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ABSTRACT

Squared forms of photos are widely used in social media as
album covers or thumbnails of image streams. In this study,
we realize photo squarization by modeling Retargeting Visual
Perception Issues, which reflect human perception prefer-
ence toward image ratargeting. General image retargeting
techniques deal with three common issues, namely, salient
content, object shape, and scene composition, to preserve
the important information of original image. We propose a
new way based on multi-operator techniques to investigate
human behavior in balancing the three issues. We establish
a new dataset and observe human behavior by inviting
investigators to retarget images to square manually. We
propose a data-driven approach composed of perception
and distillation modules by using deep learning techniques
to predict human perception preference. The perception
part learns the relations among the three issues, and the
distillation part transfers the learned relations to a simple
but effective network. Our study contributes to deep learning
literature by optimizing a network index and lightening
its running burden. Experimental results show that photo
squarization results generated by the proposed model are
consistent with human visual perception results.
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1 INTRODUCTION

At present, people like to share their opinions, insights, and
experiences on the Internet which not only can act as a
record but also can send messages to the audience from
all over the world. Social media, such as Instagram, Flickr,
and Facebook, provide tools for users to display photos in
addition to textual information. However, in many cases, the
photos need to be displayed in a fixed resolution, that is, in
square shape. As shown in Figure 1, a normal web page on
Flickr (“Albums” page) contains dozens of photos, which are
essentially square thumbnails of photos with different aspect
ratios. Therefore, each square thumbnail should display the
most prominent information present in the original photo.
The standard operation used by most social media to perform
photo squarization is cropping. Most methods use a saliency
map or an object detector to identify regions in the image
that can serve as effective crops in creating thumbnails [7,
27, 35]. Unfortunately, some important content may have to
be discarded due to space limitation and the composition of
the original photo may be destroyed.

Content-aware image retargeting (CAIR) is a possible
choice to solve the photo squarization problem in social media.
Various methods have been suggested for CAIR to preserve
important content as much as possible [3, 18, 24]. However,
most methods are developed by following one single scheme,
thereby leading to adaptability problem on general displaying
use for social media. Multi-operator methods [8, 25, 31]
have been proposed to solve this issue, in which different
mechanisms (e.g., seam carving, scaling, and cropping) are
integrated to accommodate the variation in contents and
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Figure 1: “Albums” page of a Flickr member. All al-
bum cover images are in square shape with a certain
degree of information loss. We propose a CNN-based
photo squarization method for transforming photos
of arbitrary aspect ratios to square. This method can
capture user’s visual preference during retargeting
operations.

compositions of images. Each operator is related to a specific
visual perception-based information preserving issue (e.g.,
salient content, object shape, and scene composition). How-
ever, these methods allocate the utilization percentages of
operators only in accordance with image similarity and fail
to consider user preferences due to lack of user interaction as
input; this factor is important in practical photography [13,
23]. This drawback limits the practical application of these
methods.

One the one hand, previous studies have shown that
learning-based approach for image synthesis is effective in
reaching the desired outcomes with low investment on time
and effort during acquisition [7, 28, 37]. On the other hand,
multi-operator image retargeting has been shown to capture
user preference effectively [4]. Although the two techniques
have shown success, methods that tightly integrate them for
learning-based multi-operator image reshaping have yet to
be explored.

Square shape is broadly used in social media for photo
display. Hence, we focus on the photo squarization problem
that has a great research value in the image retargeting
field. Two major challenges are acquiring user preference
information for retargeting a photo to square and predicting
squarization strategy that is consistent with human visual
perception. The key idea behind user preference acquisition
is to understand human behavior in balancing three issues
during retargeting operations: salient content, object shape,
and scene composition. We call the three issues as Retargeting
Visual Perception Issues (RVPIs). First, these issues are the
most important information that needs to be preserved during
retargeting process. Second, the positions and shapes of visual
elements in different photos often vary considerably. Thus, we
need to accurately transform the abstract information losses
related to the three issues into concrete image retargeting
operations. Moreover, the visual perception-based retargeting
strategy for squarization should be predicted directly from
the visual features of the original photo. However, existing
CAIR methods either use iterative frameworks [8, 30] or

rely on single operator and thus cannot capture different
perception preferences of users [3, 7, 19].

