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Abstract—Despite the remarkable process in the field of arbitrary image style transfer (AST), inconsistent evaluation continues to plague
style transfer research. Existing methods often suffer from limited objective evaluation and inconsistent subjective feedback, hindering
reliable comparisons among AST variants. In this study, we propose a multi-granularity assessment system that combines standardized
objective and subjective evaluations. We collect a fine-grained dataset considering a range of image contexts such as different scenes,
object complexities, and rich parsing information from multiple sources. Objective and subjective studies are conducted using the collected
dataset. Specifically, we innovate on traditional subjective studies by developing an online evaluation system utilizing a combination of
point-wise, pair-wise, and group-wise questionnaires. Finally, we bridge the gap between objective and subjective evaluations by examining
the consistency between the results from the two studies. We experimentally evaluate CNN-based, flow-based, transformer-based, and
diffusion-based AST methods by the proposed multi-granularity assessment system, which lays the foundation for a reliable and robust
evaluation. Providing standardized measures, objective data, and detailed subjective feedback empowers researchers to make informed
comparisons and drive innovation in this rapidly evolving field. Finally, for the collected dataset and our online evaluation system, please
see https://github.com/ZhouZJ-DL/A-Comprehensive-Evaluation-of-Arbitrary-Image-Style-Transfer-Methods.
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1 INTRODUCTION

A RBITRARY image style transfer (AST), or neural style
transfer [1], allows users to “paint” in an artistic

style of a given painting, using its brushstrokes and
textures, onto another image without restrictions. The rapid
growth of AST methods mirrors the rise of deep learning
and neural networks, with different approaches such as
CNN-based models [2]–[8], flow-based models [9], [10],
transformer-based models [11]–[13], and recently diffusion-
based models [14]–[19]. This dynamic landscape raises crucial
questions about the proper assessment of AST methods, the
potential limitations of their foundational models, and the
value of past approaches.

Currently, AST evaluation primarily relies on self-
reported assessments, often utilizing diverse objective met-
rics and user surveys. However, concerns persist regarding
the potential influence of the chosen content and style
images on these evaluations. Paper authors seem to have a
tendency to show working examples while hiding failures.
Figure 1 (a) presents a visual comparison of stylized images
generated from two sources: results by the authors (left) and
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Fig. 1: Comparisons for author-selected inputs or user-
provided inputs: (a) visual stylized results by MAST [20]
and ArtFusion [14], (b) quantitative statistic by various AST
methods.

results by in-the-wild inputs (right), suggesting potential
quality differences between the two groups. Notably, author-
presented results typically show faithful content preservation
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and successfully capture the intended artistic style. In
contrast, the stylized images selected by users suffer from
various issues, such as content leaks, lack of a distinct artistic
style, or degraded image quality. To quantify these potential
differences, we applied several AST [2], [3], [5], [8], [9], [11],
[14], [20]–[22] methods to sets of images provided by authors
and by users. This is in line with the ArtFID study [23],
which consistently revealed superior results when stylizing
the original images compared to non-original ones (Figure 1
(b)). This finding underscores the influence of the image
domain on style transfer outcomes and highlights the need
for a more comprehensive evaluation system for an accurate
assessment of AST methods.

Previous efforts for AST assessments [24]–[27] (sum-
marized in Table 1) have made valuable contributions by
incorporating objective and subjective tools. For example,
Chen et al. developed a new arbitrary style transfer database
(AST-IQAD [26]) to facilitate unbiased evaluation of image
stylization. This dataset comprises 75 content images, 126
style images, and 1200 stylized images generated using
eight representative AST methods, each annotated with
human opinion scores. However, two key limitations persist
in the aforementioned systems: (a) the intricate interplay
between diverse factors influencing AST performance re-
mains insufficiently explored. This hinders a comprehensive
understanding of how content features, artistic style charac-
teristics, and selected neural network architectures interact
and affect outcomes. (b) Restricted user interaction formats
and insufficient data collection, potentially compromising
the accuracy and generalizability of the findings.

We present a novel framework for AST assessment,
utilizing a fine-grained dataset and a multi-granular eval-
uation system that integrates objective and subjective
perspectives. We first delve deeper into AST performance
through a granular objective study. This leverages the parsing
information of datasets and the recognition abilities of the
RAM model [28] to automatically label content and style
images. Such enriched data allows us to explore the influence
of various factors on AST performance, including:

• Scene diversity: we analyze how diverse scene types,
such as landscapes, portraits, and urban environ-
ments, impact AST results.

• Object complexity: the number and intricacy of objects
within images are examined for their effect on
performance.

• Salient regions: we focus on the area occupied by
the most frequently occurring objects in an image,
exploring its role in effective style transfer.

• Content-style consistency: we investigate the alignment
between content and style image characteristics.

Our analysis confirms the pervasive presence of the
content-style trade-off phenomenon in AST methods. Specifi-
cally, the diffusion-based ArtFusion [14] and the manifold-
based MAST [20] excel in metrics that measure content preser-
vation, while the CNN-based SANet [8] (with attentional
layer) and AdaIN [5] (with adaptive weight) prioritize style
transfer. The CNN-based UCAST [22] utilizes contrastive
learning, while the Transformer-based StyTr2 [11] exhibits
a more balanced performance. A finer-grained assessment
reveals that (a) images with object counts between 30 and

50 achieve better results compared to other ranges, (b)
stylization generally performs better on images with larger
salient regions, except for ranges between 60% and 70%, (c)
a positive correlation exists between content-style similarity
and AST performance.

Building upon this objective analysis, we propose a
multi-granular subjective assessment method. It utilizes
a diversified spectrum of user surveys, including point-
wise (individual image evaluation), pair-wise (comparison
between two images), and group-wise (collective evaluation)
methods, providing a robust and comprehensive assessment
of AST performance. Our experimental methodology for
hierarchical evaluation can be found on http://ivc.ia.ac.cn/.
Our findings suggest that group-wise subjective studies
achieve higher consistency compared to individual assess-
ments, indicating a more robust evaluation method for
AST performance. Interestingly, the image parsing aspect
revealed contrasting results between subjective and objective
studies. Images with an object count in the range [10,
20) were rated higher in subjective evaluations, whereas
objective metrics favored images with a smaller salient
region size. This discrepancy warrants further investigation
and highlights the potential limitations of solely relying
on objective metrics for comprehensive AST evaluation.
Regarding metric correlation, our analysis yielded several
key insights: (a) content preservation ability, as measured by
various metrics, contributes more significantly to the overall
visual quality perceived by human judges, (b) the LPIPS [29]
and SRQE [26] metrics demonstrates strong consistency with
human perception in terms of content preservation, (c) to
some extent, ArtFID [23] and SRQE [26] can measure artistic
features in a way that aligns with human judgment.

In summary, our contributions are as follows:

• We propose a multi-granular evaluation system sup-
ported by an efficient assessment strategy to obtain
robust and valid user feedback on AST performance.

• We collected a fine-grained dataset considering a
range of image contexts from multiple sources.

• We selected ten AST methods from four typical
architectures for systematic objective and subjective
evaluations and conducted comprehensive analysis
across different image contexts.

