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Abstract—Field design has wide applications in graphics and visualization. One of the main challenges in field design has been how to

provide users with both intuitive control over the directions in the field on one hand and robust management of its topology on the other

hand. In this paper, we present a design paradigm for line fields that addresses this challenge. Rather than asking users to input all

singularities as in most methods that offer topology control, we let the user provide a partitioning of the domain and specify simple flow

patterns within the partitions. Represented by a selected set of harmonic functions, the elementary fields within the partitions are then

combined to form continuous fields with rich appearances and well-determined topology. Our method allows a user to conveniently

design the flow patterns while having precise and robust control over the topological structure. Based on the method, we developed an

interactive tool for designing line fields from images, and demonstrated the utility of the fields in image stylization.

Index Terms—Field design, line field, singularity, harmonic functions.

Ç

1 INTRODUCTION

VARIOUS graphics and visualization applications utilize a
direction field that describes, at each point on an image

or surface, a “direction” along which geometric or render-
ing elements can be placed. In this paper, we are concerned
with the design of line fields, where each point is associated
with the direction of an unoriented line. Such fields find
applications in painterly rendering [11], [10], where the
placement of brush strokes at each image point is guided by
the line directions, in procedure modeling [2], as well as in
surface parameterization [17], [23], [12].

An important task in field design is controlling the
topology of the field, and particularly its singularities.
Singularities are points in the field where the directions
are undefined. The distortion of the field is typically most
obvious around these points, and hence avoiding unneces-
sary singularities is critical for producing a smooth-looking
field. On the other hand, a carefully chosen set of
singularities is necessary to create interesting, nontrivial
flow patterns. Consider the line field example in Fig. 1c,
which mimics the flow in Van Gogh’s painting Starry Night
in Fig. 1a. The field contains more than 30 singularities
(green dots in Fig. 1c) located at the centers of vortex-
shaped stars and junctions of various streams in the night

sky. These singularities are essential in creating the desired
flow patterns. To enable the design of a complex field like
this while avoiding unwanted singularities, a field design
tool should have the following properties:

. Intuitive. The tool should be easy enough for a
novice user to create a field with a possibly
nontrivial appearance.

. Precise. The user should have exact control over the
topological structure of the field, which is described
by the singularities, their local topology, and their
mutual connectivity.

. Robust. The tool always produces a field that meets
the user-prescribed topology without producing
unwanted singularities.

A number of methods have been proposed to offer
topology control in designing various kinds of direction
fields (reviewed in Section 2). In particular, several recent
methods offer robust topology guarantees [19], [18], [5],
[14]. These methods adopt a singularity-based design para-
digm: the user specifies the locations of singularities, their
indices (i.e., the amount of total rotation of the field around
the singularity), and/or their quantity. A field is then
generated with precisely the given set of singularities.

However, specifying singularities is not the most direct
or intuitive way of designing a direction field, as it asks for
where the direction “vanishes” rather than what the
directions are. In addition, it can be challenging for a
novice user to understand and supply the indices of
singularities, not to mention that these indices need to
satisfy some global constraint (such as the Poincare-Hopf
theorem for vector fields). Even for experienced users,
correctly identifying all singularities and their indices in a
field that has a nontrivial topology can be a daunting task.
The second limitation of these methods is that the locations
and indices of singularities do not offer precise control
over the topological structure of the field. Singularities of
dramatically different appearances and local topology can
have the same index (see Fig. 5). In addition, the
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connectivity of singularities by their streamlines (or
separatrices) cannot be controlled in these methods, but
which can also have a strong impact on the overall
appearance of the field.

In this paper, we present a novel design paradigm for
line fields in a 2D domain, which gives users intuitive
design primitives as well as precise and robust topology
control. Unlike existing approaches, here the user designs a
complete field by piecing together building blocks called
elementary fields. Each elementary field resides in a simply
connected region, and has a simplistic appearance such as
circulating around a center or flowing between two
terminals on the region boundary. The “design” process
involves the user segmenting the 2D domain into regions,
and specifying the type of elementary field within each
region by either designating the center of circulation or the
terminals of flow. An example of the design result is shown
in Fig. 1a. Given the user input, our algorithm computes
the elementary fields with the desired flow patterns, as
shown in Fig. 1b. Note that the elementary fields are
tangential to their region boundaries, so that together they
make up a continuous line field over the entire domain.
More importantly, the composite field has a well-deter-
mined topological structure: the singularities (green dots in
Fig. 1c) lie exactly at the user-placed centers, terminals, and
junctions of more than two regions, the local topology of a
singularity is governed by the incident elementary fields,

and the region boundaries form the separatrices connecting
the singularities.

