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Abstract—Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them.
In this paper, we design a new framework based on exampled-based texture synthesis to enhance content-aware image retargeting.
By detecting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped.
This method enables the manipulation of textural & non-textural regions with different strategies since they have different natures. We
propose to retarget the textural regions by example-based synthesis and non-textural regions by fast multi-operator. To achieve practical
retargeting applications for general images, we develop an automatic and fast texture detection method that can detect multiple disjoint
textural regions. We adjust the saliency of the image according to the features of the textural regions. To validate the proposed method,
comparisons with state-of-the-art image retargeting techniques and a user study were conducted. Convincing visual results are shown
to demonstrate the effectiveness of the proposed method.

Index Terms—Natural image, texture detection, texture-based significance map, texture-aware synthesis
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1 INTRODUCTION

IMAGE retargeting has retained in the front rank of
most widely-used digital media processing techniques

for a long time. To adapt raw image material for a
specific use, there are often the needs of achieving a
target resolution by reducing or inserting image content.
To protect certain important areas, some methods [1]–[4]
use significance maps based on local low-level features
such as gradient, dominant colors, and entropy. How-
ever, high-level semantics also play an important role
in human’s image perception, so usually it is necessary
to better understand the content of an image to help to
choose a more feasible scheme for retargeting operation.
Moreover, as found in [5], viewers are more sensitive to
deformation than to image area loss. Therefore in some
cases it is better to summarize the content rather than
distort/warp or crop the original image [6]–[8].

Although many retargeting methods have been pro-
posed, a few noticeable and critically influencing is-
sues still endure. They are mostly related to complexity
of textural patterns in many natural images. Previous
retargeting techniques attempt to modify the image
without noticing the properties of textural regions, and
may easily result in apparent visual artifacts, such as
over-smoothing (Figs. 1(c), 2(d), 3(c)), local boundary
discontinuity (Figs. 1(c), 2(f)), content spatial structure
mismatch (Figs. 1(c), 2(d), 3(c), 3(f)), uneven distor-
tion (Figs. 1(d), 2(c), 2(e), 3(d)), over-squeezing/over-
stretching (Figs. 1(e), 2(c). 3(e)), and damage of scene
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layout (Figs. 1(f), 3(f)). The examples in Figs. 1-3 are
general and exhibit one common problem - that is, when
images contain large textural patterns, retargeting quality
could be generally affected by their complexity. Since reg-
ularity is an important high-level feature for human
texture perception [11] and texture exists in many natural
images, this problem cannot be ignored.

We propose a novel texture-aware synthesis method to
address the challenge of handling textural patterns in
image retargeting. In preprocessing, the textural regions
(T-regions) of the input image are automatically detected
based on local variation measures and each pixel in a T-
region is assigned a significance value. In the retargeting
process, the input image is first retargeted to the target
size by fast multi-operator (F-MultiOp). Then, the T-
regions are regenerated by synthesis, which arranges
sample patches with respect to the neighborhood metric
and patch position information (Figs. 1(b), 2(b), 3(b)).
The patches with higher significance values have higher
probabilities to appear in the result. With the texture-
based information and texture synthesis technique, the
proposed approach can better protect both the local
shape of the texture elements (texels) and the global
visual appearance of the T-regions than previous image
retargeting methods.

Compared with recent studies on image retargeting, the
major contributions of the proposed approach are:

• A fast and automatic method to detect the T-regions
in an image. This process makes it possible for
retargeting operation to treat the T-regions and NT-
regions (non-textural regions) with different strate-
gies.

• A novel texture saliency detection method to gen-
erate significance map in a T-region, which is based
on both color and texture features.
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(a) Orignal Image (b) Ours (c) BDS [6] (d) F-MultiOp [10] (e) PBW [4] (f) Shift-Map [11]

Fig. 1. By spatially synthesizing textural regions in (a) the input image, our method (b) can retain the remained objects without
over-smoothing ((c)), spatial structure mismatch ((c)), boundary discontinuity ((c)), uneven distortion ((d)), over-squeezing/over-
stretching ((e)), or damage of layout ((f)). Input 555× 347, output 256× 347. 65.45% users favour our result.

(a) Original Image (b) Ours (c) AAD [3] (d) BDS [6] (e) F-MultiOp [9] (f) Shift-Map [10]

Fig. 2. Most contents of the original image are textures. Input 500× 333, output 260× 333. 63.64% users favour our result.

(a) Original Image (b) Ours (c) BDS [6] (d) F-MultiOp [9] (e) PBW [4] (f) Shift-Map [10]

Fig. 3. Most contents of the original image are textures. Input 500× 332, output 250× 332. 78.18% users favour our result.

• A synthesis-enhanced image retargeting approach
is proposed to ease unpleasant visual distortions
caused by seam carving, warping or scaling to over-
all texels in T-regions. Thus, our approach can yield
better results in terms of texture element (texel)
shape and preservation of globally varying effect
compared with related approaches.

To compare with the state-of-the-art image retargeting
methods, we construct a new benchmark image set and
conduct a user study to demonstrate the effectiveness
of our framework. Different with the general RetagetMe
benchmark, the images in our dataset all contain large
and prominent textural regions.

2 RELATED WORKS

2.1 Image Retargeting
Numerous content-aware image retargeting techniques
have recently been proposed. Cropping has been widely
used to eliminate the unimportant information from
the image periphery or improve the overall composi-
tion [12]–[15]. Seam carving methods iteratively remove
a seam in the input image to preserve visually salient

content [1], [16]. A seam is a continuous path with min-
imum significance. Multi-operator algorithms combine
seam carving, homogeneous scaling and cropping to
optimally resize images [9], [17], [18]. Pritch et al. [10] in-
troduced Shift-Map that removed or added band regions
instead of scaling or stretching images. For many cases
these discrete approaches can generate pleasing results,
however, the seam removal may cause discontinuous
artifacts, and cropping is unsuitable for the case when
there are visually salient contents near the borders of
images.