2 RELATED WORKS

AST assessment. Although the evaluation of AST work
faces numerous challenges, there have been attempts made
to address this. Initially, researchers only compared the
differences in algorithms between different methods [24].
With the development of image quality evaluation metrics,
more advanced indicators have been used to assess these AST
methods. Chen et al. [26] constructed a dataset (AST-IQAD)
comprising subject-rated scores and introduced the SRQE
metric to quantitatively predict human perception of stylized
images. Furthermore, CLASP [27] employs a style-adaptive
pooling strategy for collaborative learning of stylized image
quality. Concurrently, user survey methodologies have diver-
sified, with Chen et al. [26], [27] conducting studies based
on various quality factors, including content preservation,
style resemblance, and overall visual. Several studies [1],

http://ivc.ia.ac.cn/
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TABLE 1: AST Methods’ Assessment

Works Subjective Study Objective Study Dataset
Point-wised Pair-wised Group-wised Image Quality Artistic Feature Standard Semantic Labels

Majumdar et al. [24] % % % " % % %

Wang et al. [25] % % % " % % %

SRQE [26] % " % " " " %

CLSAP [27] % " % " " " %

Ours " " " " " " "

[30]–[33] have provided reviews and analyses of different
AST methods.

At the same time, research in AIGC evaluation offers
valuable guidance for designing our framework. Studies
such as Li et al. [34] explore Mean Opinion Score (MOS)
as a metric for model evaluation. Wang et al. [35] assess
six generative models across diverse scene categories, while
Zhang et al. [36] propose a standardized evaluation dataset.
These approaches aim to establish a standardized evaluation
methodology that mitigates bias in AST assessment.
Image quality assessment. Initially, people used pixel-based
metrics such as MSE distance, PSNR, and SSIM to evaluate
image quality, but these methods often did not align well
with human perception. Gatys et al. [2] iteratively updated
images using content loss and style loss based on Gram
matrices by extracting image features from specific layers
and calculating their differences. The LPIPS [29] metric is
highly aligned with human perception, utilizing deep neural
networks to extract features from images, which can be
used for evaluation tasks in stylization. With the emergence
of image generation models such as GANs and Diffusion
models, metrics such as FID [37] and ArtFID [23] have been
proposed, aimed at evaluating the diversity and quality of
generated images.
Image style transfer. The field of image style transfer
encompasses domain-specific transfer and arbitrary style
transfer (AST). While domain-specific transfer methods [6],
[7], [38]–[45] target specific styles within predefined domains,
AST allows for transferring any image to any desired style.
We chose to focus on AST due to its greater flexibility and
potential for wider application. We have developed a parsing
dataset and evaluation system designed to accommodate
various AST methods. This infrastructure can be readily
adapted to different scenarios within the broader domain of
image style transfer.

AST began with the work of Gatys et al. [2]. However,
the involved optimization-based process is slow and not
well-suited for practical applications. As CNN architectures
evolved, a large number of feed-forward network image
style transfer algorithms emerged [2]–[5], [8], [9], [11], [20]–
[22], [38], [46]–[48]. Among them, flow models [9], [10]
and manifold algorithms [20], [49], [50] address issues
with content leakages. Attention-based networks [8], [13],
[51] capture the artistic features of images well. However,
these CNN-based methods had issues such as having low
generation quality, limited diversity of generated images, as
well as deviations from the original content.

With the development of image generation models,
high-quality and more realistic image generation models
using GANs [52], transformers [53], [54] and diffusion mod-
els [55]–[59] emerged. The development of AST algorithms
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Fig. 2: Proposed experimental system combining subjective
and objective evaluation.

has closely paralleled advancements in image generation
models. Transformer-based AST [11]–[13], [60] and GAN-
based AST [61]–[64] showcase this synergy. Diffusion-based
technologies have significantly improved the quality and
diversity of image generation, offering even more powerful
tools for implementing AST [14], [16]–[19], [39], [44], [65]–
[67].

Existing objective assessment methods are susceptible
to biases, such as those related to the diverse scene types
present in the images under evaluation. This can compromise
their validity, hindering accurate comparisons between AST
methods. Additionally, existing subjective studies often yield
inconsistent and unreliable results due to methodological
limitations or individual variations in perception. This lack
of robustness makes it difficult to draw definitive conclusions
about the performance of these methods. In this paper, we
therefore propose a multi-granularity evaluation framework
that explores diverse image segmentation information that
potentially affects the stylization performance. Additionally,
we introduce a group-wise user study to enhance the
robustness of the evaluation process.

3 EXPERIMENTAL SYSTEM COMBINING SUBJEC-
TIVE AND OBJECTIVE INVESTIGATIONS

This section describes the experimental framework employed
to evaluate the performance of various AST methods,
the utilized dataset, and the specific configurations for
the components of the objective and subjective study.
Figure 2 provides a comprehensive overview of the system
architecture.
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Fig. 3: Our dataset comprises three distinct components:
(a) 5,000 diverse images extracted from the ADE20k [68]
dataset (b) 5,000 paintings obtained from the official website
of WikiArt, encompassing a wide range of artistic styles and
genres. (c) 52 content images and 52 style images carefully
selected from related research papers, providing specific
examples and comparisons.

3.1 Dataset Construction

Our research delves into the performances of various AST
methods through a comprehensive evaluation system that
blends subjective and objective assessments. To ensure a
robust and insightful evaluation, we constructed a custom
dataset rich in diversity and complexity, catering specifically
to the needs of our study. The custom dataset is divided into
Content Dataset and Style Dataset, as shown in Table 2. The
detailed setting of the dataset is described below.
A. Content Dataset

To construct the content part of our custom dataset, we
first randomly sampled 5,000 images from the ADE20K
dataset by Zhou et al. [68]. This selection encompasses
a diverse range of ten coarse-grained image classification
labels, including: cultural, home or hotel, industrial, natural
landscape, shopping and dining, sports and leisure, transportation,
unclassified, urban, and workplace. These labels represent
various categories such as natural landscapes, indoor scenes,
urban environments, and still-life settings, ensuring the rich-
ness and diversity of our custom dataset. Beyond providing
high-level semantic categories, ADE20K’s rich annotations
unlock opportunities for fine-grained analysis: object part
labels, instance annotations, and original annotated polygons
enable scene parsing, empowering us to explore intricate
relationships between object categories, count, areas, and
model performance.

To showcase optimal results and facilitate comprehensive
performance comparisons with our custom datasets, we
further constructed supplemental datasets leveraging 52
original images from related papers.
B. Style Dataset

WikiArt (https://www.wikiart.org/) serves as a treasure

1 Generate
Text Labels

RAM

ADE20K

sky, building, 
tennis court, 
trees, swimming 
pool, ground

crop , drawing, 
field, harvest, 
person, plow, sun, 
walk, wheat field

2 Calculate
Similarity

content

style

3Get
Embeddings

1.5 2.1 3.7 3.6 …

8.9 2.5 2.4 1.5 …

Cosine
Similarity

Content/Style 
consistency:

0.8694

Fig. 4: Dataset preprocessing: generating textual labels for
content and style images, facilitating the calculation of
content/style similarity for each (content, style) pair.

trove for art enthusiasts and researchers, providing a
crowdsourced platform showcasing artists and their works.
Each piece comes with rich metadata like genre, style, and
artist biography, making it ideal for selection. We carefully
selected 5,000 style images from WikiArt, encompassing
ten distinct styles: abstract-expressionism, art nouveau modern,
cubism, expressionism, impressionism, pop art, realism, romanti-
cism, symbolism, and ukiyo-e. This selection ensures a good
representativeness for the AST task. To further strengthen the
dataset, we also included 100 additional images from famous
artworks on WikiArt, frequently featured in representative
AST research.

Prior to further analysis, all images underwent prepro-
cessing using the Recognize Anything Model (RAM) [28].
RAM leverages the power of automatic text semantic parsing
to generate tags for annotation-free images, making it a
valuable tool for large-scale image analysis. We employed
RAM to perform content recognition on above 5, 000 real
artistic images. Each image received a set of relevant tags,
such as “artist”, “drawing”, “dress”, “person”, “painter”,
“robe”, “stand”, and “woman”. As described in the content
part, we also constructed supplementary datasets containing
52 style images based on the original images from related
publications.