In contrast to previous approaches, the user is less
concerned with where the field “vanishes” in our method,
and instead focuses on how the field is decomposed into
simple flow patterns: the topology control emerges as a
result of this design. In a sense, the region-based design
paradigm offers a “middle layer” between the user and the
underlying field topology, allowing the user to design the
appearance of the field while at the same time creating a
complete topological skeleton that can be fully controlled.

The key to our robust topology guarantee is our
representation of the elementary fields, which associates a
point in each region with the tangent direction of the level
curve of some harmonic function defined in that region.
Singularities in such a field correspond to critical points of the
harmonic function (where the partial derivatives vanish),
which are well studied in the literature in the 2D domain [26].
We consider a particular set of harmonic functions whose
corresponding line fields exhibit typical flow patterns, meet
tangentially with the region boundaries, and have few and
controllable singularities. The representation also gives rise
to a simple discrete algorithm for computing a piecewise
constant line field as level curves of some discrete harmonic
functions. We show that the discrete functions computed by
our algorithm share the same topological and geometric
properties as their continuous counterpart.
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Fig. 1. Designing a line field that mimics the flows in Starry Night: (a) The user provides a partitioning (yellow curves) into regions, and places in each
region centers (blue dots), terminals (red dots) and flow-out segments (red lines) to indicate desired flow patterns. (b) Our algorithm computes a
continuous line field composed of smooth elementary fields within the regions. (c) The field has singularities (green dots) located exactly at user-
placed centers, terminals, and where more than two regions meet. (d) A painterly rendered result guided by the field.



1.1 Contributions

In light of previous works on field design with topology
control, we see our work make the following contributions:

. We propose a region-based design paradigm for line
fields that gives users intuitive design primitives
(elementary fields) as well as precise and robust
topology control.

. We represent elementary fields by a carefully chosen
group of harmonic functions, and show that their
composition exhibits rich flow behaviors with well-
determined topology.

. We develop an algorithm for computing discrete line
fields using discrete harmonic functions, and show
that these functions have similar topology and
geometry as their continuous counterparts.

. We develop an interactive tool for designing 2D line
fields with applications in painterly rendering over
images (e.g., Fig. 1d).

This paper focuses on line fields in a 2D domain, where
behaviors of harmonic functions are well understood.
Unfortunately, theories regarding critical points of harmo-
nic functions are still lacking for curved surfaces in 3D.
Nonetheless, we will show that the same design paradigm
and discrete computation in 2D can be easily extended onto
surfaces in 3D with visually pleasing results.

The rest of the paper is organized as follows: after
reviewing previous works in Section 2, we briefly review
line field and its topology in Section 3. Section 4 presents the
core of our algorithm, the representation of a line field using
carefully designed elementary fields. Section 5 presents our
discrete algorithm for computing the field over a triangu-
lated domain. Sections 6 discusses an interactive field
design interface, and results are presented in Section 7. We
conclude in Section 8 where we further discuss the
extension of our method onto 3D surfaces.

2 RELATED WORK

There is a sizable literature on interactive means for
generating various types of direction fields, such as vector
fields, line fields, and direction fields with higher order
rotational symmetry. Here, we give a brief review over
topology control strategies in these design methods, while
referring interested readers for more in-depth reviews in
recent articles such as [3] and [18].

As an indirect approach for topology control, field
simplification removes excessive singularities as a postpro-
cess after the field is created. Typical simplification
strategies include geometric smoothing [24], and topologi-
cal surgery operators like pair annihilation [25] or pair
cancellation [6], [31]. While these methods have been useful
for cleaning up complex fields with many singularities, it is
difficult to rely on simplification to achieve a prescribed
topology with a specific set of singularities. Moreover, the
simplification process may significantly alter the flow
directions in the original field.

In the field of fingerprint recognition, the zero-pole
method offers a mathematical model for defining line fields
with controlled singularities [20], [7]. The model generates
an ideal field given locations of “cores” (i.e., wedges) and

“deltas” (i.e., tri-sectors). Multiplicity of cores or deltas at a
same location would lead to higher order singularities.
However, the user has little control over orientations in the
field (which is implicitly determined by the relative
positions of the singularities), and hence the model is
unsuitable at the moment for general field design.