Summarization-based retargeting approaches eliminate
repetitive patches instead of individual pixels and p-
reserve patch coherence between the source and target
image during retargeting [6], [19], [20]. These techniques
measure patch similarity and select patch arrangements
that fit together well to change the size of an image.
However, due to the lack of enough content information,
the major drawback of such methods is that the globally
visual effect may be discarded and some regions may be
over-smoothed when the target size is small.

Continuous retargeting methods have been realized
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(a) Some examples used in this paper (b) Some examples in the RetargetMe benchmark [5]
Fig. 4. Different with most of the images in the RetargetMe benchmark, our exemplar images all contain large textural regions.

Fig. 5. Framework of our method. Input resolution 400× 400. Target resolution 240× 210.

through image warping or mapping by using several
deformation and smoothness constraints [2], [21]–[26].
A finite element method has also been used to formu-
late image warping [27]. Recent continuous retargeting
methods focus on preserving local structures. Panozzo
et al. [3] minimize warping energy in the space of
axis-aligned deformations to avoid harmful distortions.
Chang et al. [28] couple mesh deformations with similar-
ity transforms for line features to preserve line structure
properties. Lin et al. [4] present a patch-based scheme
with an extended significance measurement to preserve
shapes of both visual salient objects and structural lines.
These approaches perform well on shape preservation of
salient objects but often over-squeeze or over-stretch the
T-regions to distort all texels.

High level image content informations are analyzed and
integrated in some recent summarization approaches.
For example, Wu et al. [7] detect the corresponding
lattice of a symmetry image region and retarget it by
trimming the lattice. Basha et al. [29] employ depth
information to maintain geometric consistence when
retargeting stereo images by seam carving. Lin et al. [30]
utilize the object correspondences in the left and right
images of a stereoscopic image in retargeting, which
allows the generation of an object-based significance
map and the consistent preservation of objects during
warping. Dong et al. [8] detect similar objects in the input
image and then use object carving to achieve a natural re-
targeting effects with minimum object saliency damage.
There also exist a few efforts to deal with textures for
better retargeting. Kim and Kim [31] exploit the higher
order statistics of the diffusion space to define a reliable
image importance map, which can better preserve the

salient object when it is located in front of a textural
background. This approach does not consider how to
preserve the visual effects of textural regions. Zhang and
Kuo [32] resize the salient and irregular regions by warp-
ing and re-synthesize the regular regions, but the method
cannot address what situations the regularity detection
algorithm works. Moreover, the synthesis algorithm they
used can only deal with isotropic textures which is not
fit for most natural images with vivid anisotropic texture
regions.

2.2 Texture Detection and Synthesis
The adaptive integration of the color and texture at-
tributes in image segmentation is one of the most inves-
tigated topics of research in computer vision (surveyed
in [33]). However, most of the image segmentation al-
gorithm do not clearly illustrate the type of each region
(textural or non-textural) in the result. Targhi et al. [34]
present a fast texture descriptor based on LU transform,
but how to determine if a pixel is texture or non-texture
according to the feature values is not discussed. Bergman
et al. [35] present an intuitive texture detection method
which is based on contrast and disorganization measure-
ments of image blocks. The method is not effective on
noisy images which tend to have decreasing contrast
and often generate many disjoint areas. Todorovic and
Ahuja [36] formulate the detection of texture subimages
as identifying modes of the pdf of region descriptors.
However, the method is not efficient (5 minutes for a
512× 512 image) for practical applications.

Texture synthesis is a general example-based methodol-
ogy for synthesizing similar phenomena [37]. However,
the basic MRF-based scheme in most existing texture
synthesis methods cannot adequately handle the global-
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(a) Original (b) RTV (c) Noisy Mask (d) SLIC (e) Smooth Mask (f) Final T-region
Fig. 6. Texture detection. (e) Mask refined by utilizing super-pixels. (f) The final T-region boundary is refined by using graphcut.

ly visual variation of texels, such as perspective appear-
ance and semantic content distribution. Feature-aware
methods [38]–[41] synthesize anisotropic textures by
analysing the size variation of texels, but these methods
only address the enlargement problem which cannot be
directly used for image retargeting applications. Wei [42]
presents inverse texture synthesis approach to generate
a smaller example from a large input texture. However,
for globally varying textures, the output quality of this
approach usually depends on the accuracy of the original
map. Therefore, if applied to normal T-region retarget-
ing, it will easily lose the globally visual variation or
damage the local content continuity of the original image
in the result.

3 RETARGETING BY SYNTHESIS

3.1 System Overview

Some standard examples studied in our work are shown
in Fig. 4(a). Different from most examples in the Retar-
getMe benchmark, our images all contain one or more
large textural regions, which bring new challenges to
image retargeting. Previous methods can well preserve
the shape of one or more salient objects in the retar-
geting results but often omit the ”background” textures
which also play important roles in most natural images.
The shape of texels and some globally visual effects of
T-regions will be easily damaged in the results. Our
method will address those problems. Fig. 5 illustrates the
framework of the proposed method. In the preprocessing
step, the input image is segmented into one or more T-
regions and one NT-region (we treat disjoint NT-regions
also as one region) by texture detection (Sect. 3.2). A
hierarchical saliency detection for texture is then per-
formed to generate a significance map for each T-region
( 3.3). The significance map of the whole image is also
adaptively adjusted according to the percentage of areas
of T-regions. Afterwards, the input image is filtered
by structure-preserving image smoothing. In the im-
age retargeting step, fast multi-operator (F-MultiOp) [9]
method is firstly used to resize the filtered input image
to the target size (Sect. 3.4). The process of retarget-
ing the smoothed image is used to guide the resizing
process of the original image in order to eliminate the
effect of textural details (Sect. 3.4). We then re-generate
the T-regions of the resulting image via the proposed
texture-aware synthesis operator, in order to maintain
the perspective variation, content diversity, as well as the
texel shapes (Sect. 3.5). Finally, we refine the boundaries

between T- and NT- regions by re-synthesizing the pixels
of the boundary areas (Sect. 3.6).

