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Abstract Filming stereoscopic videos has become easier with the development of science
and technology, and such videos now proliferate on the Internet. Meanwhile, video stabi-
lization is an important research topic. Thus, this study presents a method of stabilizing
stereoscopic videos with preserving the disparities between objects in the frames. First, the
feature points must be tracked and separated into many groups. We posit that the shaky mo-
tion is caused not only by translations but also by rotations. Thus, directly smoothing the
path will not produce a similar trajectory so that we solve the shakiness of the turning be-
fore smoothing the path. To address such shakiness, we initially estimate the rotation angles
between two adjacent frames. By determining the angle changes of all the frames, we can
find out the preference of rotation in a video. Furthermore, the inconsistent angular velocity
can be alleviated and the shakiness of the turning is solved by rotating the frame appropri-
ately. Then, the Bézier curve is utilized to smooth the trajectories. We split a trajectory into
a set of subtrajectories and subsequently smooth the latter independently. Unlike previous
researches, we split the trajectory according to the feature tracking rate to obtain similar
trajectories in the original video path. After making subtrajectories smooth, we merge them
to attain a smoothed trajectory. The joint of the two subtrajectories is replaced by their inter-
polation. Finally, we optimize the smoothness and context preservation to stabilize videos
without requiring extensive clipping.
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1 Introduction

We often ignore hand shaking when shooting videos, but such this action may cause sig-
nificant shaking in the final output. Many tips are available for preventing this situation,
e.g., shooting a video slowly. However, these tips will restrict people from shooting certain
types of videos, such as those that entail moving the camera quickly, and may have limited
effects on stabilization. Nowadays, stereoscopic videos proliferate on the Internet. Remov-
ing the shaky motion in videos after shooting and maintaining the 3D quality become an
important research topic. Many hardware-based stabilizers can help people stabilize videos
spontaneously. However, it’s inconvenient when stabilizers are always carried. Therefore,
this research topic is worth exploring.

Without Rotation

With Rotation

Y

Z
X

Fig. 1 Rotation before smoothing. We intend to reduce the shaking of features by rotating the frames before
trajectory smoothing. The remainder of the shaking shall be caused by translation. The resulting smooth
trajectory will be close to that desired by videographers in this step.

Shooting videos with hand-shaking may occur unnatural shaky videos. The phenomenon
of shaky videos can be shaky translation or shaky rotation or both. Therefore, a suitable
adjustment for translation and rotation is required. In this paper, we propose a useful video
stabilization framework as follows. First, we identify and then weight the objects in the
video. Second, we track the features in the video. Features are used to estimate relations
between frames. Third, we remove turning shake and smooth the rotation motion. Fourth,
we smooth the feature trajectories by using a Bézier curve after removing the turning shake
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and then execute optimization to locate the features at the ideal position. Finally, we crop
the video with a clipping window, and only valid information remains in the output video.
Our system overview is explained in Section 3.

We separate the smoothing into rotation and translation, and they both exhibit order
relation between frames. As rotation and translation influence the object position in the
video, the camera in this study rotates and moves simultaneously. Although we can stabilize
a video if we consider either process only, such approach may cause slightly inaccurate
results. Turning shake is often small and can be reduced to a certain extent via the direct
smoothing of the path. Relative to turning shake, translation shake is noticeable, so most
existing researches aim to smooth only the translation motion. Only a few studies focus
on the rotation adjustment. As far as we know, no work has separated the smoothing into
two parts and considered them with order relation. We attempt to remove turning shake and
render the path closer to what videographers desire (see Fig. 1). In the part of rotation, we
remove turning shake and adjust the speed of rotation. In the part of translation, we provide
a new method of trajectory cutting. In contrast to previous work, the main advantages of the
proposed method are described as follows. The proposed method allows us to manage the
stereoscopic video by keeping the disparity between videos for the left and right eyes. The
disparity cannot be changed before the optimization of smoothness. Thus, the deformation
in the result becomes remarkably small. We can easily control the disparity with an energy
term to render the result of the video for the left eye similar to that for the right eye without
the need to find the corresponding features in the two videos. Experimental results show that
our method can effectively stabilize the stereoscopic video.

2 Related Work

Significance detection technique [3, 22, 2] can be applied to develop many types of research,
such as image/video retargeting, thematic map generation, panorama warping, video stabi-
lization, and so on. In our study, the goal aims to stabilize the shaky stereoscopic video
while preserving the disparity. 2D video stabilization usually estimates the relation between
consecutive frames initially by using this relation to represent the transformation in a video
(e.g., affine or homography transformation). Similar to affine transformation, which includes
translation, rotation, scaling, and shearing, our method considers rotation and translation.
Scaling is caused by the camera yawing or pitching, and the scaling factor differs between
objects. Shearing may change the distance between objects in the video and influence the
disparity in a stereoscopic video. By contrast, homography transformation presumes that
all objects are on the same plane and estimates the rotation and translation of the cam-
era between two frames. Although the transformations usually provide good results, such
an approach may incorrectly estimate the deformation (see Fig. 2), and the transformations
may change the distances between objects. Therefore, we stabilize the videos by considering
rigid transformation including rotation and translation.