In a series of works [31], [30], [3], [16], Zhang and
colleagues pioneered a more versatile design paradigm
where the user provides a set of design elements, which could
be either singularities of particular types or prescribed
orientations at certain points. These elements are repre-
sented mathematically by basis functions, which are
blended to create the entire field. While allowing explicit
prescription of singularities and orientations, the blending
approach may yield unwanted singularities, which still
requires a postprocess simplification. Fig. 2 compares the
resulting line fields designed by our method and Zhang
et al. approach [30]. Notice that the latter can result in
additional singularities other than those specified by the
user (e.g., squares in Fig. 2d (top)), which are difficult to
predict or control.

A class of methods treats topology as an optimization
objective when computing the direction field. To compute a
smooth vector field on a surface that follows unoriented
ridge and valley lines, Xu et al. [28] adopt a greedy heuristic
to orient the feature lines, so that the diffused vector field
from these oriented lines contains minimal singularities and
distortion. Ray et al. [18] propose an optimization frame-
work based on tools from Discrete Exterior Calculus (DEC),
which allows the user to intuitively design the appearance
of the an N-symmetry direction field on a triangulated
surface while ensuring a low quantity of singularities.
Editing of the field topology is also allowed by manipulat-
ing the location and indices of singularities. However, even
though these methods produce good results with low
singularities in practice, they do not have theoretical
guarantees over the topology of the resulting fields.

Recently, a number of methods offer robust guarantees
that their computed field has exactly the specified singula-
rities. On a triangulated surface, Ray et al. [19] compute a
direction at each facet as well as a period jump across each
edge, so that the rotation around each user-specified
singularity vertex meets the given index and that the field
is as smooth as possible with the option of interpolating
directional constraints. To do so, a greedy optimization
procedure is formulated, which produces pleasing-looking
fields with guaranteed topology. With a similar objective,
Crane et al. [5] formulate a convex optimization problem
whose variables are adjustment angles between directions on
neighboring facets. The formulation allows them to obtain
an optimally smooth field with the user-constrained
topology. Lai et al. [14] treat field design on surfaces as a
metric design problem with constrained holomony, and
propose a robust algorithm based on flat cone metric. All
these methods can be applied to general N-symmetry
direction fields. However, as mentioned in the Section 1,
these methods require the user to input the complete set of
singularities and their indices, which can be tedious and
challenging for creating a field with a nontrivial topology
(e.g., Fig. 1c). In addition, since the singularity indices do
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not completely describe the field topology, the user cannot
precisely control various topological features such as local
topology around a singularity or the separatrices.

The only method we know of that gives the user control
over the complete topological structure of the field is that of
Theisel [22]. Theisel proposes a piecewise construction of
2D vector field based on a full topology skeleton (singula-
rities and separatrices) provided by the user. The field is
interpolated linearly over a triangulation of the domain,
which includes specially designed control polygons around
the skeleton to ensure proper field behavior. While offering
a finer level of topology control than other methods,
Theisel’s approach also increases the burden of the user:
more elements need to be supplied, such as control
polygons and separatrices, and the user needs to ensure
the correctness of the complete skeleton (such that a field
with the prescribed topology exists) in addition to checking
the validity of singularity indices. Moreover, the construc-
tion of the vector field in Theisel’s method highly depends
on the triangulation of the domain. Additional singularities
may appear if the triangulation does not have sufficient
resolution to capture the flow shape, and they need to be
resolved in an interactive manner.

At the first sight, our design paradigm is very similar to
that of Theisel’s [22], as the boundaries of the regions in our
method become the topology skeleton of the resulting field.
However, our method does not require the user to explicitly
construct the topology skeleton from the singularities and
separatrices. Rather, the topological structure emerges as the
user creates the partitions and the elementary fields, and its
correctness is always guaranteed. In addition, our line field is
mathematically defined from the user input, independent of
the discretization of the domain. The definition guarantees
the prescribed topology without unwanted singularities.

Our region-based design is reminiscent of the work of
Tong et al. [23], who present a method for designing cross
field on surfaces for the purpose of quadrangulation. The
input of the field generation is a decomposition of the
surface into patches and specification of how the field
should rotate (in multiples of �=2) across each patch
boundary, which they call a singularity graph. There are
several key differences between the two works. First, the
singularity graph in Tong’s work does not play the same role
as a topology skeleton, as the resulting field does not exactly
follow the patch boundaries. Second, there is no guarantee in
their construction of the field that additional singularities
would not occur away from the desired locations (e.g., patch
corners). Finally, while Tong’s method assigns a uniform
flow pattern within each patch, our method offers a larger
variety of flow patterns for the elementary fields, which
enables creating fields with rich behaviors.