3.2 Automatic Texture Detection

The first step for our image retargeting system is to locate
the T-regions. Recently, local variation measures were
used to smooth texture and extract structures from an
image [43]–[45]. However, this kind of approaches all
can not provide the positional information of textures,
especially for most natural images which contain both
T- and NT- regions. We develop a fast texture detection
method based on the measure of relative total variation
(RTV). Given an input image, we first calculate the
windowed total variations Dx(p) (in the x direction) and
Dy(p) (in the y direction) for pixel p, as well as the
windowed inherent variations Lx(p) and Ly(p). The def-
inition and calculation of the windowed total variations
and the windowed inherent variations are described in
[44] and the supplemental material. We then calculate
the reliability of pixel p being a texture pixel as:

R(p) =
Dx(p)

Lx(p) + ε
+

Dy(p)

Ly(p) + ε
, (1)

where the division is an element wise operation. ε =
10−5 is used to avoid division by zero.

After calculating the reliability of each pixel, we use an
iterative algorithm to set a threshold RT to determine the
textural pixels. We first calculate the average reliability
RA of all the pixels and use RT = RA to separate the
pixels into two parts. The pixels which R(p) > RT are
set as textural pixels (T-pixels) and R(p) < RT as non-
textural pixels (NT-pixels). We then calculate the average
reliability of T-pixels as RTA and the one of NT-pixels as
RNTA . After that, we set the new threshold as R′T = α ·
RTA+(1.0−α)·RNTA , where α = 0.5 in all our experiments.
We update RT = R′T and repeat the above steps until
|R′T −RT | < ε.

We can get a noisy texture mask (see Fig. 6(c)) after
segmenting the original image into T-pixels and NT-
pixels. To improve the quality of the mask, we over-
segment the input image into super-pixels by SLIC [46]
(see Fig. 6(d)). A super-pixel is labeled as texture if
more than half of its pixels are labeled as texture. The
smooth texture mask (see Fig. 6(e)) is further improved
by graphcut in order to get more accurate boundaries
for T-regions. As shown in Fig. 6(f), our algorithm can
accurately detect the grassland as a T-region. Please see
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more texture detection results and the analysis of the
accuracy of the algorithm in the supplemental material.

(a) Original (b) Our Retargeting (c) Our Saliency (d) [47]

(e) [48] (f) [49] (g) [50] (h) [51]

(i) Ours by ANN (j) BDS (k) PBW (l) Shift-Map

Fig. 7. Qualitative comparison of saliency detection on a normal
image. Previous methods fail to detect the salient dark green
grass on the left-bottom. 61.82% users favour our result.

3.3 Texture-Based Significance Map Generation

Pixel significance measurements have been commonly
used in image retargeting approaches. Usually saliency
map is employed to help generate the significance map
of the input image. However, the purpose of almost all
of current saliency detection algorithms is to detect and
segment the distinct salient objects. In our framework,
we design a hierarchical mechanism to mark the visu-
ally important areas (not objects) of a texture. We first
segment the image into M patches by using the SLIC
method [46]. Since a texture usually does not contain
a distinct salient object, the saliency detection becomes
determining the patches which are visually unique from
others. Previous approaches usually use color or contrast
information to evaluate the visual difference between
pixels or patches [47], [51], but this is not effective
enough for dealing with texture images, as shown in
Fig. 7. In our approach, in order to better evaluate the
saliency of a texture, we integrate 2D Gabor filter [52]
with 4 frequencies and 6 directions to extract the texture
features of the T-regions. For each SLIC patch Ai, we
calculate the average and variance of Gabor values of
all the pixels in it and then get a 48D texture feature.
Thus, we define the visual uniqueness saliency cue of
Ai as a weighted sum of color difference and texture
difference from other patches:

Ui =

M∑
j=1

(w(Ai) · exp(
−Ds(Ai, Aj)

σ2
s

) (2)

·(‖Ci −Cj‖2 + ‖Gi −Gj‖2)),

where Ci/Cj is the average color of a patch, Gi/Gj is the
texture feature. The color feature and texture feature are
both normalized to [0, 1]. w(Ai) counts the number of T-
pixels in Ai. Patches with more T-pixels contribute high-
er visual uniqueness weights than those containing less
T-pixels. Ds(Ai, Aj) is the square of Euclidean distance
between patch centroids of Ai and Aj , and σs controls
the strength of spatial weighting. In our implementation,
we set σ2

s = 0.5 with pixel coordinates normalized to
[0, 1].

Similar as [50], we also add the location heuristic that in
many cases pixels close to a natural image center could
be salient:

Hi =
1

w(Ai)

∑
xj∈Ai

exp(−λ‖xj − xc‖2),

where xj is the coordinate of a pixel in patch Ai, and xc
is the coordinate of image center. In our experiments, we
set λ = 9 to balance the visual uniqueness and location
cues. We combine Hi with Ui to get the saliency of patch
Ai:

Si = Ui ·Hi.