In Fig. 2, the camera yaws at this moment, so the features of the cube move. However,
the features of the cylinder remain stationary at this instant. If numerous objects similar to
the cube are present, then the estimation of homography transformation is suitable for the
features of the cube, but the features of the cylinder will be wrong with this transformation.
For instance, the features of the cube on the right side can be obtained from those of the
left side with homography transformation, but the features of the cylinder on the right side
cannot be ascertained from those of the left side. In our proposed method, we avoid incorrect
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Fig. 2 Incorrect estimation of homography transformation.

estimation of homography transformation which is used in many previous works [23, 14,
15].

In 2D methods, the researches [18, 19, 12] smooth the transformations to stabilize
videos and another approach [6] even uses L1 optimization. The aims of the study [7] in-
clude solving the rolling shutter effects. To stabilize videos with bundled-paths, the studies
[17, 8, 23, 24] directly smooth the feature trajectories. We cannot directly stabilize stereo-
scopic videos with these methods because they do not maintain the disparity between the
videos for the left and right eyes. Stabilizing the video for both eyes may eliminate the dis-
parity and provide low visual quality of stereoscopic video. In contrast to previous works,
our approach can maintain object contents and their disparities as possible as we could to
stabilize stereoscopic video.

In 3D methods, the camera’s motion in 3D space should be estimated. Liu et al. [14]
recover the camera path by a structure-from-motion approach. Liu et al. [16] uses a depth
camera to recover the camera path. Smith et al. [21] recover the camera path with a light
field. Jia et al. [11] generalize 2D motion smoothing to 3D and aims at smoothing 3D rota-
tion, and the rotation model is obtained with a gyroscope. Despite the good performance of
3D methods, using them to reconstruct a scene is difficult. 2.5D methods can obtain similar
results as the 3D methods and stabilize additional kinds of videos [4, 15]. However, 2.5D
and 3D methods require features tracked in a long term. Tracking features under such term
are unsuitable for many videos. Thus, 2D methods are generally allowed to handle additional
videos. We use a 2D method to stabilize videos in this study.

Wang et al. [23] smooth the path by a Bézier curve after tracking and optimization to sta-
bilize videos. Similar to other research, Liu et al. [14] use other methods to smooth the path
to resemble a line and parabola, and a low-pass filter is adopted to remove high-frequency
motion from a video. Matsushita et al. [18] use a Gaussian filter to remove the shaky motion
in a video. Zhang et al. [24] employ a bilateral filter to avoid a large cropping ratio. Guo et
al. [9] estimate the camera motion with homography transformation, and then they smooth
the video for one eye and warp it for the other eye to maintain parallax. These methods
stabilize videos with homography transformation and may potentially change object depth.
To maintain object depth in a video and prevent deformation from incorrect estimation as in
Fig. 2, we propose an effective approach for stabilization in this paper.
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Original video Object significance map Tracking features Rotation Trajectories smoothing Optimization Clipping

Fig. 3 System overview. First, we must generate a significance map. Then, we track the features in the video.
We subsequently remove the shaky turning motion and smooth the trajectories of the features. Next, we
perform optimization to obtain a stable video and crop the video with a clipping window.

3 Methodology

3.1 System Overview

The methods in [5, 3] are utilized to identify objects in a video and weight them. A frame is
segmented into many patches. The set of patches in the tth frame is Pt = {pt

1, pt
2, pt

3, ..., pt
np},

and np is the number of patches. We track features in the video using the Voodoo camera
tracker [1]. The set of features in the tth frame is Ct = {ct

1,c
t
2,c

t
3, ...,c

t
nc}, where nc is the

number of features. Many features will disappear in the video. Moreover, the ith feature ct
i

may not exist in the other frames. Similar to the approach [23], our method removes bad
features by using an epipolar constraint [10]. We then estimate the rotation motion of the
camera according to the good features. Frames in a video are rotated to render the rotation
motion of the camera smoothly. Then, we smooth the feature trajectories after the rotation.
Stabilization is optimized by making the features move as if in a smooth trajectory. Finally,
we crop the video to show only valid information. The workflow of our system is illustrated
in Fig. 3.