3 BACKGROUND: LINE FIELD AND ITS TOPOLOGY

A line field over a closed, bounded 2D region D � IR2

associates each point in D a unit vector with an unoriented
direction (i.e., there is no difference in its forward and
backward directions). Such a field can be thought as a
mapping from D to the real project space IRIP1 consisting of
all lines on the 2D plane passing through the origin. An
example of line field is the eigenvectors of a symmetric
tensor field [6], [30], which arises from many graphics and
imaging applications.

The topology of a line field is largely determined by its
singularities. A line field l is said to be continuous at a point
x 2 D if lðxÞ is defined, and if its direction agrees with those
lines in x’s immediate neighborhood. The latter can be more
formally stated as follows: for any angle " > 0, however
small, there exists some number � > 0, such that for all y 2 D
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Fig. 2. Comparing the line fields generated by our method (b,c), given user input in (a) (regions boundaries as yellow curves, centers as blue dots,
terminals as red dots, and flow-out segments as red lines), with those generated by the method of Zhang et al. [30] (d).



within distance � to x where lðyÞ is defined, the acute angle
between lðxÞ; lðyÞ is less than ". If l is continuous at x, then x is
said to be a regular point of l, otherwise it is a singularity of l.
We consider in this paper only isolated singularities, which
are completely surrounded by neighborhoods where l is
continuously defined.

A common way to classify singularities is by their indices
[6], which are defined as the number of counter-clockwise
revolutions in the field when traveling once in a counter-
clockwise direction along a closed path encompassing the
singularity (and including no other singularities). Intui-
tively, the index captures the amount of “twist” in the field
around the singularity. By definition, this index in a line
field is always an integer multiple of � 1

2 , and zero at any
regular point.

However, the index alone does no fully describe the field
topology at a singularity. Singularities with drastically
different flow patterns around them can have a common
index (see examples in the second and fourth row in Fig. 5).
The local topology at a singularity can be better characterized
by the composition of the singularity’s neighborhood into
sectors [9]. Each sector has a distinct pattern of lines that meet
tangentially at the sector boundaries. Fig. 3 depicts three
types of sectors: a parabolic sector, where all lines radiate out
from the singularity, a hyperbolic sector, where lines sweep
pass the singularity, and an elliptic sector, where lines
originate and end in the singularity. Note that the index of the
singularity, in turn, can be computed from these sectors as

1þ ne � nh
2

; ð1Þ

where ne; nh are, respectively, the number of elliptic and
hyperbolic sectors around the singularity.

Another important component of line field topology is
separatrices, which are stream lines that connect the singula-
rities. Separatrices come into a singularity via the boundaries
of its sectors. Intuitively, the separatrices partition the field
into regions within which the field has a similar flow pattern.

This is the key intuition that motivates our region-based
design and control of field topology.

4 ELEMENTARY FIELDS

We start by introducing our representation of elementary
fields, which are the design primitives and building blocks
in our method. Recall that the user designs the field by
partitioning the domain into individual regions and
specifying the flow behavior within each region by
choosing from a set of elementary fields.

To give users robust control over the field topology
without limiting their creativity, this set of elementary fields
should possess a number of properties. First, they should
provide basic and adjustable flow patterns that can be
combined to form rich flow behaviors. Second, continuity
among elementary fields in neighboring regions can be
easily guaranteed (except at specified singularities). Most
importantly, each elementary field should have few and
precisely controllable singularities, so that the composed
field has a well-determined topology. Toward these goals,
we consider three types of elementary fields within a
simply connected 2D region, which are depicted in Fig. 4:

. Circular Type. The field circulates around a user-
specified interior point (called the center and drawn
as a blue dot), and is tangential along the region
border.

. Elliptic Type. The field circulates around a user-
specified point on the region border (called a
terminal and drawn as a red dot), and is tangential
everywhere else along the border.

. Flow Types A, B, and C. The field flows from one
user-specified point on the region border (called a
terminal and drawn as a red dot) or a segment of the
border (called a flow-out segment and drawn as a red
curve) to another terminal or flow-out segment on
the border.