We attempt to engage user preference into a multi-operator
retargeting algorithm for overcoming the above-mentioned
challenges. In this way, human behavior in balancing RVPIs
for a given image and desired size can be determined. This
problem is central to social media and image retargeting
research. We build a synergy between visual images and hu-
man perception by transforming abstract losses into concrete
image retargeting operations (Section 3). We propose a data-
driven approach to predict people’s perception preference
by suggesting a CNN-based framework that involves two
different modules: perception module that mines the rela-
tionship among RVPIs and distillation module that encodes
such knowledge together with variant losses into a simple
but effective network (Section 4). Convincing visual and
quantitative experimental results are shown to demonstrate
the effectiveness of the learned method (Section 5).

Our work makes the following technical contributions:

(1) A new way to observe human perception preferences
among RVPIs during photo squarization process, which
can also be attempted for general image retargeting
problems.

(2) A new dataset with annotations that indicates user
preferences toward photo squarization problem.

(3) A new two-module deep neural network for learning
user preferences and predicting retargeting operations
for photo squarization. To the best of our knowledge,
we are the first to allocate the final percentages of
operators directly in accordance with the features
of original photo without iteration and input-output
similarity comparison.

2 RELATED WORK

Image Reshaping. Transforming an image to a new shape
is an interesting topic in image synthesis. Gal et al. [10]
used a feature map to roughly mask the important features
of an image and then performed non-homogeneous texture
mapping to transform the image into arbitrary shape. Li et
al. [17] proposed a geodesic-preserving method to transform
panorama to rectangle. Qi et al. [22] reshaped an image
into non-rectangular shape by removing a sequence of seam
segments that does not considerably alter or distort the image
content. In current study, we focus on reshaping a photo of
arbitrary aspect ratio to square by CAIR.

Image Retargeting. Image retargeting preserves the impor-
tant content of an image after resizing. Cropping [7, 27, 35]
is a simple retargeting method that removes outer parts of
an image while protecting the subject and edge continuity.
This method will not change any area of the original image
and does not result in distortion. Thus, cropping has been
widely used in social media to generate square thumbnails or
thumbnails of other shapes. However, cropping often destroys
the completeness of the objects and causes unexpected loss
of information. In recent years, CAIR technology has been



extensively investigated. The methods can roughly be cat-
egorized into discrete and continuous retargeting. Discrete
methods change the aspect ratio of an image by repeatedly
removing or inserting pixels or patches at unimportant areas.
Avidan et al. [2] introduced the concept of seam carving and
solved it using dynamic programming, in which a gradient
energy was used as the importance map. Rubinstein et al. [24]
improved seam carving by using a forward energy. Pritch et
al. [21] performed a discrete labeling over individual pixels
and retargeted an image by removing segments in the net.
These approaches are effective at retargeting images with rich
texture content but may cause artifacts of local discontinuity.
Continuous methods [14, 16, 32] focus on preserving local
structure and optimize a warping from the source size to
the target size in accordance with its important regions
and permissible deformation. Panozzo et al. [20] minimized
warping energy in the space of axis-aligned deformations to
avoid unnatural distortions. Lin et al. [18] presented a patch-
based scheme with an extended significance measurement
to preserve shapes of visually salient objects and structural
lines. These approaches can preserve the geometric structure
of image content smoothly but may also permit unwanted
low important regions to appear in the retargeting result.
Multi-operator methods [4–6, 31] fuse discrete and continuous
methods into a unified optimization framework. Rubinstein
et al. [25] defined a retargeting space as a conceptual multi-
dimensional space in combination with several operators
and used bi-directional warping with dynamic programming
to find an optimal path in this space. Wang et al. [29]
exploited complementary relationships among three conden-
sation operators and fused them into a unified grid-based
convex programming problem. Fang et al. [8] constructed the
retargeting operator sequence by evaluating the similarity
between the original and retargeted images at each iteration.
However, these methods depend on low-level feature-based
saliency maps, which can barely reflect visual semantics.