3.2 Significance Map Generation

Significance map is generated similarly to the study in [13]. The generated objects are then
assigned feature weights. The stereo matching [20] and object tracking [5] play an important
role in the stereoscopic video stabilization algorithm. In this study, we extract different ob-
jects in the video by following method [5] and estimate the weight of each pixel in a frame
according to the study [3]. With the segmentation and the saliency map of a frame, we ob-
tain two details: which pixel belongs to which object and each pixel’s importance. Next, we
ascertain the average saliency of all the pixels in an object. Average saliency is set as the ob-
ject saliency in a frame. Then, the average saliency of the same object in different frames is
set as the final object saliency in the video. The weights are used after global normalization.

3.3 Tracking and Weight Setting for Features

We utilize the Voodoo camera tracker [1] to track the features in the video and remove the
bad features by using epipolar constraint [10], as performed in the study [23]. Furthermore,
the features will be removed by tracking for a short time (i.e., less than 5 frames) and us-
ing the features with long distance movement (i.e., over 40 pixels between two consecutive
frames). This approach allows us to ensure that the remaining features are highly reliable.
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Given the demand to track features in the video and stabilize the video by smoothing the tra-
jectories of these features, we utilize barycentric coordinates to express the feature position.
Therefore, we can identify the grid through the location of its feature.

We can identify which object a feature belongs to by the segmentation of the video. By
counting the feature that belongs to an object in the number of frames, the feature belongs to
the object that it belongs to in most frames. If objects containing the features with the same
number of frames are found, we categorize the features as belonging to the object in which
the feature appears at the earliest. Therefore, every feature belongs to only one object in the
video and the feature weight is the saliency value of the object.

3.4 Rotation Stabilization Process

Before smoothing the feature trajectories, we must remove the turning shake because the
feature trajectories are more similar to the trajectories that videographers want. Turning
shake influences the paths of smoothing the feature trajectories. Furthermore, camera ro-
tation and translation lead to different feature movements. That is, the feature trajectories
will be needed to be more stable. In addition, our method considers the camera rotation. If a
meaningful rotation occurs in the video, then treating such rotation as shaky motion will be
inappropriate. Consequently, the result differs excessively from the input video. Therefore,
the turning shake of rotation is removed in this study while preserving the rotation tendency
of the original video. This is our major difference or advantage in comparison with previous
works [23, 14].

Fig. 4 Reference point. The red point is the center of the frame, and the closest feature is located in the yellow
box. We set this point to be the reference point. Then, we rotate the frame around the red point. The position
of the center is the same as the original position and the result is similar to the image on the right side.

3.4.1 Rotation Angle Estimation

First, we set the feature nearest to the center of the frame as the reference point. If the feature
still can be tracked and remains close to the center of the frame, then we will retain the
reference point. Otherwise, we set another feature point nearest to the center of the frame as
new reference point when the original reference point has become far from the center of the
frame or even disappeared. The process is depicted in Fig. 4. That is, to estimate the angle
between the tth frame and the (t +1)th frame, we choose the feature nearest to the center of
the tth frame as the reference point. Then, if the feature is far from the center of the frame
or disappears at the (t +n)th frame, we will find a new reference point. With the reference
point, we obtain vectors from the reference point to all the other remaining tracked features.



Content-and-disparity-aware Stereoscopic Video Stabilization 7

We calculate the dot product of the unit vector of the given vector and positive horizontal
axis, and we obtain the angle by arccosine of the following dot product:

θ
t
k = arccos(û · ĉt

m,k), (1)

where is û the unit vector of the positive horizontal axis, and ĉt
m,k is the unit vector of the

given vector from the reference point ct
m to the tracked feature (ct

k · ct
m) is the reference point

at the tth frame. As the unit vector has magnitude 1, the dot product of two unit vectors is
the cosine value of the angle between two vectors. We can obtain the angle between two
vectors by the arccosine function of the dot product (from 0◦ to 360◦).

With the angle between the given vector and positive horizontal axis, we obtain the angle
between the same given vector and positive horizontal axis in the next frame and the angle
change by the subtraction of the two angles. Then, we use the average of angle changes to
be the angle between two consecutive frames:

∆θ
t+1 =

1
n ∑

ck∈Ct∩Ct+1

(θ t+1
k −θ

t
k), (2)

where the angle change of the given vector ct
m,k from tth frame to (t +1)th frame is (θ t+1

k −
θ t

k), and we can use ∆θ t+1 to represent it. n is the number of the tracked features. If n is
extremely small, then we will set this angle change as 0◦. In above equation (2), unreliable
features usually lead to an incorrect angle estimation.

Next, in order to obtain the rotation angles of whole frames of the video, we add up all
the rotation angles before the tth frame as follows:

θ
t =

t

∑
i=1

∆θ
i, (3)

The rotation motion of the input video is known. For instance, after adding up the rotation
angles, the rotation angles between each two consecutive frames change from 0◦, 1◦, 3◦, 2◦,
3◦ to 0◦, 1◦, 4◦, 6◦, and 9◦. That is, the angle is between a frame and the first frame and the
trend of rotation is obtained.

