment to diverse prompts. This decoupled yet

faithful representation facilitates seamless customization across

an extensive range of content–style combinations. However, our

work has limitations when customizing transparent subjects, as it

struggles with cases in which overlapping opaque elements should

be visible through the transparent regions. Looking ahead, our

method proposes a simple yet effective framework for exploring

compositional generative models that can flexibly combine and

remix visual elements on demand. With strong disentanglement

and robust customization capabilities, we hope our method cat-

alyzes new creative paradigms and practical applications across

digital arts, media, and design domains.
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