These elementary fields cover some of the most common
flow patterns, which we have found to be powerful enough
to compose a wide variety of 2D line fields. Each
elementary field is tangential to their border away from
the terminals and the flow-out segments, making it trivial to
piece together a continuous field. When continuity is not a
concern, such as at the domain boundary, the flow-out
segments in Flow Types B and C can be useful for creating a
more natural flow. More importantly, as we will see next,
we can represent each of the elementary field mathemati-
cally to ensure that the singularities in the field are located
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Fig. 3. Types of sectors around a singularity (green dots) with different
field behaviors (indicated by thin lines).

Fig. 4. Five types of elementary fields considered in our method, each defined by level curves of a harmonic function.



precisely at the centers and terminals, and that the
topological skeleton of the composed field matches exactly
with the region boundaries.

In the following, we first present the definitions of each
elementary field. We will then discuss the topology of the
composed field.

4.1 Defining Elementary Fields

One way to represent a 2D line field lðxÞ is by tangent
directions on the level curves of some 2D scalar function
wðxÞ. That is, l; w satisfy the following relation:

lðxÞ � rwðxÞ ¼ 0;

where rwðxÞ is the gradient of w at x. If w is sufficiently
smooth (e.g., with well-defined partial derivatives), l is
continuously defined except at the critical points of w where
the partial derivatives are all zero. Using this representa-
tion, the task of constructing a line field l with controllable
singularities becomes finding a scalar function w with
deterministic critical points.

To this end, we consider w that are harmonic functions,
which satisfy the Laplace equation

�w ¼ @
2w

@x2
þ @

2w

@y2
¼ 0: ð2Þ

The critical points of such functions have been well studied
in the literature of differential equations. In particular, a
class of harmonic functions have well-determined, isolated
critical points in a simply connected region (i.e., free of
interior holes) with piecewise smooth boundary [26], which
we exploit in our work to define the elementary fields.

Given a simply connected region R with a piecewise
smooth boundary B, our choice of the harmonic function w
for each elementary field is defined below. We prove in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.112, that the only critical points of
these harmonic functions appear at the center in Circular
Type, the terminals in Elliptic and Flow Types, as well as
tangent discontinuities along B (“corners”).

4.1.1 Circular Type

Denote the center as c 2 R. We define wðxÞ as the Green’s
function Gðc; xÞ with pole at c. Note that wðcÞ ¼ �1 and
evaluates zero over B, hence creating the concentric look of
the line field.

4.1.2 Elliptic Type

Denote the terminal as t 2 B. We define wðxÞ as the
harmonic function that interpolates the Dirac delta function
over B with a peak at t. That is, wðxÞ is zero for every x 2 B
except at t where wðtÞ ¼ 1, and the integral of wðxÞ over B
is 1. By Green’s third identity, such wðxÞ uniquely exists,
and equals the directional derivative of the Green’s function
Gðt; xÞ in the normal direction at t. Due to the jump in
boundary values, the level curves of w consist of orbits with
increasing radius that all touch t.

4.1.3 Flow Types A, B, and C

Denote the terminals as t; t1; t2 and the ends of the flow-out
segments as p1; p2; q1; q2, as shown in Fig. 4. We definewðxÞ as

the harmonic function that interpolates the following piece-
wise, possibly discontinuous boundary conditions on B:

. Type A. wðxÞ is 1 for x on the boundary segment
½t2; t1� (traveling counter clockwise), and 0 otherwise.

. Type B. wðxÞ is 1 for x on the segment ½p1; t�, 0 for x
on the segment ½t; p2�, and assumes a monotonic
function from 0 to 1 with zero derivatives at the two
ends as x travels on B from p2 to p1.

. Type C. wðxÞ is 1 for x on the segment ½q1; p1�, 0 for x
on the segment ½p2; q2�, and assumes a monotonic
function from 0 to 1 with zero derivatives at the two
ends as x travels on B from p1 to p2 or from q2 to q1.

The harmonic functions satisfying these discontinuous
boundary conditions uniquely exist [27]. Since the boundary
values of wðxÞ exhibit a slope from 1 to 0, the level curves
flow from one side to the other, and are tangential to the non-
flow-out parts of B where the boundary values are constant.

4.2 Topology Analysis of Composed Field

A line field composed from elementary fields defined above
has a topology structure that is completely determined by
the user inputs

. Singularity locations. If we assume all region
boundaries to be smooth curves except at where
more than two boundary curves meet (“joints”), the
singularities in the composite field would consist
solely of centers, terminals, and joints.