3.4.2 Ideal Rotation Process

With the rotation angle between each frame and the first frame, we ascertain that the rotation
in a period time is clockwise or counterclockwise. We also identify the moment when the
direction of the rotation changes and the duration of rotation. To stabilize the rotation pro-
cess through this information, we first determine the moments when the direction of rotation
changes using the (θ t+1−θ t)× (θ t −θ t−1), ∀t ∈ T , where a set T is defined as those mo-
ments. If the rotation angle increases in a period time, then both (θ t+1−θ t) and (θ t −θ t−1)
are positive. Otherwise, both are negative. In another words, if the rotation direction changes,
their products will be negative.

Once the moments when rotation direction changes are identified, we check the time
interval between two adjacent moments in T to distinguish between a jitter or a rotation
turning point. If the time of a rotation direction change is very close to the last moment, then
this rotation may be a jitter. Otherwise, it is a turning point between two meaningful rotation
motions. Then, we choose two adjacent moments of the turning points. We posit that in
a meaningful rotation motion, the rotation velocity is constant. In other words, the angles
between each two adjacent frames are the same in this rotation motion and the extent of
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rotation in this rotation motion does not change. Our goal is to make the rotation angles in a
period follow an arithmetic progression. Assume that we want to change the original rotation
angles 1◦, 4◦, 3◦, 8◦, and 9◦ into 1◦, 3◦, 5◦, 7◦, and 9◦, respectively, after the stabilization.
Notice that the 3 degrees of rotation in the original rotation angle is a jitter because the
declining trend of the rotation angle is too short. We must remove the jitter in a meaningful
rotation motion. Accordingly, we calculate the ideal angle for each frame with the identified
meaningful rotation as follows:

θ̃
ti = θ

t1 +
i−1
i+1

(θ tn −θ
t1), (4)

where t1 is the beginning of the meaningful rotation and tn is the end. A total of n frames are
present in this period, and we can obtain the ith ideal rotation angle θ̃ ti easily. In addition,
θ t1 and θ tn do not change, so the extent of the ideal rotation is similar to the original.

To rotate each frame with the ideal angle, using the angle between a frame and the first
frame as well as the ideal angle between the frame and the first frame, we rotate the frame
by a degree as follows:

θ̂
t = θ̃

t −θ
t . (5)

For example, if the rotation angle at moment t is 9◦ counterclockwise but the ideal angle
at that moment is 7◦ counterclockwise, then we should rotate the frame at that moment by
2◦ clockwise (or −2◦ counterclockwise). The angle −2◦ is calculated by subtracting the
original from the ideal angle.

In order to retain video content and make the result stable, we maximally reduce the
biggest rotation angle in the video by using the following equation:

θ̄
t = θ̂

t − θ̂
tα − θ̂

tβ − θ̂ tα

2
, (6)

where tα = mint∈ f rame θ̂ t and tβ = maxt∈ f rame θ̂ t . We obtain the moments with maximum
and minimum rotation angles, and we can simplify the equation as follows:

θ̄
t = θ̂

t − θ̂ tα

2
− θ̂

tβ

2
. (7)

In this step, we obtain the frames with the biggest and the smallest rotation angles. First,
we set the smallest rotation angle to 0◦. Therefore, the biggest rotation angle becomes
(θ̂ tβ − θ̂ tα ). For instance, if the original rotation angles are between −3◦ and 7◦, after this
step, it will be between 0◦ to 10◦. Then, to minimize the rotation amplitude (that is the
biggest clockwise rotation angle equal to the biggest counterclockwise rotation angle), we

calculate the biggest rotation angle as θ̂
t
β −θ̂ tα

2 and the smallest rotation angle as −(θ̂
t
β −θ̂ tα )
2 .

In the same way, the rotation angle between 0◦ and 10◦ will become −5◦ to 5◦.
With the rotation angle of each frame, we obtain Rt , which is the rotation matrix R of

the tth frame. Then, we rotate the frame around its center. Notice that if the video input is a
stereoscopic video, we calculate the rotation angles of the video for the left and the right eyes
separately, and we can obtain the average of the two rotation angles θ̄ t =

θ̄ t
L+θ̄ t

R
2 . Therefore,

the rotation angles at tth frames are the same in the two videos, and the disparities between
the two videos can be maintained. The rotation matrix of the tth frame is formulated as the
following:

Rt =

[
cos θ̄ t −sin θ̄ t

sin θ̄ t cos θ̄ t

]
. (8)
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This rotation matrix allows us to rotate a frame easily. We rotate all the feature points in the
frame around the center of the frame by the rotation matrix as shown in Fig. 4. The features
after rotation are expressed as:

c̄t
i = Rt × (ct

i−O)+O, (9)

where O is the center of the frame and c̄t
i is the new position of the ith feature at the tth frame.