At present, deep learning- or perception-based approaches
have facilitated further research on image retargeting. Esmaeil
et al. [7] utilized a fully-convolutional deep neural network to
develop a cropping-based thumbnail generation framework by
learning specific filters for thumbnails of different sizes and
aspect ratios. Liu et al. [19] developed an aggregation-based
CNN to learn the deep representation for gaze shifting path
and then used these features for image retargeting through
a probabilistic model. Cho et al. [3] utilized a weakly- and
self-supervised deep CNN to retarget source images directly
to target ratio. Xia et al. [33] proposed a photo retargeting
model by learning human gaze shifting process, in which
a few active graphlet paths were selected on the basis of
a sparsity-guided ranking algorithm. Zhou et al. [36] used
photographs marked as aesthetically pleasing for training
and utilized the learned priors to shrink the corresponding
gaze shifting path of a retargeted photograph to maximize its
similarity to those from the training photographs. Noticeably,
the above-mentioned perception-guided retargeting methods
still cannot capture user preferences in resizing an image in

accordance with three perceptual aspects: salient content,
object shape, and scene composition.

3 DATASET

We introduce a new scheme to observe human subjective per-
ception toward image retargeting task by building a synergy
between visual images and human perception (Section 3.1).
We investigate human behavior in balancing RVPIs, which
are related to information loss of images during retargeting
(Section 3.2).

3.1 Perception Formulation

Perception-aware image retargeting results are generated
by formulating abstract human perception into concrete
representation. Defining and quantifying the distribution
among RVPIs directly are difficult even for experts. However,
people know good retargeting results depending on their
perception toward different images. Given the lessons from
multi-operator approaches, we observe people’s behavior in
balancing RVPIs by offering them three basic retargeting
operators to retarget images manually. The details of the
operator selection are given as follows:

(1) We use seam carving [24] to measure loss in salient
content. This CAIR method carves one seam with the
lowest energy each time in accordance with the energy
functions defined beforehand. A high execution time
of seam carving (𝑅𝑠𝑐) indicates a large proportion of
salient content of the original image will be preserved
and large proportions of object shape and scene com-
position may be damaged.

(2) We use cropping to measure loss in object shape. This
simple method removes outer parts of an image to
protect the subject. A high execution time of cropping
(𝑅𝑐𝑟) indicates a large proportion of object shape of the
original image will be preserved and large proportions
of salient content and scene composition may be lost.

(3) We use scaling to measure loss in scene composition.
This uniform method transforms the original size to the
target size given a scale factor. A high execution time
of scaling (𝑅𝑠𝑙) indicates a large proportion of scene
composition of the original image will be preserved and
a large proportion of object shape of the original image
may be distorted.

Without loss of generality, we arrange the operator order as
seam carving→cropping→scaling. Then, human perceptions
are formulated into a fixed order that is filled with the
number of times that each operator is performed to generate
retargeted images, denoted as [𝑅𝑠𝑐, 𝑅𝑐𝑟, 𝑅𝑠𝑙].

Notably, we do not add warping into our framework due
to three reasons: first, integrating warping may introduce
artifacts of boundary distortion and over-stretching of homo-
geneous content [29]. Second, the functionality of warping
can be substituted by seam caving and scaling. Third, adding
operators will increase the difficulty in data annotation.



3.2 Data Collection

We collect 5, 084 images as the supporting database on the
basis of the following principles: 1) Popularity : We collect
images from Flickr, Pinterest, and Pexels under the Creative
Commons license because of the aim of contributing to social
media. By summarizing tags in “the most popular tag in
history” block on each website, eight categories, namely,
nature landscape, portrait, animal, food, art, fashion, festival,
and architecture, are obtained, and used as keywords to search
images. 2) Comprehensive: Images from “RetargetMe” [23],
which is a classic benchmark for image retargeting methods,
are added. 3) Operability : Duplicate images and images with
too large or too small aspect ratio are manually picked out.
Figure 2 shows some images in our dataset. The original
aspect ratios of these images range from 0.52 to 3.97. The
saliency map is also prepared for each image by using the
method in [15].

Figure 2: Images in the collected dataset.