. Singularity topology. The local topology of each
singularity is completely governed by the elementary
fields. Except for the center in the Circular Type, all
singularities lie on some boundary shared by two or
more regions. The boundary curves incident to a
singularity x divide its neighborhood into sectors,
whose types are determined by the type of elemen-
tary field l in that sector. If l is the Elliptic Type and x
is its terminal, the sector is elliptic. If l is a Flow Type
and x is one if its terminals, the sector is parabolic. If x
is neither a terminal nor part of a flow-out segment,
the sector is hyperbolic regardless of the type of l.

. Separatrices. Since the boundary curves are tangen-
tial to the elementary fields and connect the
singularities, they are coincident with the separa-
trices in the composed field.

Our method allows for creating a wide range of
topological structures. As examples, Fig. 5 demonstrates a
variety of singularities composed from two or three
elementary fields. The index of a singularity x in the
composed line field can be computed from its neighboring
elementary fields as

1þ re � rh
2

; ð3Þ

where re is the number of Elliptic Type fields where x is the
terminal, and rh is the number of neighboring fields where
x is not a terminal. It is evident from (3) that our method can
produce singularities with any indices. It is worth noting
that the index only cannot fully characterize the local
topology. As seen in Fig. 5, some singularities share the
same singularity index and yet having dramatically
different local topology.
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5 DISCRETE COMPUTATION

Since harmonic functions do not have explicit expressions
in arbitrarily shaped regions, the piecewise smooth line
field defined above does not allow explicit evaluation at a
given point in a 2D domain. In the following, we describe a
discrete algorithm for approximating the elementary fields
on a triangulated domain by computing the level sets of a
discrete harmonic function. We show that these discrete
functions have exactly controllable critical points like their
continuous counterparts, but in a discrete sense. The result
of the algorithm is a piecewise constant line field where
each triangle facet is associated with a line direction.

5.1 Input

The input of our algorithm is a triangulated 2D domain. Each

region is represented by a collection of triangles, whose
boundary consists of a closed and manifold loop of triangle
edges. The centers, terminals, and ends of flow-out segments

are located at triangle vertices. In addition, we require that
there is no direct edge connecting any two boundary vertices

that are not consecutive along a boundary loop. This
requirement is important to derive the topology guarantees

in the resulting discrete harmonic functions (see details in
Appendix B, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.112).

5.2 Setting Boundary Values

The harmonic functions in all five types of elementary fields
can be considered as solutions to the Laplace equation subject
to certain boundary value conditions. However, some of
these boundary values are impossible to realize in a discrete
setting, such as an infinite value or a discontinuity at a single
boundary point. We, therefore, use the following approxi-
mated boundary values for each type of elementary field. In
Circular Type, we place 1 at the center vertex and 0 on all
vertices on the region boundary. In Elliptic Type, we place 1
at the terminal vertex and 0 on all remaining boundary
vertices. In Flow Types, we place 0.5 at each terminal vertex, 1
(0) at all vertices on the top (bottom) portion of the non-flow-
out parts of the boundary, and linearly interpolated values
between 0 and 1 at vertices on flow-out segments.

5.3 Computing Discrete Harmonic Functions

We use a technique similar to Ni et al. [15] to compute the
discrete harmonic functions that satisfy the boundary value
conditions as stated above. The Laplace equation in the
continuous setting (2) is discretized into a system of linear
equations, whose unknowns are scalar values wi at each free

908 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 6, JUNE 2012

Fig. 5. Composing elementary functions in two and three abutting regions (red dots and lines represent terminals and flow-out segments), and
closeups around the singularities (green dots, second and fourth rows). The captions show the number of Elliptic Type regions where the singularity
is a terminal (re), the number of regions of any type where the singularity is not a terminal (rh), and the singularity index computed by (3). For visual
clarity, the terminals on the boundary of a region are drawn slightly inside the region to distinguish between terminals belonging to neighboring
regions that share the same location.



vertex vi that does not have an initial value (which include
all interior vertices except for the center in Cyclic type)

LðwiÞ ¼ wi �
X

j2NðiÞ
bijwj ¼ 0: ð4Þ

Here, NðiÞ is the 1-ring neighborhood of vi, and the weight

bij ¼ tanð�ij=2Þþtanð�ij=2Þ
kvi�vjk are the mean value weights [8] where

�ij; �ij are the angles made by the edge fvi; vjg and its two

immediate neighboring edges at vi.
The solution to (4) uniquely exists [15]. The solved values

at the vertices define a piecewise linear function over the
triangulated region, where values within each facet are
linearly interpolated from values at its vertices. Ni et al. [15]
show that this discrete function is free of local maxima or
minima at all free vertices, a fact drawn from the positivity
of the mean value weights bij.