The new position of the feature point c̄t
i is the original position of the feature ct

i which rotates
around the center of the frame by the matrix. Similarly, we rotate all the vertices of the frame
as expressed by the following:

v̄t
i = Rt × (vt

i−O)+O, (10)

where the ith vertex of the tth frame vt
i rotates around the center of the frame like feature

points. The set of vertices after rotation at the tth frame is V̄ t . If the video input is a stereo-
scopic video, the vertex after the rotation of the video for the left eye v̄t,L

i will be equal to
that of the right one v̄t,R

i . Given that Rt is the same in the two videos, the relation of the two
corresponding vertices will remain unchanged and the original vertices vt,L

i will be equal to
vt,R

i . This step will not affect the parallax between the two videos. Consequently, the problem
of rotation is solved.

3.5 Trajectory Smoothing

After handling the shaky motion in rotation, we undertake the translation shake. We smooth
trajectories by using the Bézier curve. We want to reduce the shake in the original video, but
the smooth path should resemble the path of a videographer shooting. Thus, we must split
the video before smoothing. As the videographer sometimes shoots and causes shakiness
intentionally when moving the camera, we render the smooth and original paths similarly.
Our goal is to remove the shaky motion and keep the camera path as smooth as possible.
This step is necessary in most stabilization research. Many filters can handle high frequency
shakiness, such as the low-pass filter. In the study [23], a degree 2 Bézier curve can be a
smooth path of the features. We cut the trajectory according to the video content but not to
a fixed length of time such as in the study [23]. Therefore, our smooth path is more similar
to the original path. Furthermore, we use degree n Bézier curve to obtain the smooth path,
where n is decided according to the number of frames in subtrajectories.

3.5.1 Trajectory Splitting by Video Content and Smoothing

In this phase, we first cut the feature trajectory into subtrajectories. The camera’s tendency is
not always similar to a video. If we directly smooth the whole trajectory, excessive difference
from its original path may occur. Even though the camera’s main motion does not change
in a video, splitting the trajectory can still work. In this part, we find that frames with too
few tracked features are cutting points. These frames may be the moments of camera motion
change or scene change, and hence setting such frames as the cutting points is reasonable.
When the cutting points are too close, we choose only one of them as the cutting point. This
step prevents the subtrajectory from being too short and avoids unstable results. We cut the
feature trajectories with these cutting points and then smooth the subtrajectories separately.
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1 − 𝛼𝛼

Fig. 5 Combined subtrajectories. The overlapping of two subtrajectories start from ta to tn. We control the
ratio of the previous subtrajectory to the next subtrajectory by α = tb−ta

tn−ta
when connecting the two subtrajec-

tories at tb (ta ≤ tb ≤ tn). The blue line at the bottom of the figure is the previous subtrajectory and the other
blue line is the next subtrajectory. The green line is the smooth path at the junction. The default length of the
overlapping (tn− ta) is 20 frames.

Finally, we obtain the smooth trajectory by connecting the smooth subtrajectories. For each
subtrajectory, we can obtain its smooth path by using the following equation:

st
i,x =

tn

∑
m=t1

ω
m · c̄m

i , (11)

where st
i,x is ideal position at the tth frame of the xth subtrajectory in the ith trajectory. We

smooth the subtrajectory by using a Bézier curve. The feature that is generated by the afore-
mentioned rotation is used as the control point, and c̄m

i is the position of the ith trajectory
after rotation at the mth frame. The subtrajectory begins at t1 and ends at tn. The weight of
the control point c̄m

i is calculated by ωm =
( n

m−t1

)
γm−t1(1− γ)n−m+t1 , where γ = t−t1

n . The
point close to c̄t

i will have more influence on the ideal position at the tth frame. Therefore,
we can obtain a smooth path, and this path is similar to the original camera’s tendency.

We must connect the subtrajectories after smoothing. However, subtrajectories cannot
be directly connected because two smooth paths differ at the junction. Connecting directly
will suddenly change the moving direction of the feature. We split the trajectory to 20 frames
which are overlapping between two consecutive subtrajectories, and we smooth the feature
in the overlapping section to handle this problem easily. Interpolation is employed to smooth
the features in the overlapping section. We obtain the complete smooth trajectory by con-
necting the end of the previous smooth subtrajectory and the beginning of the next smooth
subtrajectory as follows:

stb
i = (1−α) · stb

i,k−1 +α · stb
i,k. (12)

