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Abstract—Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them.

In this paper, we design a new framework based on exampled-based texture synthesis to enhance content-aware image retargeting.

By detecting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped.

This method enables the manipulation of textural & non-textural regions with different strategies since they have different natures. We

propose to retarget the textural regions by example-based synthesis and non-textural regions by fast multi-operator. To achieve

practical retargeting applications for general images, we develop an automatic and fast texture detection method that can detect

multiple disjoint textural regions. We adjust the saliency of the image according to the features of the textural regions. To validate the

proposed method, comparisons with state-of-the-art image retargeting techniques and a user study were conducted. Convincing visual

results are shown to demonstrate the effectiveness of the proposed method.

Index Terms—Natural image, texture detection, texture-based significance map, texture-aware synthesis
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1 INTRODUCTION

IMAGE retargeting has retained in the front rank of most
widely-used digital media processing techniques for a

long time. To adapt raw image material for a specific use,
there are often the needs of achieving a target resolution by
reducing or inserting image content. To protect certain
important areas, some methods [1], [2], [3], [4] use signifi-
cance maps based on local low-level features such as gradi-
ent, dominant colors, and entropy. However, high-level
semantics also play an important role in human’s image
perception, so usually it is necessary to better understand
the content of an image to help to choose a more feasible
scheme for retargeting operation. Moreover, as found in [5],
viewers are more sensitive to deformation than to image
area loss. Therefore in some cases it is better to summarize
the content rather than distort/warp or crop the original
image [6], [7], [8].

Although many retargeting methods have been pro-
posed, a few noticeable and critically influencing issues still
endure. They are mostly related to complexity of textural
patterns in many natural images. Previous retargeting tech-
niques attempt to modify the image without noticing the
properties of textural regions, and may easily result in
apparent visual artifacts, such as over-smoothing (Figs. 1c,
2d, 3c), local boundary discontinuity (Figs. 1c, 2f), content
spatial structure mismatch (Figs. 1c, 2d, 3c, 3f), uneven dis-
tortion (Figs. 1d, 2c, 2e, 3d), over-squeezing/over-stretching

(Figs. 1e, 2c. 3e), and damage of scene layout (Figs. 1f, 3f).
The examples in Figs. 1, 2, 3 are general and exhibit one
common problem - that is, when images contain large textural
patterns, retargeting quality could be generally affected by their
complexity. Since regularity is an important high-level fea-
ture for human texture perception [11] and texture exists in
many natural images, this problem cannot be ignored.

We propose a novel texture-aware synthesis method to
address the challenge of handling textural patterns in image
retargeting. In preprocessing, the textural regions (T-
regions) of the input image are automatically detected
based on local variation measures and each pixel in a T-
region is assigned a significance value. In the retargeting
process, the input image is first retargeted to the target size
by fast multi-operator (F-MultiOp). Then, the T-regions are
regenerated by synthesis, which arranges sample patches
with respect to the neighborhood metric and patch position
information (Figs. 1b, 2b, 3b). The patches with higher sig-
nificance values have higher probabilities to appear in the
result. With the texture-based information and texture syn-
thesis technique, the proposed approach can better protect
both the local shape of the texture elements (texels) and the
global visual appearance of the T-regions than previous
image retargeting methods.

Compared with recent studies on image retargeting, the
major contributions of the proposed approach are:

� A fast and automatic method to detect the T-regions
in an image. This process makes it possible for retar-
geting to treat the T-regions and NT-regions (non-
textural regions) with different strategies.

� A novel texture saliency detection method to gener-
ate significance map in a T-region, which is based on
both color and texture features.

� A synthesis-enhanced image retargeting approach is
proposed to ease unpleasant visual distortions
caused by seam carving, warping or scaling to over-
all texels in T-regions. Thus, our approach can yield
better results in terms of texture element (texel)
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shape and preservation of globally varying effect
compared with related approaches.