For further robustness, we compute the patch-based
saliency at three scales: M = 100, 500, 1000 and average
them pixel by pixel. As shown in Fig. 8(f), we can
get a coarse saliency map by using the above patch-
based hierarchical method. Finally, we adopt an image
up-sampling method [53] to refine the coarse saliency
map and assign a saliency value to each image pixel.
We define the saliency S̃i of a pixel as a Gaussian
weighted linear combination of the saliency of its N
neighbourhoods:

S̃i =
1

Zi

N∑
j=1

exp

(
−‖ci − cj‖2 + ‖gi − gj‖2 + ‖xi − xj‖2

2σ

)
Sj ,

where ci is the pixel color, gi is the Gabor texture feature,
and xi is the pixel coordinate. We set σ = 30 in all
our experiments. Result is shown in Fig. 8(g). Similar
refinement method is used in [54], but they only consider
the color and position features.

As discussed above, previous saliency detection ap-
proaches are usually designed to highlight the salient
object(s). As shown in Fig. 8, for an image in our dataset,
previous methods either over-darken or over-highlight
most part of a T-region. They also have difficulties with
accurately detecting the visually important areas of T-
regions due to the lack of texture features. On the other
hand, the content balance will be easily damaged during
retargeting if the saliency values of T-regions are too
smaller or too larger than NT-regions, especially when
the sizes of T- and NT- regions are similar. Therefore, to
address these problems, in the saliency map of the whole
image, we replace the parts of T-regions with the saliency
maps generated by our method. For the generation of
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(a) Original (b) Retargeting (c) Color Distinctness (d) Texture Distinctness (e) Color + Texture (f) Averaged Cue Map

(g) Our final saliency (h) RC [47] (i) CAS [48] (j) SDG [49] (k) HSD [50] (l) WMP [51]
Fig. 8. Qualitative comparison of saliency detection on a pure texture image. (c), (d), (e) are calculated at Layer 2 with M = 500.

(a) Original Image (b) Saliency (c) Ours (d) HSD Saliency (e) Ours by HSD (f) BDS
Fig. 9. Comparison of retargeting results by using our saliency map and by using the one of HSD method [50]. More semantic
informations (e.g. people and yellow flowers) are kept in our result while better preserving the boundary continuity of the grassland.

(a) Original (b) Ours (c) Inverse [42] (d) Optimization [55](e) Appearance [56] (f) BDS [6]
Fig. 10. Comparison of previous normal texture synthesis methods to our method. Our method can both preserve the perspective
effect and the salient areas. Input resolution 500× 334, output resolution 260× 200. 49.09% users favour our result.

initial saliency map, we use the method in [50] if the
area of NT-region is less than 30% of the image since
this method is good at distinguishing salient objects from
complex background patterns. Otherwise, we use HSD
method [49] to generate a more balanced initial saliency
map. We use the saliency map as the significance map
for retargeting operation. In Fig. 9 we show an example
of using different saliency maps to retarget an image.
We can see that our method can highlight more visually
unique contents in the saliency map than HSD.

3.4 Initial Retargeting
As an initial retargeting operation, we first smooth the
original image by structure extraction [44]. We then use
F-MultiOp method [9] to resize the smoothed image to
the target size. The significance map is utilized to pre-
serve the important areas of both T- and NT- regions. The
operation details are recorded, including the numbers
of the three operators (i.e., seam carving, homogeneous
scaling, and cropping) and the paths of pixels used by
seam carving. Finally the original image is retargeted
by copying these operations. This scheme can efficiently
eliminate the unexpected affects of large-magnitude gra-
dients of complex texture details to seam carving. After

initial retargeting, the resized NT-region will be directly
used in the final result, but we re-generate the T-regions
by texture-aware synthesis.

3.5 Texture-Aware Synthesis for T-regions

We synthesize a T-region of the resized image by using
the original T-region as the example. However, for most
images, directly synthesizing the content by normal tex-
ture synthesis algorithms cannot generate satisfied result
or even change the semantics of the image and intro-
duce obvious boundary discontinuity. The global visual
appearance may be damaged when the resized ratio
is large. As shown in Figs. 10(c)-10(e), the perspective
characteristic no longer exists and the spatial structure
of the content is also damaged. For our texture-aware
image retargeting application, the synthesis algorithm
should preserve the globally visual appearances of the
original T-regions as well as the local continuity.

Initialization We employ patch-based synthesis frame-
work which is effective for image textures to synthesize
the resized T-regions. In our experiments, we find that a
good initialization will increase the quality of the resized
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(a) Original Image (b) Discontinuity (c) Fix discontinuity (d) AAD (e) BDS
Fig. 12. Reducing the discontinuity artifact by growing the T-region boundaries in the original image, so as to provide overlapping
regions for determining the seamless cut-path in the result. Input 500× 327, output 260× 333. 52.73% users favour our result.

results. Therefore, we use the resized T-regions generat-
ed by F-MultiOp in initial retargeting as the initial guess.
With the help of significance map during F-MultiOp,
this will effectively preserve the global visual appearance
and the visually salient areas in the result.

(a) Original Image (b) Ours with µp(c) Ours without µp

Fig. 11. The artifact of repeat patterns can be avoided by
increasing the neighborhood matching cost with a penalty co-
efficient.

Neighborhood metric The neighborhood similarity met-
ric is the core component of example-based texture
synthesis algorithms [37]. We denote Zp as the spatial
neighborhood around a sample p, which is constructed
by taking the union of all pixels within its spatial extent
defined by a user specified neighborhood size. We for-
mulate the distance metric between the neighborhoods
of two sample p and q as:

M(Zp;Zq) = µp ·(
∑
p′∈Zp

‖cp′ − cq′‖2+ω ·‖xp′−xq′‖2), (3)

where p′ runs through all pixels ∈ Zp, q′ ∈ Zq is the
spatially corresponding sample of p′, c represents the
pixel color in RGB space, and x is the local coordinate
of a sample pixel. Different from traditional texture
synthesis that usually defines the neighborhood metric
as a simple sum-of-squared of the pixel attributes (such
as colors and edges), we add the spatial information to
the neighborhood metric. The spatial item can preserve
the global appearance without causing over-smoothing
and generating obvious partial/broken objects (detailed-
ly discussed in Sect. 4). In Equation (3), µp is a penalty
coefficient which is used to avoid overusing the same
patches in the resulting image:

µp = 1 + β · tp,

where tp is number of times that patch Zp has been used
in the resulting image, β = 10 is a constant. In Fig. 11, we

can see the importance of adding µq to the neighborhood
metric in avoiding unexpected repeat patterns. Note that
for Fig. 11(c) we also did not integrate the significance
map during the initial retargeting process, so the salient
yellow trees in the middle of the original image are lost
in the result.