The overlapping section between two subtrajectories starts at ta and ends at tn. tn is the end of
the previous smooth subtrajectory st

i,k−1 as well as the cutting point, and ta is the beginning
of the next smooth subtrajectory st

i,k. We aim to obtain the ideal position at tb (ta ≤ tb ≤ tn).
The ratio of stb

i,k−1 to stb
i,k is controlled by α = tb−ta

tn−ta
. Therefore, both the first half of the

junction and the end of the previous smooth path, as well as the second half of the junction
and the beginning of the next smooth path would be alike. After this step, the ideal position
of the ith trajectory at the tbth frame stb

i is identified (see Fig. 5).
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3.5.2 Subtrajectory Splitting by Displacement

Although we split the entire video into several clips, the camera may change its moving
direction in an individual clip. In this situation, the smooth path would differ from the orig-
inal path. We detect whether the ideal position is far from the original position and split the
subtrajectory into two parts to prevent this situation. We split the trajectory at the frame with
the less tracked feature, but we cut the subtrajectory in half here. We cut the subtrajectory
in half instead of at the point far from the original position to reduce the distance between
the ideal and original positions. Conversely, if we cut the subtrajectory at the point far from
original position, then that point would remain in the same place. We check for any ideal
position far from the origin in a subtrajectory and split the subtrajectory in half repeatedly.
Therefore, the smooth path could be similar to the original path. These kinds of subtrajecto-
ries are smoothed by a Bézier curve as before. The combined subtrajectory can be obtained
through the following:

stb
i,k = (1−α) · stb

i,k j−1
+α · stb

i,k j
. (13)

As the cutting here targets the subtrajectory, the ideal position of a subtrajectory at the tbth
frame stb

i,k is the interpolation of the position at tb from the ( j−1)th subtrajectory of the kth
subtrajectory stb

i,k j−1 and the next subtrajectory stb
i,k j

, as shown in Fig. 5.

3.5.3 Frame Translation

With the ideal position of features, we translate all the frames according to the following
equation:

∆dt =
1
n

nc

∑
i=1

(st
i− c̄t

i), (14)

where the moving direction and distance at the tth frame is ∆dt . After obtaining the ideal
position of features, we calculate ∆dt by averaging the distance between the ideal and orig-
inal positions to all features at the tth frame. The weights of features are not considered in
this step because the important features may be overfitting and the unimportant ones may be
farther from the ideal position when we optimize in the next step. Although features mov-
ing far away from the ideal position are unimportant, the intense shaking of these features
will make the result unstable. Therefore, most features become close to their ideal position
before the optimization in this step.

With the distance and direction of the movement of the frame, we translate the frame
and the translation will affect both vertices and features as follows:

ṽt
i = v̄t

i +∆dt , (15)

c̃t
i = c̄t

i +∆dt , (16)

where the vertices after rotation v̄t
i and the features after rotation c̄t

i can be moved to the new
position ṽt

i and c̃t
i with this simple translation. If the input video is a stereoscopic video, then

we must translate the two frames with the same translation to maintain the disparity between
them. Therefore, ∆dt must equal ∆dt

L+∆dt
R

2 when the input video is a stereoscopic video.
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3.6 Optimization

In this section, we are going to perform optimization for the stabilization. To render the
features after our rotation and translation close to the ideal position for producing a stable
video, we must preserve the shape of the video content to prevent excessive deformation
through the following equation:

Ω1 = ∑
p∈Pt

ωp ∑
et

i∈p

‖(Rot× e
′t
i − e

′t
1 )− (Rot× ẽt

i− ẽt
1)‖2, (17)

where ωp is the weight of a patch p as well as the weight of the object in the video. Defor-
mation of important objects is more visually obvious than the deformation of unimportant
ones. This weight ωp allows us to preserve the shape of important objects with high pri-
ority. Then, we segment a frame into many patches by the initial objects in this frame. A

patch is a set of many edges (et =

[
et

x
et

y

]
). Suppose that the edge is between vt

a and vt
b, then

(et
x = vt

ax − vt
bx
) and (et

y = vt
ay − vt

by
). As the frame has been rotated and translated in the

previous process, the edge ẽ here is also an edge after rotation and translation between the
vertices and after rotation and translation ṽt . Rot is a rotation matrix defined according to
the relation between the ith edge ẽi and the first edge ẽ1. That is, the relation between two
edges must be perpendicular or parallel because of quad mesh system. Thus, Rot must be[

1 0
0 1

]
or

[
0 −1
1 0

]
. We only have to check whether (ei · e1) is 0 or not to obtain the matrix

Rot, and then make (Rot× et
i) and et

1 are parallel.
To achieve a stable result, the aforementioned features should be close to the ideal posi-

tion as shown in the following equation:

Ω2 = ∑
ci∈Ct

ωci‖c
′t
i − st

i‖2, (18)

where ωci is the weight of the feature ct
i . We classify the features into groups at the begin-

ning, and the importance of an object is a constant in the video. Therefore, the feature ci has
the same weight ωci at any time. This energy term allows us to render the important features
close to their ideal position. To make important features with high weights close to the ideal
position is more significant than doing so for unimportant features. In other words, the shaky
motion of an important object is more visually obvious, so stabilizing the important objects
rather than the unimportant ones is more critical.