To compare with the state-of-the-art image retargeting

methods, we construct a new benchmark image set and con-

duct a user study to demonstrate the effectiveness of our

framework. Different with the general RetagetMe benchmark,

the images in our dataset all contain large and prominent tex-

tural contents.

2 RELATED WORKS

2.1 Image Retargeting

Numerous content-aware image retargeting techniques
have recently been proposed. Cropping has been widely
used to eliminate the unimportant information from the
image periphery or improve the overall composition [12],
[13]. Seam carving methods iteratively remove a seam in the
input image to preserve visually salient content [1], [14]. A
seam is a continuous path with minimum significance.
Multi-operator algorithms combine seam carving, homoge-
neous scaling and cropping to optimally resize images [9],
[15], [16]. Pritch et al. [10] introduced Shift-Map that
removed or added band regions instead of scaling or
stretching images. For many cases these discrete approaches

can generate pleasing results, however, the seam removal
may cause discontinuous artifacts, and cropping is unsuited
for the case when there are salient contents near the borders
of images.

Summarization-based retargeting approaches eliminate
repetitive patches instead of individual pixels and preserve
patch coherence between the source and target image dur-
ing retargeting [6], [17], [18]. These techniques measure
patch similarity and select patch arrangements that fit
together well to change the size of an image. However, due
to the lack of enough content information, the major draw-
back of such methods is that the globally visual effect may
be discarded and some regions may be over-smoothed
when the target size is small.

Continuous retargeting methods have been realized
through image warping or mapping by using several defor-
mation and smoothness constraints [2], [19], [20], [21], [22].
Recent continuous retargeting methods focus on preserving
local structures. Panozzo et al. [3] minimize warping energy
in the space of axis-aligned deformations (AAD) to avoid
harmful distortions. Lin et al. [4] present a patch-based
scheme with an extended significance measurement to pre-
serve shapes of both visually salient objects and structural
lines. These approaches perform well on shape preservation

Fig. 1. By synthesizing textural regions in (a) the input image, our result (b) can retain the remained contents without over-smoothing (c), spatial
structure mismatch (c), boundary discontinuity (c), uneven distortion (d), over-squeezing/over-stretching (e), or damage of scene layout (f). Input
555� 347, output 256� 347. 65:45 percent users favour our result.

Fig. 2. Most contents of the original image are textures. Input 500� 333, output 260� 333. 63:64 percent users favour our result.

Fig. 3. Most contents of the original image are textures. Input 500� 332, output 250� 332. 78:18 percent users favour our result.
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of salient objects but often over-squeeze or over-stretch the
T-regions to distort all texels.

High level image content informations are analyzed and
integrated in some recent summarization approaches. Wu
et al. [7] detect the corresponding lattice of a symmetry
image region and retarget it by trimming the lattice. Basha
et al. [23] employ depth information to maintain geometric
consistence when retargeting stereo images by seam carv-
ing. Lin et al. [24] utilize the object correspondences in the
left and right images of a stereoscopic image in retargeting.
Dong et al. [8] detect similar objects in the input image and
then use object carving to achieve a natural retargeting
effects with minimum object saliency damage. There also
exist a few efforts to deal with textures for better retarget-
ing. Kim and Kim [25] define a reliable image importance
map to preserve the salient object when it is located in front
of a textural background but do not consider how to pre-
serve the visual effects of textural regions. Zhang and Kuo
[26] resize the salient and irregular regions by warping and
re-synthesize the regular regions, but the method cannot
address what situations the regularity detection algorithm
works. Moreover, the synthesis algorithm they used can
only deal with isotropic textures which is unfit for most nat-
ural images with vivid anisotropic texture regions.