Six expert photographers (3 males, 3 females, age range
of 20-45) are invited to do the annotation. Each participant
needs to square all the 5, 084 images by allocating the three
operators. We show the original image and a bar with two
sliders (Figure 3) to participants. For each photo, the initial
allocation of the three operators is calculated by a state-of-
the-art multi-operator image retargeting method [4]. The
squarization result will be generated and displayed in real
time when the slider value is changed. Participants are asked
to adjust the sliders freely with no time limitation until they
see the ideal results.

Figure 3: Annotation website for data collection.

We calculate Kendall’s tau (𝜏) coefficient among the six
participants. The results of 𝜏 = 0.85 and 𝑠𝑖𝑔. = 3.11𝑒−14

confirm that the participants have a general consensus with

regard to the rating of three operators. We use the set of
values that has the smallest difference from the average
value of the six participants as the final annotation for each
image. Figure 4 shows the average numbers of each operator
for every 100 times of execution by manual labeling and
automatic calculation following the method in [4]. From
the results, we can observe that seam carving as a CAIR
technique is adopted most frequently. Therefore, humans
are highly sensitive to the change in salient image content.
Human behaviors in balancing RVPIs are different from the
automatically calculated assignments.
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Figure 4: Allocation statistics for data collection.

4 APPROACH

On the basis of the annotated dataset, we propose a data-
driven approach to learn human behavior in balancing the
RVPIs when retargeting a photo to square by using multiple
retargeting operators. Then, given an input photo, we use
the model to predict the allocation of the percentage of each
operator for squarization, which is consistent with human
perception preference.

4.1 Problem Formulation

Given a photo 𝐼 of size (𝑤,ℎ), we define [𝑅𝑠𝑐, 𝑅𝑐𝑟, 𝑅𝑠𝑙] as
the operation allocation performed on one dimension of 𝐼 to
obtain a square image 𝑇 of size (𝑡,𝑡), where 𝑡 = 𝑚𝑖𝑛(𝑤, ℎ).
Similar to all social media, we square the input photo by
retargeting at the shorter dimension. This way can ensure that
the maximum information of the original photo is kept. The
squarization is performed using a combination of the three
operators by regular sequences. Without loss of generality, we
use the reduction in image width as an example. Specifically,
to reduce the width of an image 𝐼 by 𝑅 = 𝑚𝑎𝑥(𝑤, ℎ) − 𝑡
pixels, 𝑅𝑠𝑐 seams are carved out, 𝑅𝑐𝑟 columns are cropped
from the image, and the image is scaled by 𝑅𝑠𝑙 pixels, where
𝑅𝑠𝑐 +𝑅𝑐𝑟 +𝑅𝑠𝑙 = 𝑅. We let 𝑟 = [𝑟𝑠𝑐 = 𝑅𝑠𝑐

𝑅
, 𝑟𝑐𝑟 = 𝑅𝑐𝑟

𝑅
, 𝑟𝑠𝑙 =

𝑅𝑠𝑙
𝑅

] be the normalized representation of [𝑅𝑠𝑐, 𝑅𝑐𝑟, 𝑅𝑠𝑙] and

focus on learning the mapping function 𝑓 : 𝑓(𝐼) → 𝑟 ∈ R3.
Then, our learning goal can be formulated as the following
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modules. The desired outputs are generated by the distillation module, which is trained using three types of
losses.

equation:

𝑎𝑣𝑔min ||𝑟* − 𝑟||2
𝑠.𝑡. 𝑟*𝑠𝑐, 𝑟

*
𝑐𝑟, 𝑟

*
𝑠𝑙 ≥ 0, (1)

𝑟*𝑠𝑐 + 𝑟*𝑐𝑟 + 𝑟*𝑠𝑙 = 1 ,

where 𝑟* = 𝑓(𝐼) is the learning target.

4.2 Learning Approach

Figure 5 shows the overall structure of our learning approach.
Two modules are adopted: perception and distillation mod-
ules. We propose the perception part to learn the relationships
among different operations and distill such “dark knowledge”
into the second part. Different from most distillation models
that focus on classification research, our learning target
proposed in Section. 4.1 is an objective regression with
constraints that are applied to the distillation module. Details
about the two modules are given as follows.