3.2 Dataset Prepocessing

Basic configuration. To ensure a fair comparison and
consistency in data handling, we relied on the official
implementations of all chosen AST methods downloaded
from GitHub. While different methods have their own pre-
processing pipelines, we standardized the resolution of all
images in our custom dataset to 512×512 pixels.

For methods like MAST [20] and ArtFusion [14], capable
of both artistic and photorealistic styles, we specifically
focused on their artistic image style transfer capabilities
in this study. This decision aligns with our aim to analyze the
artistic effects of different AST methods, such as brushstrokes,
lines, and textures, rather than photorealism.
Consistency calculating. We investigate the influence of
content-style consistency on image style transfer perfor-
mance. To measure content-style consistency, the following
steps have been taken as shown in Figure 4:

https://www.wikiart.org/
https://www.wikiart.org/
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TABLE 2: Custom Dataset for AST’s Assessment

Part Dataset Descriptions

Content Dataset ADE20K [68]

5,000 images from ADE20K dataset. Each image in our dataset is
thoroughly annotated with rich scene parsing information.

1) Scene Type: such as nature landscapes, or urban.
2) Object Count: Counting of objects within the image.
3) Main Object Area Ratio: the relative size of the dominant object

in the image,
4) Text Label: a descriptive text label using ADE20K [68]’s scene

parsing imformation.

Papers [2], [3], [5], [8], [9], [11], [14], [20], [21], [46] 52 original content images obtained from the related papers.

Style Dataset
WikiArt

https://www.wikiart.org/

5,000 artistic images from WikiArt, encompassing 10 distinct styles,
abstract-expressionism, Art Nouveau, cubism, expressionism, impressionism,

pop art, realism, romanticism, symbolism, and ukiyo-e.
100 iconic artistic masterpieces to enrich representativeness.
Each image has a descriptive text label generated by RAM [28].

Papers [2], [3], [5], [8], [9], [11], [14], [20], [21], [46] 52 original style images obtained from the related papers.

1) Generate text labels for each content image using the
scene parsing information of ADE20K [68] such as
{sky, sea water, building, hill, water, bridge, ground,
sand beach, palm tree, palm trees}.

2) Generate text labels for each style image using
the RAM [28] (see Section 3.1) model, such as
{artist, drawing, dress, person, painter, robe, stand,
woman}.

3) Use the BERT [53] model to obtain embeddings for
the image’s text labels of style and content.

4) Compute the cosine similarity between the style and
content embeddings obtained from the BERT model.

3.3 AST Methods Participating in the Assessment
To gain comprehensive insights into the performance of
arbitrary style transfer and its relationship with different
models, we conducted experiments by selecting ten AST
methods (listed in Table 3) that represent different architec-
tural approaches:

• CNN-based models leverage convolutional neural
networks to extract and transfer stylistic elements
from a style image onto a content image. NST [2] lever-
ages the Gram matrix for style analysis, achieving
artistic style transfer through iterative optimization,
while WCT [3] and AdaIN [5] utilize statistical
features like mean and variance or feature transforms
to capture and transfer style. LST [21] learns the linear
transformation matrix instead of relying on second-
order statistics. SANet [8] uses a style-attentional layer
to integrate the local style patterns according to the
semantic spatial distribution of the content image.
MAST [20] aligns multi-manifold distributions for
semantically consistent style transfer. UCAST [22]
improves arbitrary style transfer with a novel style
representation by contrastive learning-based opti-
mization.

• Flow-based models consist of a sequence of invertible
functions that map an input distribution to an output
distribution. ArtFlow [9] uses reversible neural flows,
producing high-quality stylized images with various
styles and avoiding content leaks.

• Transformer-based models allow neural networks to
focus on specific parts of the input data. StyTr2 [11]

TABLE 3: Categories of AST Methods and Examples

Category Method Publishment

CNN-based

NST [2] CVPR 2016
WCT [3] NIPS 2017

AdaIN [5] ICCV 2017
LST [21] CVPR 2019

SANet [8] CVPR 2019
MAST [20] ICCV 2021

UCAST [22] ACM TOG 2023
Flow-based ArtFlow [9] CVPR 2021

Transformer-based StyTr2 [11] CVPR 2022
Diffusion-based ArtFusion [14] Preprint 2023

uses a transformer-based framework to capture
input image features and achieve unbiased content
representation.

• Diffusion-based models can perform style transfer
on images using conditional diffusion models. ArtFu-
sion [14] introduces a novel probabilistic dual condi-
tional latent diffusion model, which can disentangle
the style and content information of an image and use
them to guide the reverse diffusion process.

3.4 Objective Assessment
We conducted an experiment testing the ten AST methods
mentioned in Section 3.3 across five metrics:

• Image quality metrics: The Structural Similarity Index
(SSIM [69]) is a widely used metric for measuring
the similarity between two images. The SSIM index
is calculated on various windows of an image:
SSIM(x, y) =

(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
.

• Neural network metrics: measuring similarity between
images based on feature extraction and comparison
through a neural network. In our work, content Loss
and GRAM loss were implemented following the
methodology outlined in Gatys et al [2]. The LPIPS
metric [29] utilized the default configuration provided
within the official LPIPS implementation. It measures
the perceptual similarity between two images. A
higher LPIPS score indicates that the images are
further apart or more different from each other.

• SRQE: SRQE [26] is a sparse representation-based
image quality evaluation metric utilizing a discrete

https://www.wikiart.org/
https://github.com/richzhang/PerceptualSimilarity
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dictionary for training, enabling it to provide consis-
tent evaluation scores without retraining. Based on the
official implementation, SRQE can directly quantify
stylized image quality in terms of content preserva-
tion (SRQE CP), style resemblance (SRQE SR), and
overall visual (SRQE OV).

• ArtFID: ArtFID [23] supports a quantitative measure-
ment for stylization performance, facilitating similar
studies to further analyze and improve style transfer
methods. When calculating ArtFID, both content and
style images are taken into consideration:

ArtFID (Xg, Xc, Xs) =

(
1 +

1

N

N∑
i=1

d
(
X(i)

c , X(i)
g

))
· (1 + FID (Xs, Xg)) .

FID [37] is the Fréchet Inception Distance, d stands
for LPIPS in our experiment (default option), the Xc

are the content images, the Xs are the style images,
and the Xg are the stylized images.

It’s worth noting that beyond conventional metrics like
LPIPS and SSIM, which primarily measure content similarity,
our evaluation metrics include ArtFID [23]. This metric
provides a more comprehensive evaluation that reflects the
human judgment of artistic success.

3.5 Subjective Assessment
To collect user feedback on the stylized images, we designed
a survey that contains three types of questions that capture
different levels of granularity: rating questions (point-
wise), comparison questions (pair-wise), and identification
questions (group-wise). The survey is available online
at http://ivc.ia.ac.cn. Users can view and evaluate over
7,000 sets of content images, style images, and stylized
results generated by various image style transfer methods
mentioned in Section 3.3.

3.5.1 Multi-granularity Setting
A. Rating Questions (Point-Wise)

Participants saw three images: a real image, an artistic
image representing the target style, and a stylized image
generated by one of our chosen AST methods. Their task
was to evaluate the quality of the AST-generated image by
providing a Mean Opinion Score (MOS) on a scale ranging
from 0 (poor) to 5 (excellent), with 0.5 increments. The user
interface for MOS scoring is displayed in the first row on the
right side of Figure 2.
B. Comparison Questions (Pair-Wise)

The questions for comparison are illustrated in the second
row on the right side of Figure 2. Users are presented with
the original image to be stylized, an example of the desired
artistic style, and two stylized images rendered using two
different AST methods.