Optimization Therefore, given an original exemplar T-
region I, our goal is to synthesize an output O that
contains similar visual appearances to I. We formulate
this as an optimization problem via the following energy
function:

E(I;O) =
∑

p∈I,q∈O
M(Zp;Zq), (4)

where M(; ) measures the similarity between the input
exemplar I and output image O via our local neighbor-
hoods metric as defined in Equation (3). Specifically, for
each output sample q ∈ O, we find the corresponding
input sample p ∈ I with the most similar neighbor-
hood (according to Equation (3)), and sum their squared
neighborhood differences. The goal is to find an output
O with a low energy value. Furthermore, we follow the
EM-like methodology in [55] to optimize Equation (4)
because of its high quality and generality with different
boundary conditions.

We perform our synthesis process in multi-resolutions
through an iterative optimization solver. For Equa-
tion (3), we use larger ω in lower resolution to increase
the spatial constraint. This scheme helps to preserve
the global appearance during synthesis process, then we
decrease the ω value in higher resolution to avoid the
local texel repeat. In all our experiment, we use a 3-level
pyramid and within each level, from lower to higher, we
fix ω = 0.65, 0.25, 0.1.

Adaptive neighborhood matching In each iteration,
we search for the most similar input neighborhood
for each output sample and assign the exemplar patch
from the matched neighborhood to the output. This
will gradually improve the synthesis quality. During
the search step, exhaustively examining every input
sample to minimize the energy value in Equation (3) can
be computationally expensive. Previous works use K-
means [55] or K-coherence [57] to find an approximate
nearest neighborhood (ANN). These strategies can effi-
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ciently accelerate the search process. However, when the
texel diversity increases, the ANNs may not be accurate
enough to improve the neighborhood quality, which will
cause dissatisfied results (Fig. 7(i)). Therefore, we also
search for the exact nearest neighborhoods by brute-
force method over the exemplar image. Since the nearest
neighborhoods are independent from each other, we im-
plement our EM-based synthesis algorithm fully on GPU
by implementing the search in a parallel framework,
which will dramatically accelerate the search process.
Specifically, in each thread, we calculate the similarity
of two neighborhoods in the M-step and perform the
average operation for each pixel in the E-step. Moreover,
to further accelerate the neighborhood matching process,
we use an adaptive scheme to narrow the searching
domain in finer layers. Since our synthesis algorithm is
a hierarchical framework which contains three layers,
we use an adaptive scheme to gradually narrow the
searching domain. In layer 1 where the images are
processed in the lowest resolution, we search the best
patch from the whole exemplar for each patch in the
resulting image, we search for the best matching from
the whole exemplar. Then, in layer 2, for each patch in
the resulting image, we narrow the searching domain to
the 40% pixels of the exemplar around its corresponding
patch. Furthermore, we narrow the searching domain
to 20% in the finest layer. Note that in the two finer
layers, we still perform full search in the first matching
operation and narrow the domain in the latter steps.

Synthesis as a whole We synthesize the image as a
whole when most contents of the scene are textures
(usually more than 70%). The advantage of this strategy
is that it can better preserves the global visual appear-
ance and effectively reduce the object broken artifacts.
Fig. 2, 11, 18, 21, and 22 show 5 typical examples of this
class. Our results are directly generated by the synthesis
operator.

3.6 Merge of T-Regions and NT-Regions

Since we resize the T- and NT- regions by different s-
trategies, there may exist discontinuity of image contents
between them. As demonstrated in Fig. 12, the image
content on the boundary between T- and NT-regions
may be changed after synthesis. To reduce the discon-
tinuity artifact, we grow the boundary by expanding 4
pixels on both inward and outward sides. We then get
an overlapping area between the T- and NT- regions in
the resized image. Afterwards, we re-synthesize those
boundaries pixels by using the original image as the
input example. The inclusion of NT- pixels on the bound-
ary in the synthesis process helps to maintain the content
consistency. Fig. 12(b) and 12(c) compare the results
without and with fixing the discontinuity, respectively.

4 RESULTS AND DISCUSSION

We have implemented our method on a PC with Intel
Core(TM) i7 950 CPU, 3.06 GHz, 16GB RAM, and nVidia

Geforce GTX 770 GPU with 2048MB video memory. Our
T-region synthesis algorithm is fully implemented on
GPU with CUDA. The texture detection and saliency
detection are both performed in real-time. The timing
of resizing examples shown in this paper ranges from
10 seconds to 40 seconds, depending on the sizes of
the output T-regions. Specifically, during the resizing
process, the timing of initialization (image smoothing
and resizing by F-MultiOp) ranges from 5 seconds to
12 seconds; the timing of texture-aware synthesis of T-
regions ranges from 5 seconds to 28 seconds; the merge
of T-regions and NT-regions are performed in real-time.

Figs. 1, 2, 7-22 show our image retargeting results. We
perform a user study for visual comparison (detailedly
described below). For each figure, we put our result and
the results generated by some state-of-the-art methods.
We can see that our texture-aware synthesis method can
preserve the overall texture features in terms of texel
shape, perspective variation, boundary continuity, con-
tent completeness, and clarity. The perspective appear-
ance remains perspective; the shapes of texels are reason-
ably preserved, without over-squeezing/over-stretching
or uneven distortion of texels within the regions; the
boundary between T- and NT- regions is continuous;
most prominent textural contents are retained.