Perception module. Instead of directly solving the optimiza-
tion problem raised in Equation (1), we propose a perception
module to learn the relationship among the three kinds of
operations. Given the real-value vector 𝑟𝑖, the most frequently
used operator can be treated as the superior operator 𝑂𝑃𝑖 for
image 𝐼. The perception module focuses on the classification
of superior operators. For this typical multiclass classification
problem, we adopt cross entropy loss with 𝑙2 normalization
as the objective function.

The perception model is designed on the basis of VGG16
architecture [26]. The pre-trained VGG16 parameters are
used as the seed, but the parameters of the last three fully
connected layers are dropped. We initialize them by Xavier
initialization [11]. Batch normalization is also added. Then,
a mapping between the original image and the perceptive

value of network will be formed. We define the output of this
perception module as 𝑟𝑝 which serves as the soft target for
distillation part.

Distillation module. Distillation technology proposed re-
cently provides fresh portion to construct networks and can
transform a large model to a small one [9, 34]. Distillation
has difficulty reducing the network structure while keeping
the performance in a small one. By adopting a reasonable
distillation technology, the efficiency of network execution
can be enhanced greatly and the overfitting can be relieved
to some degree.

We transfer the output of the perception module to the
distillation module by training it with soft targets for the non-
special classes in addition to training it using Equation (1).
For the distillation module, we set the optimized objective to
train by considering the two aspects. One is for transferring
soft targets 𝑟𝑝, which is also known as dark knowledge learned
by the perception module into the distillation module, namely,
𝐿𝑜𝑠𝑠𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛. The other is the offset between the input
label 𝑟 and the output 𝑟* together with the constraints in
Equation (1), namely, 𝐿𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡:

𝐿𝑜𝑠𝑠(𝑟*, 𝑟𝑝, 𝑟) = 𝐿𝑜𝑠𝑠𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝑟
*, 𝑟𝑝)+

𝜆 · 𝐿𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡(𝑟*, 𝑟), (2)

where 𝜆 balances the two kinds of losses and 𝐿𝑜𝑠𝑠𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛
(𝑟*, 𝑟𝑝) is the Euclidean distance between 𝑟* and 𝑟𝑝. We set
𝜆 = 2 in our experiments.

𝐿𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡 is calculated as

𝐿𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡(𝑟
*, 𝑟) = 𝐿𝑜𝑠𝑠𝑟𝑒𝑔(𝑟

*, 𝑟) + 𝛽𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑠(𝑟
*)

= ||𝑟* − 𝑟||2 + 𝛽𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑠(𝑟
*), (3)



where 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑠(𝑟
*) encodes the constraints in Equation (1):

𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑠(𝑟
*) = (

3∑︁
𝑘=1

𝑟*(𝑘)− 1)2 +

3∑︁
𝑘=1

𝑚𝑎𝑥(0,−𝑟*(𝑘)), (4)

where 𝑟*(·) is the prediction for one of the three operations.
The first item in Equation (4) corresponds to the equality
constraint. The second item equals 0 when 𝑟*(·) ≥ 0.

Specifically, the distillation module is composed of a shal-
low three-layer CNN. The first convolutional layer is fed by
the input image with 64 kernels of size 5 × 5. The second
convolutional layer takes the output of the first convolutional
layer as input and filters it with 32 kernels of size 3× 3. The
third convolutional layer is set with 96 kernels of size 3× 3
with a pad of one pixel. The output layer is fully connected
to the last convolutional layer with three output neurons.

5 IMPLEMENTATION AND
EXPERIMENTS

5.1 Implementation Details

We randomly choose 3, 660 images from the collected dataset
for training and use the rest as the evaluating set. Rotation
and contrast adjustments are performed for the data argu-
mentation. In accordance with the two-module method, our
training process consists of two parts as well. The training set
is sent into the perception part at the beginning to achieve the
perceptive values, which will be used as the new labels to the
distillation part. The configuration of the two modules is set
as learning rate: 10−5, batch size: 20. When evaluating, only
the distillation module will be activated and the outputs of
the distillation module are 𝑙1 normalized. Then, the predicted
allocation 𝑟* is transferred to the number of times that each
operator is adopted by multiplying 𝑅. Predictions less than
zero are set to zero. The entire network is optimized on a PC
equipped with 3.6 GHZ Intel Core i7 and Nvidia Geforce GTX
1080Ti GPU with 11172 MB memory. The implementation is
based on the Tensorflow platform [1]. Figures 6 and 7 show
the squarization results. Our method can generate better
results than other state-of-the-art CAIR methods and these
results are visually consistent with human preference results.
More results are shown in the supplementary material.