For each question, users had to evaluate the two stylized
images on three criteria: content preservation, style similarity,
and overall visual effect. For each of these criteria, users
selected their preference between Method A and Method B.
We added two options in comparison questions: users
can choose “Both are Good” if they found it difficult
to distinguish between the two styles or “Both are Bad”

if they considered the synthesis results of both methods
disappointing. This comprehensive set of options allows for
an accurate evaluation of all AST methods in the user survey.

To facilitate meaningful comparisons, we leverage an
efficient assessment strategy that selects two AST methods
with comparable performance for each user question. This
approach ensures humans are judging AST methods with
similar performance levels. The details of this strategy are
provided in Section 3.5.3.
C. Identification Questions (Group-Wise)

Recognizing limitations in achieving high user consis-
tency with point-wise and pair-wise evaluations, we design
a group-wise user study to assess user preferences and
perceptions. In this study, participants encounter sets of ten
images containing both real artworks and stylized images
generated by a single AST method under investigation.
They have to identify the “fake” stylized images within
each set, essentially distinguishing human-created art from
machine-generated renditions (a kind of Turing art test). This
approach leverages the collective intelligence of participants
to potentially reveal finer-grained stylistic nuances and
enhance consistency compared to point-wise and pair-wise
user evaluations. The group-wise user study format is
illustrated in Figure 2 (third row, right side). In Section 5.5,
we present an experimental evaluation that showcases the
advantages of group-wise subjective studies.

Furthermore, to systematically explore the impact of the
image ratio on user performance and to establish benchmarks
for future research, the website offers three pre-defined
ratios of fake images to real artworks: 3:7, 4:6, and 5:5.
This controlled variation of image composition allows us to
investigate potential shifts in user confidence and accuracy
as the proportion of real and stylized images changes.

3.5.2 Investigate Credibility
Maintaining data reliability is crucial for a user survey.
Therefore, we implemented user review mechanisms to
validate the responses and ensure reliable data for the
analysis. These reviews assess the consistency of user
judgments within a designated time frame, guaranteeing that
their evaluation criteria remain relatively stable. Specifically,
we evaluate the validity of both comparison and rating
questions for each participant.
Rating questions. During the rating task, after complet-
ing eight questions, users encounter a “review question”.
This randomly selected question, already answered earlier,
presents the same stylized image for re-evaluation. If the
user’s rating for the same image differs by more than
two levels between the two attempts, we deem the review
unsuccessful and invalidate their corresponding survey
response. This approach safeguards against inconsistencies
in user judgment within the rating.
Comparison questions. Following 16 comparison questions,
participants also faced a “review question”. The question,
randomly selected and also previously answered, reappeared
with the same images and results from two different AST
methods. Users re-evaluated these methods across three
criteria: content preservation, style transfer, and overall effect.
However, if their judgment differed on two or more of these
criteria compared to their initial response, their entire survey
response for that question was marked as invalid.

https://github.com/Hangwei-Chen/AST-IQAD-SRQE
http://ivc.ia.ac.cn
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3.5.3 Efficient Assessment Strategy
Given the complexity of comparing 45 pairwise relationships
of ten AST methods across 6,000 images, traditional user
surveys would be impractical due to the extensive number of
questions and potential user fatigue. We therefore propose an
efficient assessment strategy to effectively address the chal-
lenge of allocating limited human resources (Algorithm 1).
This strategy aims to concentrate human effort on the
most valuable comparisons, maximizing the impact of their
feedback.

• To ensure all AST methods receive equal opportu-
nities for comparison, the algorithm leverages an
efficient mechanism inspired by Khosla et al. [70].
This mechanism prioritizes methods with lower
memory scores, indicating less recent involvement
in comparisons. This ensures that all methods fully
participate in a comprehensive evaluation while
reducing user fatigue.

• To foster meaningful competition, the algorithm
implements a point system. Our point system assigns
three points to the method of generating the user-
preferred stylized image during the evaluation. The
non-preferred method receives no points. If users
select ”Both Are Good,” both methods get one point
each. The scores of all participating AST methods’
are recorded, and the algorithm selects two methods
with similar accumulated points for each comparison
question. Users then evaluate the results generated by
these two methods.

This dynamic approach balances competitive evaluation with
ensuring all methods have a fair chance to be seen. Our
proposed algorithm balances the need for a comprehensive
evaluation with limiting user burden, making it suitable for
such a large-scale comparison.

4 ANALYSIS OF OBJECTIVE EXPERIMENTS

4.1 The Overall Ranking of AST Methods
For our comprehensive evaluation, we first conducted a
broad experimental analysis. This allowed us to identify
potential trends and outliers before delving into finer-
grained comparisons. We utilized six metrics — SSIM [69] ,
Content Loss [2], GRAM Loss [2], LPIPS [29], SRQE [26] and
ArtFID [23] — to assess the performance of the AST methods
detailed in Section 3.3.

In our study, SSIM [69], content loss [2] and LPIPS [29]
assess the degree to which a stylized image retains the visual
characteristics of the original content image. They calculate
the differences between content and stylized images. GRAM
loss [2] measures the similarity between the feature maps of
the style image and the stylized image. SRQE [26] quantifies
stylized image quality in terms of content preservation
(CP), style resemblance (SR), and overall visual (OV) appeal.
This section utilizes SRQE OV for assessment. ArtFID [23]
leverages a set of content, style, and stylized images to
provide an overall assessment of the stylized image’s quality.
The aggregated results are presented in Figure 5. The
heatmap visually depicts the performance of each method
across all metrics, with darker shades signifying higher scores
and the numbers indicating the respective rank within each

ALGORITHM 1: Efficient Assessment Strategy

Data: Ten AST methods AST1∼10 and respective
memory scores M1∼10, points p1∼10 and length of
time not present in comparison T1∼10. Base
memory score c. Weight factor α.

Result: Two methods selected for comparison: m1, m2

/* Choose the method with the lowest memory
score */

1 j ← minj∈[1,10] Mj ;
2 m1 ← ASTj ;
/* Find 3 methods closest to the points of

AST1 */
3 distances← ∅;
4 for i← 1 to |M | do
5 d← |pi − pj |;
6 distances.append(d)
7 end
8 distances.sort();
9 distances← distances.F irst3Items();

10 j ← random(1, 3);
11 m2 ← ASTj ;
/* Update memory scores */

12 for i← 1 to |M | do
13 if i = j then
14 Ti = 0;
15 Mi ← c;
16 end
17 else
18 Ti ← Ti + 1;
19 Mi ← α log(Ti) + c;
20 end
21 end

metric. SANet [8] and AdaIN [5] excel in style matching,
as shown by their strong performance on ArtFID [23] and
GRAM loss [2]. NST [2] excels in content preservation, as
indicated by its performance on content loss and GRAM loss.
StyTr2 [11] demonstrates a balanced performance across both
content and style metrics. Notably, ArtFusion [14] achieves
outstanding performance on SSIM, LPIPS, and content loss.
However, its lower performance on ArtFID than other
methods warrants further investigation. This discrepancy
might be attributed to FID, a core component of ArtFID that
measures the distance between image distributions. Unlike
other methods directly using the content image, ArtFusion
operates by sampling from Gaussian noise conditioned on
content and style. This sampling approach could lead to
minor distribution discrepancies between generated and
original content images, potentially impacting ArtFID scores.