2.2 Texture Detection and Synthesis

The adaptive integration of the color and texture attributes
in image segmentation is one of the most investigated topics
of research in computer vision (surveyed in [27]). However,
most of the image segmentation algorithm do not clearly
illustrate the type of each region (textural or non-textural)
in the result. Targhi et al. [28] present a fast texture descrip-
tor based on LU transform, but how to determine if a pixel
is texture or non-texture according to the feature values is
not discussed. Bergman et al. [29] present an intuitive tex-
ture detection method which is based on contrast and disor-
ganization measurements of image blocks. The method is
not effective on noisy images which tend to have decreasing
contrast and often generate many disjoint areas. Todorovic
and Ahuja [30] formulate the detection of texture subimages
as identifying modes of the pdf of region descriptors. How-
ever, the method is not efficient (5 minutes for a 512� 512
image) for practical applications.

Texture synthesis is a general example-based methodol-
ogy for synthesizing similar phenomena [31]. However, the
basic MRF-based scheme in most existing texture synthesis
methods cannot adequately handle the globally visual vari-
ation of texels, such as perspective appearance and semantic
content distribution. Feature-aware methods [32], [33], [34],
[35] synthesize anisotropic textures by analysing the size
variation of texels, but these methods only address the

enlargement problem which cannot be directly used for
image retargeting applications. Wei et al.[36] presents
inverse texture synthesis (ITS) approach to generate a
smaller example from a large input texture. However, for
globally varying textures, the output quality of this
approach usually depends on the accuracy of the original
map. Therefore, if applied to normal T-region retargeting, it
will easily lose the globally visual variation or damage the
local content continuity of the original image in the result.

3 RETARGETING BY SYNTHESIS

3.1 System Overview

Some standard examples studied in our work are shown in
Fig. 4a. Different from most examples in the RetargetMe
benchmark, our images all contain one or more large T-
regions, which bring new challenges to image retargeting.
Previous methods can well preserve the shape of one or
more salient objects in the retargeting results but often omit
the “background” textures which also play important roles
in most natural images. The shape of texels and some glob-
ally visual effects of T-regions will be easily damaged in the
results. Our method will address those problems. Fig. 5
illustrates the framework of the proposed method. In the
preprocessing step, the input image is segmented into one
or more T-regions and one NT-region (we treat disjoint NT-
regions also as one region) by texture detection (Section
3.2). A hierarchical saliency detection for texture is then per-
formed to generate a significance map for each T-region
(Section 3.3). The significance map of the whole image is
also adaptively adjusted according to the percentage of
areas of T-regions. Afterwards, the input image is filtered
by structure-preserving image smoothing. In the image
retargeting step, fast multi-operator (F-MultiOp) [9] method
is first used to retarget the filtered input image to the target
size (Section 3.4). The process of retargeting the smoothed
image is used to guide the retargeting process of the original
image in order to eliminate the effect of textural details (Sec-
tion 3.4). We then re-generate the T-regions of the resulting
image via the proposed texture-aware synthesis operator, in
order to maintain the perspective variation, content diver-
sity, as well as the texel shapes (Section 3.5). Finally, we
refine the boundaries between T- and NT- regions by re-
synthesizing the pixels of the boundary areas (Section 3.6).

3.2 Automatic Texture Detection

The first step of our image retargeting system is to locate the
T-regions. Recently, local variation measures were used to
smooth texture and extract structures from an image [37],
[38]. However, this kind of approaches all cannot provide
the positional information of textures, especially for most

Fig. 4. Different with most of the images in the RetargetMe benchmark, our exemplar images all contain large textural regions.
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natural images which contain both T- and NT- regions. We
develop a fast texture detection method based on the mea-
sure of relative total variation (RTV). Given an input image,
we first calculate the windowed total variations D xðpÞ (in the x
direction) and D yðpÞ (in the y direction) for pixel p, as well
as the windowed inherent variations L xðpÞ and L yðpÞ. The def-
inition and calculation of the windowed total variations and
the windowed inherent variations are described in [37] and
the supplemental material. We then calculate the reliability
of pixel p being a texture pixel as:

RðpÞ ¼ D xðpÞ
L xðpÞ þ �

þ D yðpÞ
L yðpÞ þ �

;

where the division is an element wise operation. � ¼ 10�5 is
used to avoid division by zero.