4.1 Textural Scene Retargeting Dataset

Although images from the RetargetMe benchmark [5]
have a large variety in their content, most of their tex-
tural regions are simple and smooth. To represent more
general situations that real world images fall into, we
construct a Textural Scene Retargeting Dataset (TSRD)
with 86 images. They all contain diversified and large
textural patterns (occupying more than 50% areas of the
whole image). These images are collected from Retar-
getMe (32 images), CSSD [50] (Fig. 9(a)) and internet.
Some images in the RetargetMe benchmark which also
contain textures are not included in TSRD because either
the T-regions are small or the textures are relatively
smooth without obvious texels (such as a still water
surface, a smooth snowfield, and a manicured lawn).
The images in the new dataset can be roughly divided
into three types: pure textures with vivid global visual
effects (Type 1), images with textures around one or
more salient objects (Type 2), images with distinct T- and
NT- regions (Type 3). For the exemplars in this paper,
Figs. 8(a), 9(a), 10(a), 18(a) and 22(a) belong to Type
1. Figs. 2(a), 11(a), 16(a), and 17(a) belong to Type 2.
Figs. 1(a), 6(a), 7(a), 11(a), 12(a), 13(a), 15(a), 19(a), 20(a)
and 21(a) belong to Type 3. The whole dataset and the
comparisons with previous state-of-the-art methods are
all shown in the supplemental material.

4.2 Comparison with previous methods

We compare our method with six state-of-the-art image
retargeting approaches, i.e., Axis-Aligned Deformation
(AAD) [3], Bi-Directional Similarity (BDS) [6], Cropping,
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(a) Original

(b) Ours (c) AAD

(d) BDS (e) Cropping

(f) F-MultiOp (g) PBW (h) Shift-Map
Fig. 13. Visual comparison. Our method better preserves the
scene layout and the perspective effect of the lavender. Perspec-
tive is lost in the cropping result. 67.27% users favour our result.

Multi-Operator (F-MultiOp [9] and MultiOp [17]), Patch-
Based Warping (PBW) [4] and Shift-Map [10]. The exper-
iments are performed on TSRD.

For AAD and PBW, we choose them for comparison
since they are two typical continuous image warping
approaches, which have been recently presented and
testified to be among the best warping methods. SV [24]
is also a good warping method which has been proved
by the test on RetargetMe benchmark. However, in [3]
the user study demonstrates that AAD is better than SV,
so we only compare our method with AAD and PBW.
The AAD results are generated with authors’ program
by using the default parameters. The PBW results are
provided by the original author. When dealing with
images in TSRD, compared to our method, the main
problem of AAD and PBW is in many cases they will
over-squeeze some contents (e.g., Figs. 1(e), 3(e), 13(c)
and 21(c)) or the salient objects (e.g., Figs. 2(c), 16(e) and
20(e)), while over-stretch the background (Figs. 15(e) and
17(e)), which makes some visually important regions to
be too small in the resulting images. In many results the
content structures of the scenes are obviously imbalance.
The main reason is because warping usually tends to
maintain as many as contents while preserving the as-
pect ratios of the areas with large energy or significance
values. In most images of TSRD, these areas are usually
the T-regions (Type 3) or the salient objects (Type 2).
Therefore, to maintain the shape of those ”important”
areas, we can find that in the results generated by AAD
or PBW, the T-regions are either overstretched (e.g.,
Fig. 17(e)) or over-squeezed (e.g., Fig. 21(c) and 22(c)).
Uneven distortion to the salient objects may also appear
if their significance values are low, such as Figs. 2(c) and
19(c). Specifically, as shown in Fig. 18(c), when the scene
is almost all constructed by textures (Type 1), all the
contents maybe be distorted if we use warping-based

methods.

Excessively blur
Spatial structure mismatch

(b) Our result (c) BDS result

Bounndary discontinuity

(a) Original image

Fig. 14. The BDS results often suffer artifacts of excessively
blur, spatial structure mismatch and boundary discontinuity.

For BDS, we choose it for comparison since it is a
synthesis-based image summarization method. The re-
sults are generated by imagestack program (http://code.
google.com/p/imagestack/). For each exemplar, we use
different parameters to generate four images and man-
ually choose the best one as the final result. At each
gradually resizing step, we set the EM iteration times as
50 and refinement interation times for each intermediate
target as 20. When dealing with the images in TSRD,
compared to our method, the main problem of BDS is
that there will be obvious boundary discontinuity, such
as the mountain in Fig. 1(c), the beach in Fig. 12(e),
the sky in Fig. 13(d), and the grassland in Fig. 19(d).
The reason is that BDS only uses color distance for
neighbourhood matching, while the integration of spatial
information in our algorithm can ensure the content
continuity. The second problem often appears in BDS
is the over-smoothing of some areas, such as the left-
bottom tulips in Fig. 1(c), the middle of the bough and
the bottom of the trunk in Fig. 2(d), and the small yellow
flowers in Fig. 15(c). We consider that it is due to the
strategy of bidirectional similarity, sometimes one area in
the resulting image is ”obliged” to be similar as multiple
areas of the original image. Our single-directional frame-
work can avoid this problem. In fact, for image retatget-
ing application, content loss is allowed. Most of the users
will be satisfied if the important contents are preserved.
Another common problem of BDS is spatial structure
mismatch of content. That is, some patches may appear
in wrong places, such as the mountain patches in the sky
of Fig. 1(c), the flowers patches in the sky of Fig. 3(c),
and the house patches in the sky of Fig. 21(d). The other
phenomenon of this problem is spatial relationship of
some contents may be wrong in the result, such as the
child and the seabirds in Fig. 16(c), and the farm cattle
and the farmer in Fig. 14(c) (the the farmer should be
above the blue line). We consider that this is also due to
the lack of spatial constraint in the synthesis algorithm.
We use Fig. 14 to show the main problems of BDS, the
two exemplars are picked from the original paper [6].
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(a) Original Image (b) Ours (c) BDS (d) F-MultiOp (e) PBW (f) Shift-Map
Fig. 15. Input resolution 500× 333. Target resolution 250× 333. 60.00% users favour our result.