Our experimental results reveal a trade-off between
content preservation and the fidelity of the style transfer.
We found that the CNN-based SANet with attentional
layer [8] and the CNN-based AdaIN [5] stand out for their
low ArtFID and GRAM Loss, indicating their ability to
capture artistic nuances. However, their performance on
content preservation metrics like LPIPS and SSIM is relatively
weaker, suggesting a potential compromise in maintaining
the original image’s fidelity. Conversely, the diffusion-based
ArtFusion [14] and the manifold-based MAST [20] excel
in SSIM, LPIPS, and Content Loss, demonstrating strong
content preservation, but their lower performance for ArtFID,
SQRE OV and GRAM losses shows challenges in faithfully
reproducing the target style. A similar, albeit more nuanced,
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Fig. 5: Ranking performance of AST methods on SSIM, LPIPS,
Content Loss, GRAM Loss, SRQE OV and ArtFID with
overall ranking.

trade-off is observed for UCAST [22].
The transformer-based StyTr2 [60] appears to strike a

notable balance between these competing aspects. Compared
to the attention-based SANet, it exhibits improved content
preservation while maintaining satisfactory style transfer
performance, potentially mitigating the ”content leak” issue
observed in SANet.

4.2 The Impact of Fine-Grained Factors on AST Perfor-
mance

In this section, we delve deeper into the intricate interplay
between specific image characteristics and their influence on
AST effectiveness. We focus on four factors:

• Scene diversity: each image is annotated with its
primary scene type, such as nature landscape, indoor,
or urban.

• Object complexity: used the number of annotated
instances per image to represent object complexity.

• Salient regions: the area ratio of the two main objects
in the image. The polygon annotations by ADE20K
enable an accurate area calculation for each object
instance.

• Content-style consistency: the semantic alignment be-
tween content and style images in AST. Content image
semantics are defined by ADE20K, and style image
content is recognized by RAM [28].

To comprehensively evaluate the performance of the
AST methods using the metrics introduced in Section 3.4,
we analyze their performance across diverse scene types
and object complexity levels within the images. To assess

the level of salient region preservation and content-style
consistency within the content images, we utilize ArtFID [23].
As detailed in Section 3.4, this robust metric combines the
Fréchet Inception Distance (FID) [37] for evaluating image
distribution alignment with LPIPS [29] for measuring content
preservation. A lower ArtFID score indicates a superior AST
performance, signifying a successful integration of style and
content while maintaining high perceptual fidelity.
A. Scene diversity We analyze SSIM, LPIPS content loss,
GRAM loss, SRQE OV and ArtFID values across various
scenes in our custom dataset. This analysis reveals how
different content types influence the performance of AST
methods.

We first investigated the performance of different AST
methods across various scene categories, as visualized
in Figure 6. (In the radar charts, all metrics have been
transformed to follow a ”larger is better” principle for visual
clarity. This includes inverting the values of LPIPS, content
loss, GRAM loss, and ArtFID, which originally indicated
better performance with lower values.) StyTr2 demonstrated
exceptional performance on all scene types based on the SSIM
and SRQE OV metrics. For the LPIPS metric, MAST achieved
the best results on natural landscapes, shopping and dining,
and cultural scene types, while ArtFusion excelled in sports
and leisure, urban, and transportation scenes. Optimization-
based NST dominated most scene types when considering
content loss and style loss metrics. SANet achieved the best
performance on most scene types using the ArtFID metric,
while StyTr2 excelled in natural landscapes and sports and
leisure.

In the subsequent analysis, we explored the performance
across distinct scene categories, as depicted in Figure 7.
Scenes with natural landscapes, typically featuring fewer
objects and more prominent salient regions, demonstrated
enhanced performance in terms of ArtFID, SSIM, content loss,
and GRAM loss metrics. These results are in concordance
with intuitive human judgments. Conversely, these natural
landscape scenes displayed the weakest performance in the
LPIPS metric. This observation highlights the potential for
bias when solely relying on individual metrics for AST
evaluation.

In summary, the performance of AST methods depends
on the scenes and the metric used. Some AST methods
are better at matching the style of the target image, such
as SANet and AdaIN, while others do a better job of
keeping the content of the original image intact, such as
ArtFusion. Relying on single metrics can be misleading, so it
is important to consider using multiple metrics for evaluation.
Scene types with fewer objects and larger prominent areas,
like wide-open nature landscapes, generally achieved higher
performance across most evaluation metrics. In contrast,
indoor scenes with cluttered objects, such as home or hotel,
shopping and dining tended to perform less favorably. This
disparity might be attributed to the inherent challenges of
stylizing complex scenes with numerous intricate details,
potentially overwhelming the AST methods.
B. Object complexity To explore the influence of object
complexity on AST effectiveness, we leveraged the number
of objects in each image as a representative measurement of
complexity. We categorized these images into five distinct
groups based on object count:
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Fig. 6: AST methods performance on SSIM, LPIPS, Content Loss, Gram Loss SRQE OV and ArtFID across different scenes.
In the radar charts, all metrics have been transformed to a “larger is better” scale for visual consistency.
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Fig. 9: SSIM, LPIPS, Content Loss, Gram Loss, SRQE OV and ArtFID across different levels of object complexity.

• Group [0, 10): Images containing less than 9 objects.
• Group [10, 20): Images containing 10 to 19 objects.
• Group [20, 30): Images containing 20 to 29 objects.
• Group [30, 50): Images containing 30 to 49 objects.
• Group [50, inf): Images containing more than 50

objects.

This grouping strategy aligns with the object count distri-
bution within the ADE20K dataset, facilitating a balanced
representation of different object density levels.

The performance of the AST methods for the different
object counts is shown in Figure 8. The performance is
consistent with the overall performance shown in Figure 5.
There is a content-style trade-off in AST methods. Compared

to the evaluation of different scene type groups, the
stylization methods show high consistency in performance
for each evaluation metric and each object count group.

Figure 9 analyzes the correlation between the average
performance of the AST methods and the number of objects
in an image. Contrary to intuition, the results indicate that
a minimal number of objects does not necessarily lead
to superior performance. Images with 10 to 20 objects
achieved the best average performance on ArtFID, SRQE OV
and LPIPS, metrics associated with style matching and
perceptual fidelity. Interestingly, images with 50 or more
objects achieved the best average performance on GRAM
loss, a metric measuring style similarity. This divergence
highlights the potential for bias inherent in different metrics,
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as further explored in Section 5.4, which examines how each
metric relates to human perception.

In conclusion, images with high object complexity exhibit
superior performance in terms of GRAM loss and the LPIPS
metric. Images with medium object complexity achieve the
best results on SSIM (Group [30,50)), content loss (Group
[30,50)), SRQE OV(Group [10,20)) and ArtFID (Group
[10,20)). Further investigation is warranted to elucidate the
correlation between object count and these metrics, assessing
the potential implications for specific applications.
C. Salient regions of the Image

To examine how variations in salient regions influence
style transfer performance, we segmented our dataset into
five groups based on the relative area occupied by salient
regions within each image. These groups are:

• Group [0,0.4): salient regions cover less than 40% of
the image area.

• Group [0.4,0.5): salient regions cover between 40%
and 50% of the image area.

• Group [0.5,0.6): salient regions cover between 50%
and 60% of the image area.

• Group [0.6,0.7): salient regions cover between 60%
and 70% of the image area.

• Group [0.7,1]: salient regions cover 70% or more of
the image area.

This categorization ensures a balanced distribution across
groups, reflecting the overall distribution of salient region
sizes in our dataset. This approach allows us to isolate
and analyze the effect of different levels of salient region
prominence on the performance of diverse style transfer
methods. Figure 10 shows how the salient region size of an
image impacts the ArtFID ↓ score.

From AST methods: SANet and StyTr2 perform well. One
key factor contributing to this observed trend is the ability of
attention-based models to focus and refine stylistic features
when dealing with smaller main areas. In scenarios where the
main subject or focal point occupies a modest portion of the
image, attention-based methods demonstrate a heightened
precision in capturing and replicating the stylistic elements
onto the content image.