5.2 Experiments

To solve the regression task proposed in Equation (1), our ap-
proach adopts two modules including several losses. Compar-
isons on losses and net structures are provided. Furthermore,
we discuss the computational time of our approach.

Evaluation metrics. We use Mean Absolute Error (MAE)
and Root Means Square Error (RMSE) as evaluation metrics.
MAE measures the absolute difference between 𝑟 and 𝑟*,
whereas

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

∑︁
𝑁

3∑︁
𝑘=1

(𝑟*(𝑘)− 𝑟(𝑘))2,

where 𝑁 is the size of testing set.

Loss variants. We test the performance of loss variants on
three kinds of CNN structures: the shallow three-layer CNN
used in distillation module, VGG16 [26], and ResNet [12].

∙ CNNs with regression loss. We fine tune CNNs on the
training data to solve the regression problem directly.

∙ CNNs with regression loss and constraints. We fine
tune CNNs on the training data to solve the regression
problem with the 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑠 described in Equation (4).

Notably, all the outputs are 𝑙1 normalized. We compare the
proposed method with the fast multi-operator (FMO) [4]
method, which uses the same three operators.

The results on testing data are reported in Table 1. Al-
though all the predicted values are forced to meet the con-
straints in Equation (1) by using 𝑙1 normalization, adopting
constraint loss to train the network can yield satisfying
results. We conduct paired sample t-test to evaluate whether
the improvement of using variant losses is significant. the
𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 when using VGG16 and ResNet structures are 0.041
and 0.009, respectively, which demonstrate the significance
of the improvements; by contrast, for the shallow network,
the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.341 > 0.05 indicates the constraint loss
does not work efficiently.

Table 1: Comparisons of loss function variants.

Strategy
MAE RMSE

reg. reg.+cons. reg. reg.+cons.

Shallow 0.50 0.51 0.60 0.57
VGG16 0.40 0.35 0.41 0.31
ResNet 0.37 0.33 0.32 0.25

FMo 0.37 0.27
Ours 0.14 0.16

Net structure. Methods that try to model the RVPI directly
by a one-way CNN with all the three kinds of losses have
been tested. RMSE for ResNet and VGG are 0.25 and 0.31,
respectively. Table 1 shows that our approach reports a better
performance than the one-way structure. The reason is that
the RVPIs are related to one another and difficult to be
predicted directly. The solution requires relevant analysis
on RVPIs. When the entire structure is separated into two
parts, the outcomes of perception module can imply the
inner structure of the RVPIs that are not encoded in the
original regression/classification labels and are transferred
into the distillation part. Thus, we convert the original re-
gression labels into category labels and propose an additional
classification task, namely, perception module.

Computational time. In terms of the computational time
of the network, the training process takes about 2 h to
converge. When testing, the distillation model takes about
0.5 s to process 100 images. Therefore, this model is about
six times faster than a fine-tuned VGG16 style model using
our dataset. This comparison of computational time exhibits
the advantage of distillation structure in terms of running
speed (Section 4.2). Notably, while the FMO procedure needs
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Figure 6: Comparison of our photo squarization results with those of other state-of-the-art methods for
transverse images.

(a) Original (b) CR (c) SC (d) WARP (e) FMO (f) Human (g) Ours

Figure 7: Comparison of our photo squarization results with those of other state-of-the-art methods for
longitudinal images.



about 7 s per image. Our method is 1, 400 times faster than
FMO and thus exhibits a better real-time character.

5.3 User Study

To quantitatively evaluate our contribution, we set up two
user studies that involve 65 investigators (31 males, 34 fe-
males, age range of 20-45) with different experiences. First, we
conduct a user study to compare the retargeting results with
those of state-of-the-art CAIR algorithms, namely, cropping
(CR hereinafter), FMO [4], AAD warping [20], and seam
carving (SC hereinafter) [2]. We display 96 sets of retargeting
images in turn, which contain the original image and six
retargeting results generated respectively from CR, FMO,
AAD, SC, humans, and our method. The retargeting results
are shown in a random order except the original image that
is always displayed in front. Then, we ask the investigators
to select the three best results in each set by clicking the
mouse. The selection has no time limitation, but the entire
study needs to be completed within 1 h.