Here, we assert an even stronger statement about the
discrete harmonic functions computed using our particular
choice of boundary values: these functions are free of not
only maxima or minima, but also saddles. More precisely,
the functions are free of any critical points where the level
set of the function changes topology, except at the centers
and terminals (see proof in Appendix B, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2011.112). In
addition, the level sets of the functions are tangential at
the boundary edges except at the edges next to the terminal
vertices and those in the flow-out segments. In sum, these
discrete functions preserve the key topological and geo-
metric properties of the continuous harmonic functions.

After solving (4), we associate each triangle facet with the
level curve direction of the discrete harmonic function
within that triangle. Such direction always exists (due to our
no-critical-point guarantee), and can be easily computed
from the values at the triangle vertices.

6 USER INTERFACE

To facilitate the design of line fields, we developed an
interactive tool where a user can easily create and edit
inputs to our field construction, including the region
boundaries and the type of elementary field within each
region. The discretely computed field is visualized using
the technique in [30]. We next detail the user interaction and
the discretization of the user inputs.

Our tool allows the user to create smooth region
boundaries as cubic B-spline curves, so that the singularities
in the field will lie only at the centers, terminals, and where
more than two regions meet. When an underlying image is
available (e.g., for painterly rendering), the tool allows the
user to create regions via interactive image segmentation.
We implement the “live wire” [1] technique which allows
the user to sketch out image segments (see an example is
Fig. 6a). The segmentation boundaries are then automati-
cally fit with cubic B-spline curves that can be further edited
(Fig. 6b). For each region, the user can select the type of
elementary field, and specify the locations of centers,
terminals, and flow-out segments. Please refer to the
attached video, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.112, for a demonstration of the
interaction process.

To discretize the input, we first label the pixels by the
region that cover them. The pixel grid is then converted into
a triangulation by dividing each pixel into two triangles. If
an edge directly connects two nonconsecutive vertices on a
same boundary, the edge as well as the incident triangles
are split by the midpoint of the edge. To yield smoother
boundaries, the triangle mesh is smoothed iteratively using
Laplacian-based fairing [21], where each boundary vertex is
smoothed using only the locations of its neighboring
vertices on the same boundary curve. To avoid folding of
the mesh, a small number of iterations is used (e.g., 10). The
discrete algorithm described in the previous section is then
performed on the smoothed triangle mesh.

7 RESULTS

Here, we present a suite of line fields designed using our
interface, and the use of these fields in stylization of the
images. For visual clarity, the user-placed terminals in all
examples are drawn slightly inside their containing region
so as to distinguish between terminals belonging to
neighboring regions that share the same location.

7.1 Line Fields

Using the interface, interesting line fields can be created
with only a few partitions of the domain, as demonstrated
in Fig. 2 and the starfish example in Fig. 7. Our algorithm
ensures a simple and low-distortion appearance without
unwanted singularities. Moreover, the user has precise
control over the topology, which is important for designing
fields with high-order singularities (such as the center
singularity on the left of Fig. 7).

The strength of our design approach is best demon-
strated in creating line fields with complex behaviors, such
as the Starry Night example in Fig. 1 and the Rhino example
in Fig. 10. Without precise topology control, the field can be
easily cluttered with unwanted singularities. On the other
hand, while it is possible to create these fields using
previous singularity-based design methods, it would be a
very tedious and challenging task for the user to specify the
complete set of singularities.

Our interface allows users to not only create the field, but
also edit the field by modifying the regions and their
elementary fields. Using this feature, one can design a
complex field in a top-down manner by incrementally
refining a coarse field. Fig. 7 right shows an example: the
region layout for the bird on the left was modified from an
original layout that mirrors the one on the right. The
modification adds more details in the head, the wing, and
the feet.
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Fig. 6. Creating region boundaries on an image: (a) Sketching using live
wire. (b) Editing using cubic B-spline curves.



7.2 Painterly Rendering

Artists often use strokes with orientations to illustrate

complex scenes, natural phenomena, or abstract ideas. The

“Starry Night” in Fig. 1 is a good example, where Van Gogh

employed colorful and long strokes along the cloud flows to

express cloud movements. Painterly rendering [11], [10],

[29] is a stylization method for images that attempt to
imitate artists’ painting using directed strokes. As a result, a
natural, coherent direction field is essential to this goal.