Regarding the main area, we observed that methods tend
to exhibit better performance when the main area falls in the
group [0.6, 0.7) instead of a larger main area. This implies that
lower image complexity leads to better performance. This
finding challenges conventional expectations and prompts
a deeper examination into the dynamics of style transfer in
relation to image composition.
D. Content-Style Consistency

This analysis is underpinned of three distinct groups
delineated by cosine similarity’s range: [0,0.9), [0.9,0.95)
and [0.95,1]. Our analysis reveals a positive correlation
between content-style consistency and the performance of
AST methods. As Figure 11 illustrates, images with more
consistent content and style elements (e.g., both depicting
portraits) tend to achieve higher performance on ArtFID
metrics (except from NST and ArtFusion). This suggests that
aligning the content and style domains can be a valuable
strategy for optimizing AST quality. For example, utilizing a
portrait artistic style for a content image containing a person
can leverage the inherent similarities between the domains,
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Fig. 10: Impact of salient region size on AST performance.
This bar plot visualizes the ArtFID scores achieved by
different AST methods when the salient region occupies
50% to 60% of the image area.
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Fig. 11: The relationship between ArtFID ↓ scores and
content-style similarity: lower ArtFID scores are observed
in AST results as the content and style images exhibit greater
semantic similarity.

potentially leading to a more faithful and aesthetically
pleasing style transfer.

Our findings reveal a crucial factor influencing the success
of AST: the content-style consistency between the content
and style images. As illustrated in Figure 12, the [0.95, 1]
consistency group consistently exhibits the best performance
across most AST methods. This suggests that when the
content and style images share a high degree of semantic
similarity, the AST process can achieve more accurate and
visually pleasing results, as shown in Figure 13.

4.3 Analyzing a Specific Style

We evaluated the performance of the AST method on a
diverse set of ten styles: abstract expressionism, art nouveau,
cubism, expressionism, impressionism, pop art, realism, romanti-
cism, symbolism, and ukiyo-e. We measured the stylized results
using all five metrics described in Section 4.1 and obtained
an overall ranking evaluation.

The overall ranking distribution of the AST method across
these styles aligns closely with the overall performance
ranking presented in Section 4.1. As illustrative examples,
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0.82668 0.91142 0.96499

Fig. 13: This figure presents stylized images generated by
UCAST [22] belonging to different content/style similarity
groups. The annotations at the bottom represent the cal-
culated similarity between the content and style images.
Notably, the higher semantic similarity between content and
style images leads to better-stylized performance.

we present renderings in the abstract expressionism and
impressionism styles (Figure 14).

5 ANALYSIS OF SUBJECTIVE EXPERIMENTS

To gain a comprehensive understanding of user percep-
tion, we conducted a multi-granularity subjective study
encompassing point-wise, pair-wise, and group-wise user
evaluations. A total of 55 participants were recruited for the
subjective study, with 43 having a background in computer
graphics and 25 possessing knowledge of AST research, indi-
cating a degree of artistic appreciation ability. Approximately
3500 valid responses were collected, including 700 point-
wise, 2100 pair-wise, and 700 group-wise questions. The
overall results of this study are presented in Figure 15, with
a detailed analysis provided in the subsequent sections.

5.1 Analysis of Point-Wise Questions
In our evaluation of different AST methods, we meticulously
considered user ratings as a crucial metric for assessing the
subjective satisfaction and preference of individuals engaging
with stylized images.

The user ratings, indicative of individual perceptions and
preferences, exhibited a substantial degree of variability as
shown in Figure 16. The wide distribution suggests diverse
opinions and responses to the stylization outputs generated
by different AST methods. This variability could be attributed
to varying artistic tastes, subjective interpretations of visual
aesthetics, and the diverse nature of content and style images
used in the evaluation process.

In the diverse landscape of user ratings, two AST meth-
ods, LST and UCAST, demonstrated remarkable performance.
Their median values were significantly higher than those of
other methods, and their distributions were concentrated in
the high mean opinion score (MOS) zone. ArtFusion’s scores
are also aggregated at a high zone. However, its median value
is not as good as LST and UCAST’s. In terms of MOS scores,
StyTr2 and Artflow has a high median value. However, their
MOS score distribution is not as concentrated, indicating
their robustness is not as good.

The success of UCAST, StyTr2, and ArtFusion in garner-
ing superior average scores may be attributed to several
factors. These methods may exhibit enhanced capabilities in
preserving the artistic essence of the style image, achieving
better visual fidelity, and adapting more seamlessly to
diverse content images. Additionally, user-friendly interfaces,
faster processing times, or other user-centric features could
contribute to the positive reception of these methods.

5.2 Analysis of Pair-Wise Questions
To evaluate the performance of each AST method, we
analyzed user responses in three key aspects as the setting
in [26]: content preservation (CP), style similarity (SS), and
overall effect (OV). We tracked the win rate, the percentage
of times one method outperformed the other in direct
comparisons. Subsequently, the collected win rate were
standardized to a zero mean, facilitating visual representation
in Figure 17.

The results reveal three outstanding performers: CNN-
based UCAST [22] (contrastive learning), transformer-based
StyTr2 [11], and diffusion-based ArtFusion [14]. ArtFu-
sion excels in content preservation, StyTr2 shines in style
similarity, and UCAST achieves a balanced performance
across both. NST surpasses the average in both content
preservation and style similarity, suggesting a more stable
optimization process compared to AdaIN, SANet, and LST.
ArtFusion shines in content preservation, leading to its
strong performance in overall visual effect, second only
to UCAST. This highlights the significant contribution
of content preservation to the overall visual experience.
These findings align with the objective study presented in
Section 4.1.

Users often struggle to choose between two stylistically
transferred images when evaluating their relative quality.
However, they find it easier to assess whether both images
achieve a desired level of quality, regardless of which method
was used. In response to this observation, we introduce the
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Fig. 14: Stylized images generated with abstract expressionism and impressionism styles. The red numbers below each image
indicate the overall ranking performance of the corresponding AST method.

TABLE 4: Pair-Wised User Study Results. CP, SS, and OV are the Win Rate for content preservation, style similarity, and
overall visual effect, respectively. BGCP, BGSS, and BGOV are the Both Good Rate for content preservation, style similarity,
and overall visual effect.

Categories AST Content Preserve Style Similarity Overall Visual Effect
CP BGCP SS BGSS OV BGOV

CNN-based

NST [2] 44.15% 64.89% 42.29% 54.65% 44.15% 47.67%
WCT [3] 4.31% 35.48% 18.10% 13.64% 8.05% 10.91%

AdaIN [5] 28.03% 56.04% 35.84% 40.79% 30.64% 41.24%
LST [21] 34.59% 88.98% 35.95% 70.64% 36.49% 63.55%

SANet [8] 25.58% 57.95% 38.79% 53.95% 30.46% 41.98%
MAST [20] 44.35% 58.93% 34.46% 41.82% 40.40% 25.81%

UCAST [22] 58.97% 89.53% 58.01% 82.81% 61.22% 68.75%
Flow-based Artflow [9] 27.66% 79.22% 35.37% 57.75% 30.85% 49.25%

Transformer-based StyTr2 [11] 52.38% 73.27% 53.70% 53.06% 53.44% 47.37%
Diffusion-based ArtFusion [14] 69.33% 90.65% 46.32% 61.70% 58.28% 42.59%

both good rate metric, which quantifies the proportion of users
who choose “both are good” when comparing stylistically
transferred images perceived as similar in quality (both
“good” or “bad”).