Table. 2 reports the distribution of the votes. We can
observe that our method outperforms other methods and is
comparable to human perception. For each method involved
in the user study, the distribution of user voting obeys
binomial distribution. Given that the subjects are asked to
select three results out of six images each time, the expected

value equals
𝒞2
5

𝒞3
6

= 0.5. The mean voting scores of AAD,

our method and human perception are larger than 0.5. We
conduct binomial test to evaluate whether the superiority is
significant. The 𝑝-values are 0.031, 0.010, and 0.003. There-
fore, the users think the three methods significantly perform
more than the average.

Table 2: Statistics of votes in user study.

Method CR FMO AAD SC Human Ours

Mean Voting 40% 47% 53% 30% 68% 62%

Second, we perform another user study to examine the
deviation between our result and human re-perception result.
Re-perception indicates we run the annotation progress again
with the start allocation set to our result. The subjects
involved in the second user study is the same as in the first
one, in which 96 images are tested. The deviation between
the start point and the re-perception distribution is recorded.
The entire study time is set to 2 h and has no limitation for
a certain image adjustment. The average time consumption
obtained by statistical analysis is 1 h 22 min 14 s, and the
deviations are recorded. Table 3 shows the statistics. We can
observe that people have less distribution adjustments for
our results. Therefore, our results are more close to people’s
subjective consciousness.

5.4 Discussion

The measure of RVPIs should be an inner property depending
on the original image. Hence, we test the learned model

Table 3: Statistics of distribution adjustments in re-
perception.

Deviation of FMO Ours

Distribution adjustments 37% 12%

to arbitrary target aspect ratios. Figure 8 illustrates the
retargeting results by using the learned allocation of the
operators on three target ratios. Although we focus on photo
squarization, the proposed method can also be attempted to
universal problems.

(a) Original Photo (b) 75.0% (c) 62.5% (d) 50%

Figure 8: Retargeting to arbitrary aspect ratios.

Another emphasis is that the learned model is based on
the consistency of human perception. Although the overall
analysis of Kendall’s tau (𝜏) coefficient shows that people can
reach agreements on most images, consistency is low in some
cases. Figure 9 shows an example in which the 𝜏 coefficient is
lower than 0.3. When the aspect ratio of the original image
(Figure 9(a)) is abnormal, the coefficient level among users
is low. For these instances, participants can not square it
to good results even if they use all kinds of proportional
combination. Under such circumstances, even the trained
model can generate results as human. Therefore, the results
of squarization are usually not ideal.

(a) Original Photo (b) Human (c) Ours

Figure 9: Special cases of the data set.

Figure 10 shows a failure case of the proposed model. The
average difference of operator utilization time between the
predicted operator allocation (Figure 10(b)) and the anno-
tated allocation (Figure 10(c)) is 0.313. Additional cropping
operations are used in our results to protect the object shape.



(a) Original Photo (b)
r=(0.38,0.14,0.48)

(c)
r*=(0.45,0.27,0.28)

Figure 10: Failure case of our method. The predicted
operation allocation has low consistency with the
ground truth.

6 CONCLUSION AND FUTURE WORK

In this study, we focus on the generation of square thumbnails,
that is, “photo squarization,” of images on social media
platform. We propose a data-driven approach that considers
human perception to learn and predict human behavior in
dealing with three basic issues in image retargeting, namely,
salient content, object shape, and scene composition. We
establish a new dataset with human perception information
and train a two-module CNN framework that takes advan-
tage of deep learning and multi-operator image retargeting.
Experimental results show that the proposed method can
create highly appealing results.

In the proposed squarization process, the length of the
original short side is adopted as the target dimension. There-
fore, the changing of aspect ratio acts as a down-sampling
operation, thereby ignoring up-sampling operation that may
have an outperforming effect. In the future, we will consider
up-sampling operation. The database will also be enlarged
to offer a large number of photo examples. Human behavior
in dealing with different target aspect ratios will also be
analyzed. Other visual media types, such as videos, will be
considered as well.
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