(a) Original Image (b) Ours (c) BDS (d) F-MultiOp (e) PBW (f) Shift-Map
Fig. 16. Input resolution 500× 340. Target resolution 260× 340. 43.64% users favour our result.

(a) Original Image (b) Ours (c) BDS (d) F-MultiOp (e) PBW (f) Shift-Map
Fig. 17. Input resolution 500× 331. Target resolution 250× 331. 61.82% users favour our result.

(a) Original Image (b) Ours (c) AAD (d) BDS (e) F-MultiOp (f) Shift-Map
Fig. 18. Input resolution 500× 332. Target resolution 250× 332. 49.09% users favour our result.

(a) Original Image (b) Ours (c) AAD (d) BDS (e) Cropping (f) Shift-Map
Fig. 19. Input resolution 500× 333. Target resolution 260× 333. 52.73% users favour our result.

Moreover, missing a good significance map also causes
the loss of visually important contents in the results, such
as the missing of salient red flowers in Fig. 17(c) and
yellow flowers in Fig. 18(d). Our good saliency map also
makes it enough for our optimization process to only use
a single-directional neighbourhood matching since the
important areas are preserved in the initial retargeting

operation. This also efficiently accelerates the speed of
the synthesis process. In our experiments, we find that
BDS usually costs more than 20 minutes to generate a
good result, which limits its practical use in many ap-
plications. On the other hand, PatchMatch method [20]
can also perform image retargeting by synthesis. We do
not compare with PatchMatch since it shares the same
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(a) Original (b) Ours (c) Cropping (d) MultiOp (e) PBW (f) Shift-Map
Fig. 20. Input resolution 460× 300. Target resolution 230× 300. 43.64% users favour our result.

(a) Original Image (b) Ours (c) AAD (d) BDS (e) F-MultiOp (f) Shift-Map
Fig. 21. Input resolution 500× 333. Target resolution 260× 333. 52.73% users favour our result.

(a) Original Image (b) Ours (c) AAD (d) BDS (e) Cropping (f) F-MultiOp
Fig. 22. Input resolution 500× 340. Target resolution 250× 340. 45.45% users favour our result.

framework as BDS so that it can be treated as a parallel
method for image retargeting.

For Cropping, we choose it for comparison since in
most cases it is the first choice of the users during the
comparative study of [5]. On the other hand, a texture
usually appears a certain self-similarity, so maybe a
simple cropping will be enough to well summarize its
content. The results are created by an expert photog-
rapher. When dealing with images in TSRD, compared
to our method, the main problem of cropping is some
important contents will be unavoidably lost if there are
multiple important contents located near the different
sides of the input image, such as the largest sheep in
Fig. 19(e), and the trees and mountain in Fig. 20(c). Our
synthesis strategy can narrow the distance between the
important contents and make them to appear together
in the result. Moreover, as discussed in [5], cropping
should be considered as a reference, not as a proper
retargeting algorithm. Here we still decide to compare
with cropping only because sometimes it can benefit
from the self-similarity characteristic of some textures
and generate good retargeting results.
For F-MultiOp and MultiOp, we choose them for
comparison since the MultiOp framework outperform-
s most algorithms according to the comparative s-
tudy [5]. F-MultiOp method has been demonstrat-
ed in [9] that it can generate results of the sim-

ilar quality as MultiOp, so we consider these two
methods as the same in our comparison. The Mul-
tiOp results of the 32 images collected from Retar-
getMe benchmark are directly downloaded from the
AAD website (http://igl.ethz.ch/projects/retargeting/
aa-retargeting/aa-comparisons/dataset/index.html), in-
cluding the AAD results of those 32 images. The other
results are generated by using F-MultiOp, which are
all provided by the original author. When dealing with
images in TSRD, compared to our method, the main
problem of multi-operator methods is the uneven distor-
tion to objects or texels, such are the tulips in Fig. 1(d),
the tire in Fig. 2(e), the girl and flowers in 17(d), the
flowers in 18(e), the sportsman in Fig. 20(d), and the
bricks in Fig. 22(e). The main reason is although the
integration of cropping operator can somewhat avoid
the overall distortion, the unavoidable use of seam carv-
ing and homogeneous scaling operators (to protect the
similarity between original image and resulting image)
may still cause uneven distortions to objects or texels,
especially when the T-regions are distributed throughout
one dimension of the original image (see Figs. 1(a), 15(a),
and 18(a)). This problem can only be solved by using a
synthesis-based strategy. On the other hand, as shown
in Fig. 13(f), some important contents may be over-
squeezed due to the lack of a good significance map.

For Shift-Map, we choose it for comparison since some-
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(a) Original Image (b) Ours (c) AAD (d) BDS (e) MultiOp (f) Shift-Map
Fig. 23. Retargeting a general image with our method. Our method achieves a summarization-like result. The bridge, is shortened.