We make statistics on win rate and both good rate from
the three aspects of CP (content preservation), SS (style
similarity), and OV (overall visual effect), respectively. As
shown in Figure 18, UCAST exhibits a significant advantage
in achieving “both good” performance across all three
aspects, evidenced by the remarkably thick flows for “Both
Good CP”, “Both Good SS”, and “Both Good OV”. ArtFusion
demonstrates strong performance in content preservation
(very thick “Both Good CP” flow compared to its thin “Both
Bad CP” flow), but its performance in stylistic similarity and
overall visual quality is ordinary.

LST and Artflow exhibit a high both good rate but low
win rate. This suggests they’re consistently decent across
all aspects but lack the edge to consistently outperform
other methods in direct comparisons. UCAST, StyTr2, and
ArtFusion, on the other hand, demonstrate the ability to
clearly outshine their competitors. The entire detailed result
is shown in Table 4.

5.3 Analysis of Group-Wise Questions

To evaluate the realism of AST results, we designed two
user study metrics within the “Identification Question
(group-wise)” group. The proposed metrics assess the

TABLE 5: Group-Wised Subjective Study Results.

Categories AST PO% ↓ PC% ↓

CNN-based

NST [2] 72.01% 76.15%
WCT [3] 86.39% 82.29%

AdaIN [5] 82.32% 85.91%
LST [21] 71.72% 79.18%

SANet [8] 79.03% 82.18%
MAST [20] 77.26% 77.26%

UCAST [22] 54.86% 72.81%
Flow-based Artflow [9] 70.98% 77.19%

Transformer-based StyTr2 [11] 61.69% 71.97%
Diffusion-Based ArtFusion [14] 51.91% 67.64%

effectiveness of AST in generating visually deceptive stylistic
transformations that confound human perception:

• pick correct rate: the ratio of stylized images that are
correctly detected as artificial (correctly chose “yes”
when presented with a stylized image).

• pick out rate: the ratio of fake images that users can
identify correctly out of all the fake images.

Low values for both pick correct rate and pick out rate
indicate strong AST performance, suggesting that the stylized
images closely resemble real photographs and are thus
difficult for humans to identify as artificial. Detailed results
can be found in Table 5.

To investigate the interplay between user performance
and the proportion of fake images in identification ques-
tions, we varied the number of stylized images presented
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Fig. 15: The provided images showcase the outputs of different AST methods. CP, SS, and OV denote the win rate (Section 5.2)
for content preservation, style similarity, and overall visual effect, respectively. PO refers to the pick out rate (Section 5.3).
Notably, CNN-based AdaIN and SANet (with attention layer) exhibit high fidelity in replicating the target style. While
Diffusion-based ArtFusion excels at content preservation, its artistic expression may be less pronounced. CNN-based
UCAST (with contrast learning) and Transformer-based StyTr2 achieve a compromise, maintaining content quality while
incorporating stylistic elements.

Fig. 16: Point-wise user study results: the scatter plot displays
the distribution of AST MOS. Scores range from 0 to 5 in
increments of 0.5. The line across the box highlights the
median score, with the bottom and top edges indicating
the values where 25% of ratings fall below and above,
respectively.

Positive Models

Negative Models

#1 Content Preservation
#3 Style Slmilarity
#2 Overall Visual Effect

#1 Style Similarity
#2 Content Preservation
#1 Overall Visual Effect

#3 Content Preservation
#2 Style Slmilarity
#3 Overall Visual Effect

#4 Content Preservation

ArtFusion

StyTr2

UCAST

MAST

WCT

NST

SANet
LST

Artflow
AdaIN
#2 Both Good Style
#2 Both Good Overall

Fig. 17: The performance of AST methods was evaluated
on pair-wise questions in terms of content preservation (CP)
and style similarity (SS). The upper-right quadrant of the
plot indicates methods that performed well on both metrics.
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Fig. 18: A comprehensive sankey plot visualizing the both
good rate of AST: the width of each flow represents the relative
frequency of images falling into each performance category.
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Fig. 19: The pick out rate ↓ and pick correct rate ↓ for different
numbers of stylized images (3, 4, and 5) in each group. A
total of ten images are included in each group.

(3, 4, and 5) per question, creating three distinct groups
with different fake image ratios. Figure 19 depicts the
resulting pick correct rate and pick out rate for each group.
Our analysis reveals a trade-off relationship between these
metrics. While the pick correct rate increased with more
stylized images (facilitating the identification of individual
fakes), the pick out rate conversely decreased (making it
harder to identify all fakes within the group). This suggests
that for the group-wise method to effectively assess the
realism of AST, employing a smaller number of images per
group offers a more balanced and informative approach.

5.4 Investigating Fine-Grained Influences on AST Per-
formance

Building upon the group-wise analysis, we further inves-
tigate the specific image characteristics that may influence
AST performance. To achieve this, we categorize the images
used in the group-wise study into distinct semantic groups
based on pre-defined criteria detailed in Section 4.2. This
allows us to visualize and statistically analyze the impact
of these fine-grained factors on the user’s ability to identify
fake stylized images, as measured by the pick out rate.

Figure 20 reveals a fascinating interplay between image
characteristics and the pick out rate. Distinct trends emerge
for groups based on object count, salient region, and content-
style consistency.
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Number of Objects
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Fig. 20: The pick out rate ↓ varies when images from different
semantic groups, as described in Section 4.2.

Object Complexity. Notably, the pick out rate peaks for
images with 10 to 20 objects, declining as the object count
increases. This aligns with the objective findings presented in
Section 4.2, where ArtFID metric scores correlate with human
judgment. This suggests that ArtFID, which measures the
distance between image distributions, captures aspects of
perceptual fidelity that resonate with human evaluation,
particularly for images with moderate object complexity.
Salient Region. The main area of the image reveals a
departure from the objective metrics observed in Section 4.2.
Contrary to expectations, the pick out rate decreases (meaning
users perform better at identifying fakes) as the main area of
the image shrinks, and this correlation is evident.

One potential explanation for this phenomenon is that
larger main areas pose greater challenges for AST methods
in preserving the details of prominent objects, as shown in
Figure 21. This could lead to more noticeable artifacts or
inconsistencies in the stylized image, particularly around the
main object. These discrepancies might become easier for
users to identify, contributing to the higher pick out rate for
images with larger main areas.
Content-style Consistency. Our findings resonate with both
the objective study presented in Section 4.2 and human
intuition: as the semantic similarity between content and
style images increases, the pick out rate decreases, indicating
improved AST performance. This relationship is visually
evident in the right part of Figure 20, where the lowest pick
out rate aligns with higher content-style consistency scores.

5.5 Analyze the Consistency of Group-Wise User Study

To compare the consistency of the group-wise user study
and pair-wise user study, we measure their reliability, which
is a measurement of how consistently a method measures
something.

Our research focused on assessing the Test-Retest reli-
ability of user study results conducted through pair-wise,
point-wise, and group-wise evaluation methods. Test-retest
reliability measures the consistency of results by repeating
the same test on the same sample at a different point in
time. We apply this method by extracting specific questions
answered by the same user at least twice time and comparing
the results of the two answers.

Following our review mechanism in Section 3.5.2, we
chose user responses that had the same questions and came
from the same participants, enabling a rigorous analysis
of the consistency in their evaluations across various time
points. To measure the degree of agreement among the
replies to repeated questions, we applied the Cohen Kappa
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Salient Region
Percentage 56.31% 56.09% 40.87% 33.24% 24.17%

Target Style

Parsing

Fig. 21: A group of stylized images generated by UCAST [22]. When the salient region of an image is larger, it becomes more
straightforward for users to spot artifacts, leading to easier identification of the image as stylized or fake. Conversely, when
the salient region is smaller, the artifacts become relatively harder to discern.

TABLE 6: Cohen’s kappa results. We use it to evaluate the
user study results at three levels of granularity: Point-Wise,
Pair-Wise, and Group-Wise.