Although an energy term allows us to preserve the shape of objects, unimportant objects
may be deformed and the features of such objects with low weights may be farther from
their ideal position and original position when smoothing the features and retaining object
shape. However, the heavy deformation of objects will lead to unsatisfactory results even for
an unimportant object. Moreover, the distance of the features between the original and ideal
position would differ even when they are found in the same object. For these reasons, we
must render the features close to their original position by using the energy term as follows:

Ω3 = ∑
ci∈Ct

ωci‖c
′t
i − c̃t

i‖2. (19)

Given the translation in the previous part, the video is more stable than the original. Fea-
tures close to their original positions can preserve the shape of objects and the result is still
stabilized. We solve this energy term with barycentric coordinates as well.
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If a stereoscopic video must be stabilized, maintaining the disparity between the videos
for the left and right eyes is necessary. The method in this study is formulated as the follow-
ing equation:

Ω4 =
nv

∑
i=1
‖(v

′t,R
i − v

′t,L
i )− (ṽt,R

i − ṽt,L
i )‖2. (20)

As the disparity is maintained in the previous parts of rotation and translation, we can pre-
serve the disparity easily in this part by keeping the distance of the corresponding vertices
between two frames. v

′t,R
i is the ith vertex at the tth frame of video for the right eye, and v

′t,L
i

is the ith vertex at the tth frame of video for the left eye. The corresponding vertices after
rotation and translation are ṽt,R

i and ṽt,L
i . This energy term allows us to maintain the disparity

which is similar to that of the input video.
The last constraint is a hard constraint. It aims to ensure that the meshes will not flip

after optimization:
v
′
bx
− v

′
ax > 0, ∀ v ∈ gi, (21)

v
′
cx − v

′
dx
> 0, ∀ v ∈ gi, (22)

v
′
dy
− v

′
ay > 0, ∀ v ∈ gi, (23)

v
′
cy − v

′
by
> 0, ∀ v ∈ gi, (24)

where the vertices in one grid g are a, b, c, and d in clockwise order from the top left corner
to the bottom left corner. To make sure the top right corner is at the right side of the top left
corner after optimization, we design the constraint v

′
bx
− v

′
ax > 0, ∀ v ∈ gi. It also works on

the other edges.
To minimize the objective function, we must determine which vertices can achieve it

through the following equation:

Ω = ω1Ω1 +ω2Ω2 +ω3Ω3 +ω4Ω4, (25)

where ω represents the weights of energy terms. In this study, we set ω1 = 10, ω2 = 0.1,
ω3 = 1, and ω4 = 1, and the result can minimize the objective function frame by frame.

3.7 Video Clipping

In order to make sure that valid information is obtained after the previous processes, we
re-determine the boundary of the video with clipping window covers. The new boundary of
the clipping window is determined as follows:

Le f t = max
t

max
vi∈le f t boundary

V t
ix , (26)

Rright = min
t

max
vi∈ri f ht boundary

V t
ix , (27)

Top = max
t

max
vi∈top boundary

V t
iy , (28)

Bottom = min
t

max
vi∈bottom boundary

V t
iy . (29)

That is, we set the rightmost point of the left boundary in all frames to the left boundary
clipping window. Similarly, the right boundary clipping window is set by the leftmost point
of the right boundary in all frames. We obtain the other boundaries in the same way. The
clipping window allows us to ensure valid information in the video as shown in Fig. 6.
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Fig. 6 Clipping window boundary. We identify the rightmost left boundary, the leftmost right boundary, the
topmost bottom boundary, and the lowest top boundary of all frames as the boundaries of the clipping window.

4 Experimental Results and Discussion

Our algorithm was implemented and tested on a desktop PC with 1.05 GHz GPU and 4
GB RAM. For a (640×360) resolution stereoscopic video with 135 frames, the average
time for preprocessing (video segmentation, saliency detection, feature tracking), ideal ro-
tation estimation, optimization, and clipping are 1351.23, 5.06, 157.61, and 0.01 seconds,
respectively. For a fair comparison, most shaky videos used in the related works were tested
in our experiments. In addition, we also use our stereoscopic camera to obtain more shaky
stereoscopic videos. Those various videos including strong occlusions (Cases 1 and 2 in
Fig. 7), dynamic backgrounds (Cases 1 and 3-8 in Fig. 7) and parallax effects (Cases 5-8 in
Fig. 7) were tested for representing the usefulness of the proposed method. Figs. 7-11 and
supplemental videos show more results and comparisons.
Effectiveness. Several tests were conducted for discussing the effects of rotation adjust-
ment, translation smoothing, and disparity maintenance. To demonstrate the feasibility of
the rotation adjustment, stabilizing with and without rotation process was tested as shown in
Fig. 8. The rotation angles between consecutive frames become more smooth and the rota-
tion velocity is reduced. Fig. 9 reveals the usability of trajectory cutting or not in translation
smoothing. The smooth path with trajectory cutting is more similar to the original path. In
addition, if we smooth the videos for each eye separately, the disparity between left and
right videos will be erroneous. Therefore, a quantitative analysis was conducted to evaluate
the disparity preservation of our results, as follows:

Derr =
1

N f

N f

∑
i=1
‖(SL

i −SR
i )− (S̃L

i − S̃R
i )‖, (30)

where Derr is the average difference of source feature pairs and that of stabilized feature
pairs. (SL

i −SR
i ) denotes the ith feature pair in source frames, and (S̃L

i − S̃R
i ) denotes the ith

feature pair in stabilized results. N f represents the total number of feature pairs. From Fig.
10, the difference Derr between feature pairs of source and result in each frame is minimized.
Comparisons. In this part, we compare our results with those of other studies, mainly [23]
and [15], as shown in Table 1. The execution time of our system is longer than other methods.
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Case 1

Case 2

Inputs

Our results

Inputs

Our results

Case 3
Inputs

Our results

Case 4
Inputs

Our results

Case 5
Inputs

Our results

Case 6
Inputs

Our results

Case 7
Inputs

Our results

Case 8
Inputs

Our results

Fig. 7 Results of our approach. Each case includes the selected source frames and corresponding results.

The proposed method performs well in terms of shape preservation, disparity preservation,
and clipping size. In [23] and [15], a frame is prewarped as an initial guess by using ho-
mography transformation. Although such approaches can obtain good results in most cases,
the outcomes may have serious deformation given incorrect estimation of the homography
transformation. Our method can handle more videos than that in [23], [15] and achieve
stabilization. Video stabilization using homography transformation may occur unnatural de-
formation. Therefore, we adopt the rigid transformation to stabilize a video. We can stabilize
a video in a simple manner, and preserve the shape of objects and more video content (see
Fig. 11). For more comparisons, please refer to our supplementary video. Moreover, we cal-
culate the average rate of retained content of the stabilized results by using Wang et al. [23]
and our proposed method. Table 2 shows that our clipping rate is 21.3% and better than that
of [23].
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Fig. 8 Comparison between stabilizing without (top) and with (bottom) rotation adjustment.

Table 1 Comparisons with the related approaches including [23] and [15].

Stabilization effect Shape preservation Disparity preservation Clipping size Computation time
[15] Normal Normal n/a Large Medium
[23] Normal Normal n/a Medium Fast
Ours Better Better Yes Small Long

Table 2 Video content maintenance. We compare our results with the study [23] and show that our method
can keep more video contents.

Wang et al. (2013) Ours
Averagerate of retained content

for 7 videos 68.1% 78.7%

5 Conclusions, Limitation and Future Work

In this study, we propose a practical approach for video stabilization that facilitates handling
normal and stereoscopic videos. For the rotation, we developed a path that would allow the
trajectories to become similar to the path videographers want. We obtained different results
by using various rotation methods. For example, we create the result with stable rotation
which is a meaningful rotation. For the trajectory smoothing, we explored the cutting of the
trajectories according to the video content. Such approach made the smoothing path become
similar to the original path while the trajectory was smoothened. Given the energy term of
shape preservation, we maintained the shape of objects after performing stabilization. We
also maintained the disparity between the left and right eyes in processing the video, which
led to flawless 3D quality.

Our method has the following limitation. If an input video has quick rotation or trans-
lation, our system will possibly produce unsatisfactory results as shown in Fig. 12. Com-
parison with the related method [23], our method is better than their method in terms of the
shape preservation of salient objects. In addition, in the aspect of the cropping ratio, ours
is also better than their method. Nevertheless, we think that the cropping region of ours is
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Fig. 9 Comparison between translation smoothing with and without trajectory cutting. The blue line is orig-
inal video path and the orange line is the path after translation smoothing.

still large, so we treat this result as a bad result. On the other hand, the method with rotation
solving we discussed entails letting the rotational speed become the fixed value, but another
technique can produce a better effect. Moreover, the weights of the features are equal to the
importance of objects only so far. We can consider the feature weight with the length or the
stability of a feature trajectory in future research. In addition, the preprocessing methods of
this study require more time for calculation, so we will use other methods techniques instead
of them.
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Fig. 10 Comparison between stabilizing with (top) and without (bottom) disparity energy term.
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Fig. 11 Compared with the studies [23] and [15], we can maintain the shape of objects and keep more video
content.
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