Existing image stylization techniques often rely on
automated approaches for computing a direction field from
the images. However, it can be a difficult task to infer a
smooth field with low distortions from casual images. In
Fig. 8, we compare the painterly rendered results of [29] using
our interactively designed line fields with using fields
generated automatically from the images by the state-of-art
method of Kang et al. [13]. Note that our line fields have a
more coherent appearance, yielding in stylized images that
“flow” more smoothly (although some details in the original
paintings are lost). More painterly rendering results using
line fields designed by our tool are shown in Figs. 10 and 11.

7.3 Performance

Our experiments were conducted on a consumer level PC
with an Intel i5-750 processor and 4 GB memory. We report
the running time of our tool on several examples in Fig. 9.
Note that the most time-consuming step is discretizing the
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Fig. 7. User input (top), the resulting field (middle), and painterly

rendered result (bottom) in two examples.

Fig. 8. Comparing painterly rendered images using line fields (shown in thumbnails) automatically extracted from the images [13] (b) and interactively
designed using our method (c).

Fig. 9. Performance of our implementation.



domain with user inputs into a labeled, triangulated mesh
(see Section 6). The actual computation of the line field on
the discretized domain is quite efficient, finishing under
1 second in all cases. The efficient computation allows
interactive viewing of the field as the user relocates centers
and terminals or changes the type of elementary fields
(which do not change the discretization).

8 CONCLUSION AND DISCUSSIONS

We present in this paper a novel approach for designing 2D

line fields using piecewise harmonic functions. We show

that a carefully chosen set of harmonic functions can serve

as flexible design primitives for creating complex flow

patterns while providing exact control over the location and

flow behavior of singularities. Based on the mathematical

definition, we present a simple and robust discrete

algorithm, and developed an interactive tool with the

utility of the field in image stylization.

8.1 Limitations

The main drawback of our current design interface is that
the user has to manually partition the domain into regions.
A potentially much more convenient interaction mode,
which we will investigate in the future, is to ask users to
provide rough strokes indicating major flow directions, and
to automatically create region partitions as well as the
locations of centers and terminals from these strokes (with
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Fig. 10. Painterly rendered results using the designed fields.

Fig. 11. A gallery of painterly rendered images.



or without a background image). Another drawback in our
method is that the only orientation control currently is by
the shape of the region boundaries. Accepting additional
directional constraints interior to the regions, while main-
taining the topology correctness, is another direction we
would like to address in the future.

8.2 Future Work

It would be most interesting to extend our method onto 3D
surfaces. Ideally, we would like to define line fields on
surfaces in a piecewise fashion using harmonic functions as
we have done in 2D, so that it has the same topological
guarantees. Although harmonic functions are well defined
on arbitrary Riemannian manifolds, the primary challenge
we need to address is extending the theories about critical
points from 2D harmonic functions [26] onto Riemannian
surfaces, which so far has not been studied to the best of
our knowledge.

Despite the lack of theories in the continuous case, our
algorithm for computing a discrete line field can be applied
to any triangulated domains, including surfaces in 3D.
Given a surface partitioned into simply connected patches
consisting of triangles (and the centers, terminals, and ends
of flow-out segments are located at triangle vertices), the
same algorithm in Section 5 computes one direction at each
triangle by the level curve of a discrete harmonic function
within each patch. Note that the discrete harmonic function
in 3D shares the same guarantee of few and controlled

critical points as in 2D. As examples, we show in Fig. 12 line
fields designed on two closed surfaces, and stylized
rendering using the line fields [4]. In these examples, the
user manually segmented the surface into patches along
the triangle edges in a third-party modeling tool. As in 2D,
we would like to explore in our future work more
convenient means for segmenting a surface and for locating
the centers and terminals, possibly by user strokes.

Another direction of future work is to study other
elementary fields that would increase the flexibility of design,
such as fields defined in nonsimply connected regions (e.g., a
region with holes). These fields will be helpful to reduce the
number of partitions, particularly on a surface (e.g., so that
the side of a cylinder can stay as a single partition). We would
also like to explore means for controlling the flow direction
within an elementary field, for example, based on user-
provided sketches within a region. Finally, we would like to
extend the region-based approach for designing direction
fields with higher order symmetry.
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Fig. 12. Designing line fields on two surfaces (top and bottom). Each example shows the mesh structure, the user input (regions boundaries, centers,
and terminals), the discretely computed line field, and a painterly rendering result using [4].
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