Method Cohen’s Kappa
Group-Wise 0.5778

Pair-Wise content preservation 0.4732
Pair-Wise style similarity 0.5726

Pair-Wise overall visual effect 0.4933
Point-Wise 0.5172

coefficient to estimate the Test-retest reliability for each level
of question.

The results are presented in Table 6. The group-wise
evaluations demonstrated a remarkable Cohen Kappa value
of 0.5778. This exceptional result indicates a substantial
agreement among participants, showcasing the method’s
great performance in capturing consistent user opinions
over time. The higher Cohen Kappa values, especially in
group-wise and style-focused pair-wise assessments, signify
a notable degree of reliability in user evaluations.

The variations in Cohen Kappa values across different
evaluation methods suggest that the reliability of assessments
may be influenced by the specific aspects being evaluated
(content, style, overall impression). Group-wise assessments
demonstrate a robust ability to consistently capture user
opinions.

5.6 Factors Influencing User’s Preference

Having gathered both subjective and objective evaluation
results, and considering that these metrics can be broadly
categorized into measures of content preservation and style

matching abilities, we aimed to explore how these aspects
contribute to user preference for stylized images.

We assume the following metrics as the user’s preference
for stylized images: point-wise metric MOS, pair-wise metrics
win rate, both good rate, and group-wise metric pick out rate.
From each of the selected subjective metric, we are able to
gain a ranking performance of AST methods. Figure 22 shows
the Kendall rank correlation coefficients (KRCC, denoted
by τ ) and Spearman’s rank correlation coefficients (SRCC,
denoted by ρ) between the AST rankings derived from
selected subjective metrics.

We observe that MOS and pick out rate have the strongest
positive correlation with both good rate of content preservation
(BGCP) (τ = 0.87, ρ = 0.95). Similarly, win rate of overall
visual effect (OV) has the highest correlation with win rate of
content preservation (CP) (τ = 0.87, ρ = 0.96). These find-
ings highlight the strong affinity between user preference for
stylized images and content preservation metrics. While style
matching metrics demonstrate a considerable correlation
with user preference, this association is notably weaker than
the correlation observed with content preservation metrics.

Figure 23 examines the Kendall’s τ and Spearman’s
ρ coefficients between the AST rankings derived from
the objective metrics presented in Section 4.1 and the
subjective user preferences. We observe that MOS exhibits
a stronger positive correlation with content preservation
metrics compared to style matching metrics. With SRQE CP,
the correlation coefficients are (τ = 0.56, ρ = 0.76), followed
by (τ = 0.51, ρ = 0.62) with LPIPS and (τ = 0.38, ρ = 0.49)
with content loss. Conversely, the correlation with SRQE SR
loss is negative (τ = −0.47, ρ = −0.54), and that with
GRAM loss is (τ = −0.2, ρ = −0.33). Similar trends are
observed for OV and pick out rate. Our analysis reveals a
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Fig. 22: Kendall rank correlation coefficient (KRCC) and
Spearman’s rank correlation coefficient (SRCC) were em-
ployed to assess the consistency between subjective metrics.
The figure illustrates that content preservation exerts a
stronger influence on user preference compared to style
similarity.

noteworthy emphasis on content preservation in subject user
preferences that the perceived success of AST methods is
more closely linked to the retention of content features than
the adherence to the target style.

Additionally, the MOS exhibits an extremely high cor-
relation with the both good rate of content preservation
(BGCP) (τ = 0.87, ρ = 0.95) and the both good rate of style
similarity (BGSS) (τ = 0.73, ρ = 0.87), demonstrating the
meaningfulness of both good rate as a subjective metric.

5.7 Consistency between Subjective and Objective
Study

To assess the validity of both subjective and objective studies,
we first obtained the AST rankings for all metrics included
in the study, encompassing both objective and subjective
metrics. Next, we calculated the Kendall’s τ and Spearman’s
ρ coefficients between these rankings, as shown in Figure 23.

Regarding point-wise granularity, the Mean Opinion
Score (MOS) has the highest (τ = 0.56, ρ = 0.76) with
SRQE CP, indicating that users rate the stylized image higher
if its content is similar to the original image. Therefore, point-
wise questions may be biased towards AST methods that
generate better image quality.

As for pair-wise granularity, the win rate for both content
preservation (CP) and overall visual (OV) effect demonstrate
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Fig. 23: Kendall rank correlation coefficient (KRCC) and
Spearman’s rank correlation coefficient (SRCC) were used to
assess consistency between objective and subjective metrics.
LPIPS correlates with win rate, SRQE CP with both good rate,
pick out rate, and pick correct rate.

the strongest correlation with LPIPS, with coefficients of
(τ = 0.69, ρ = 0.85) and (τ = 0.64, ρ = 0.78), respectively.
Additionally, the both good rate for CP, SS, and OV (BGCP,
BGSS, BGOV) show the highest correlation with SRQE CP,
with coefficients of (τ = 0.6, ρ = 0.78), (τ = 0.56, ρ = 0.65),
and (τ = 0.6, ρ = 0.75) respectively. This suggests that LPIPS
effectively captures the comparative preference reflected in
win rates, while SRQE CP aligns with the perception of
overall quality indicated by both good rate. These findings
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reveals that LPIPS and SRQE CP can partially represent
human judgment in AST evaluation. The win rate of style
similarity (SS) exhibits a weak correlation with almost all
objective metrics, except for the correlation coefficients of
(tau = 0.47, ρ = 0.66) with ArtFID and SRQE OV, which
suggests that ArtFID and SRQE do provide a quantitative
measurement of the artistic style of stylized images to some
extent. However, the evaluation of artistic features cannot
fully correspond with human perception.

At the group-wise granularity level, the pick out rate and
the pick correct rate exhibit the strongest correlations with
SRQE CP (τ = 0.73, ρ = 0.85) and (τ = 0.76, ρ = 0.75),
respectively. This result indicates a close correspondence
between SRQE CP and subjective metrics, further supporting
the notion that content preservation significantly influences
user preference. Both the pick out rate and the pick correct rate
demonstrate correlations with LPIPS, content loss, SSIM,
SRQE, and ArtFID, as well as with MOS, win rate, and
both good rate. These correlations validate the reliability and
relevance of these two subjective metrics.

6 CONCLUSION

In this study, we present a comprehensive framework for
evaluating Arbitrary Style Transfer (AST) performance by
combining a rigorous objective study with a multifaceted
subjective study. Objectively, we evaluated AST performance
across multiple metrics by analyzing its variations across
diverse image groups based on scene type, object complexity,
salient regions, and content-style consistency. Subjectively,
we employed a group-wise user study, complemented
by point-wise and pair-wise studies, resulting in a multi-
granular evaluation. We introduced three metrics - Both
Good Rate, Pick Out Rate, and Pick Correct Rate - to obtain
robust and nuanced user feedback. Furthermore, we explored
the consistency between objective and subjective results,
investigating the factors influencing human perception of
AST quality and the reliability of various metrics in reflecting
human judgment.

Although our research offers a valuable contribution
to the field of AST assessment, we acknowledge potential
avenues for future refinement and improvement.

1) Given the observed misalignment between objective
and subjective metrics in AST, designing an objective
metric that perfectly aligns with human perception
remains a challenge.

2) We employ Spearman’s rank correlation coefficient
(SRCC) and Kendall’s rank correlation coefficient
(KRCC) to represent the consistency between ob-
jective and subjective metrics. These coefficients
measure the consistency between rankings, which
may not necessarily reflect the precise correlation
between the two sets of metrics.

3) Future research may focus on optimizing AST
methods, particularly in mitigating the identified
limitations and weaknesses, as well as aligning more
closely with user preferences.
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