(a) Original Image (b) Ours (c) AAD (d) BDS (e) MultiOp (f) Shift-Map
Fig. 24. Retargeting a general image with our method. Our synthesis operator can also handle some non-textural images.

times it can generate a synthesis-like result which se-
lectively stitches some contents together to construct a
resized image. The results are partly provided by the
original author, partly generated with the authors’ online
system, and partly generated with a public implementa-
tion (https://sites.google.com/site/shimisalant/home/
image-retargeting) after the online system is taken down.
When dealing with images in TSRD, compared to our
method, the main problem of Shift-Map is that in many
cases it will unpredictably lose some important contents
(e.g., the left cherry tree in Fig. 3(f), the river in Fig. 13(h),
the child in Fig. 16(f), and the largest sheep in Fig. 19(f))
or degenerate to cropping which will damage the com-
position of the original image (e.g., the girl’s location
is too left in Fig. 17(f), and the sportsman’s location
is too right in Fig. 20(f)). The main reason is because
stitching are minimized due to the global smoothness
term. On the other hand, to get a good retargeting
result by using Shift-Map, sometimes the user need to
gradually resize the image by manually setting the num-
ber of removed columns/rows. This strategy is useful
in preserving salient objects in the resulting image but
ineffective for our images because for textures it usually
does not contain distinct long boundaries that can help
to penalize the removal of a large area. We consider
that this is just the reason that in some cases shift-map
degenerates to cropping when dealing with our images.
Another problem of shift-map method is that it may
also cause boundary discontinuity artifacts, such as the
string of the tire in Fig. 2(f), the grassland boundary in
Fig. 19(f), and the mountain boundary in Fig. 21(f).

For example-based texture synthesis, apparently the
normal texture synthesis algorithms such as texture
optimization [55] and appearance-space texture synthe-
sis [56] are not fit for image retargeting since they are
originally designed for enlargement but have no effec-
tive schemes for size decrease. Inverse texture synthesis
(ITS) [42] can produce a small texture compaction that

summarizes the original. Its framework is very similar
as BDS method so it will suffer the same problems as
BDS if being used for image retargeting. On the other
hand, the textural contents in most of our images are not
standard textures so pure texture synthesis framework
will easily cause content discontinuity or damage the
globally varying effects.

Generally speaking, as shown in Fig. 1, the joint utiliza-
tion of F-MultiOp and example-based synthesis makes
our image retargeting method to be more suited for
images with large T-regions. Specifically, the scheme
of using content-similarity-based F-MultiOp for initial
retargeting and NT-region retargeting ensures the preser-
vation of spatial structure and content layout in the
resulting image, and also avoids the boundary discon-
tinuity artifact in NT-region; the generation of texture-
based significance map makes the T- and NT-regions to
be more balanced and avoids the over-stretching or over-
squeezing of content in the resulting image; the example-
based synthesis scheme well preserves the global visual
effects especially the shape of texture elements in the
T-regions; the integration of spatial information in the
synthesis process solves the problems of spatial structure
mismatch and excessive blur which are often appear in
BDS results (see Fig. 14).

In Figs. 23 and 24, we show two examples of only using
our synthesis operator to retarget a general image which
does not contain obvious textural patterns. Results show
that our synthesis operator can also works well for some
general images. However, since our synthesis operator is
specifically designed for dealing with textural patterns,
we can not assure of synthesizing satisfied results for
arbitrary non-textural images. In fact in our framework,
the NT-region is retargeted by F-MultiOp instead of the
synthesis operator.
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4.3 User Study

To evaluate our method further, we perform a user study
to compare the results from different methods. All the
stimuli are shown in the supplemental material. A total
of 55 participants (24 males, 21 females, age range 20-45)
from different backgrounds attended the comparison of
86 sets of resized images. In the experiment, we showed
the original image, our result, and the images of the
competitors. We then ask which image the participant
prefers. For each group, the original image is separately
shown in the first row, while the results are randomly
displayed in two additional rows within the same page.
We allow the participant to choose at most two favourite
images from the results. We did not provide a time con-
straint for the decision time. However, we recommend
for the participants to finish the tests within 45 min. We
allow the participants to move back and forth across
the different pages by clicking the mouse. The average
finishing time is 35 min 27 sec. A total of 7231 votes are
reported. Fig. 25 shows the the statistics of how many
times the results of each method has been chosen as
favourite retargeting results. Based on the statistics, our
method outperforms all competitors in general. For each
test exemplar in TSRD, we show the percentages when
our method and the competitors have been chosen by the
participants in the supplemental material. Note that the
objective metric OIRA [58] can also be used for quality
comparison.

Fig. 25. The statistics of the user study result.

4.4 Limitations

The main limitation of our algorithm is the speed. Al-
though we implement our synthesis operator fully on
GPU, we still cannot get real-time performance like most
warping-based methods, especially when the T-regions
are large. Our method may generate unsatisfied results
when the texels are very large (like an object) and have
different attributes (color, shape, orientation, etc.). Fig. 26
shows such one example, the texels (a candy) are large
and visually different from each other. Therefore, we
can see that there are obvious object discontinuity in
our result. In this case, one possible way to improve
retargeting quality is to use object carving [8] to entirely
remove some objects.

(a) Original Image (b) Ours (c) Shift-Map
Fig. 26. Input resolution 456× 340. Target resolution 264× 340.

5 CONCLUSION AND FUTURE WORK

The scenes containing textural regions are very common
in natural images. However, as shown in our paper, most
of them cannot be well handled by current general image
resizing algorithms due to the lack of high level semantic
information. We introduces a novel concept and robust
method to solve the problem. An automatic methodol-
ogy is proposed to detect the textures and adjust the
saliency information. Then we use a synthesis-based
image retargeting system to achieve natural retargeting
effects with minimum texel visual appearance damage.
The integration of the spatial information ensures the
content consistency between the original image and
the result images. Our texture-aware strategy can be
integrated into most existing general image retargeting
frameworks and enhance their robustness. Experiments
show that our system can handle a great variety of
input scenes especially non-standard textural regions
(for example Fig. 11(a) is combined with many sepa-
rate textural objects). For future work, extending the
example-based synthesis operator to 3D scene resizing
can be an interesting direction.
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