After calculating the reliability of each pixel, we use an
iterative algorithm to set a threshold RT to determine the
textural pixels. We first calculate the average reliability RA

of all the pixels and use RT ¼ RA to separate the pixels into
two parts. The pixels which RðpÞ5RT are set as textural pix-
els (T-pixels) and RðpÞ < RT as non-textural pixels (NT-pix-
els). We then calculate the average reliability of T-pixels as

RT
A and the one of NT-pixels as RNT

A . After that, we set the

new threshold as R0
T ¼ a � RT

A þ ð1:0� aÞ �RNT
A , where

a ¼ 0:5 in all our experiments. We update RT ¼ R0
T and

repeat the above steps until jR0
T �RT j < �.

We can get a noisy texture mask (see Fig. 6c) after seg-
menting the original image into T-pixels and NT-pixels. To
improve the quality of the mask, we over-segment the input
image into super-pixels by SLIC [39] (see Fig. 6d). A super-
pixel is labeled as texture if more than half of its pixels are
labeled as texture. The smooth texture mask (see Fig. 6e) is
further improved by graphcut in order to get more accurate

boundaries for T-regions. As shown in Fig. 6f, our algorithm
can accurately detect the grassland as a T-region. Please see
more texture detection results and the analysis of the accu-
racy of the algorithm in the supplemental material.

3.3 Texture-Based Significance Map Generation

Pixel significance measurements have been commonly used
in image retargeting approaches. Usually saliency map is
employed to help generate the significance map of the input
image. However, the purpose of almost all of current
saliency detection algorithms is to detect and segment the
distinct salient objects. In our framework, we design a hier-
archical mechanism to mark the visually important areas
(not objects) of a texture. We first segment the image into M
patches by using the SLIC method [39]. Since a texture usu-
ally does not contain a distinct salient object, the saliency
detection becomes determining the patches which are visu-
ally unique from others. Previous approaches usually use
color or contrast information to evaluate the visual differ-
ence between pixels or patches [40], [44], but this is not
effective enough for dealing with texture images, as shown
in Fig. 7. In our approach, in order to better evaluate the
saliency of a texture, we integrate 2D Gabor filter [45] with
four frequencies and six directions to extract the texture fea-
tures of the T-regions. For each SLIC patch Ai, we calculate
the average and variance of Gabor values of all the pixels in
it and then get a 48D texture feature. Thus, we define the
visual uniqueness saliency cue of Ai as a weighted sum of
color difference and texture difference from other patches:

Ui ¼
XM
j¼1

ðwðAiÞ � exp �DsðAi;AjÞ
s2
s

� �

� ðkCi � Cjk2 þ kGi �Gjk2ÞÞ;
(1)

Fig. 5. Framework of our method. Input resolution 400� 400. Target resolution 240� 210.

Fig. 6. Texture detection. (e) Mask refined by utilizing super-pixels. (f) The final T-region boundary is refined by using graphcut.
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where Ci/Cj is the average color of a patch, Gi/Gj is the
texture feature. The color feature and texture feature are
both normalized to ½0; 1�. wðAiÞ counts the number of T-pix-
els in Ai. Patches with more T-pixels contribute higher
visual uniqueness weights than those containing less T-pix-
els. DsðAi;AjÞ is the square of Euclidean distance between
patch centroids of Ai and Aj, and ss controls the strength of

spatial weighting. In our implementation, we set s2
s ¼ 0:5

with pixel coordinates normalized to ½0; 1�.
Similar as [43], we also add the location heuristic that in

many cases pixels close to a natural image center are salient:

Hi ¼ 1

wðAiÞ
X
xj2Ai

expð��kxj � xck2Þ;

where xj is the coordinate of a pixel in patch Ai, and xc is the
coordinate of image center. In our experiments, we set � ¼ 9
to balance the visual uniqueness and location cues. We com-
bineHi with Ui to get the saliency of patch Ai:

Si ¼ Ui �Hi:

For further robustness, we compute the patch-based
saliency at three scales: M ¼ 100; 500; 1000 and average
them pixel by pixel. As shown in Fig. 8f, we can get a coarse
saliency map by using the above patch-based hierarchical
method. Finally, we adopt an image up-sampling method
[46] to refine the coarse saliency map and assign a saliency

value to each image pixel. We define the saliency ~Si of a
pixel as a Gaussian weighted linear combination of the
saliency of its N neighbourhoods:

~Si ¼ 1

Zi

XN
j¼1

exp �kci � cjk2 þ kgi � gjk2 þ kxi � xjk2
2s

 !
Sj;

where ci is the pixel color, gi is the Gabor texture feature,
and xi is the pixel coordinate. We set s ¼ 30 in all our
experiments. Similar refinement method is used in [47], but
they only consider the color and position features.

As discussed above, previous saliency detection
approaches are usually designed to highlight the salient
object(s). As shown in Fig. 8, for an image in our dataset, pre-
vious methods either over-darken or over-highlight most
part of a T-region. They also have difficulties with accurately
detecting the visually important areas of T-regions due to the
lack of texture features. On the other hand, the content bal-
ance will be easily damaged during retargeting if the
saliency values of T-regions are too smaller or too larger than
NT-regions, especially when the sizes of T- and NT- regions
are similar. Therefore, to address these problems, in the
saliency map of the whole image, we replace the parts of T-
regions with the saliency maps generated by our method.
For the generation of initial saliencymap, we use the method
in [43] if the area of NT-region is less than 30 percent of the
image since this method is good at distinguishing salient
objects from complex background patterns. Otherwise, we
use HSD method [42] to generate a more balanced initial
saliency map. We use the saliency map as the significance
map for retargeting operation. In Fig. 9 we show an example
of using different saliencymaps to retarget an image.We can
see that our method can highlight more visually unique con-
tents in the saliencymap thanHSD.

3.4 Initial Retargeting

As an initial retargeting operation, we first smooth the
original image by structure extraction [37]. We then use

Fig. 7. Qualitative comparison of saliency detection on a normal image.
Previous methods fail to detect the salient dark green grass on the left-
bottom. 61:82 percent users favour our result.

Fig. 8. Qualitative comparison of saliency detection on a pure texture image. (c), (d), (e) are calculated at Layer 2 withM ¼ 500.

1092 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 2, FEBRUARY 2016



F-MultiOp method [9] to resize the smoothed image to the
target size. The significance map is utilized to preserve the
important areas of both T- and NT- regions. The operation
details are recorded, including the numbers of the three
operators (i.e., seam carving, homogeneous scaling, and
cropping) and the paths of pixels used by seam carving.
Finally, the original image is retargeted by copying these
operations. This scheme can efficiently eliminate the unex-
pected affects of large-magnitude gradients of complex tex-
ture details to seam carving. After initial retargeting, the
resizedNT-regionwill be directly used in the final result, but
we re-generate the T-regions by texture-aware synthesis.

3.5 Texture-Aware Synthesis for T-Regions

We synthesize a T-region of the resized image by using the
original T-region as the example. However, for most
images, directly synthesizing the content by normal texture
synthesis algorithms cannot generate satisfied result or
even change the semantics of the image and introduce obvi-
ous boundary discontinuity. The global visual appearance
may be damaged when the resized ratio is large. As shown
in Figs. 10c-10e, in each image the perspective characteristic
no longer exists and the spatial structure of the content is
also damaged. For our texture-aware image retargeting
application, the synthesis algorithm should preserve the
globally visual appearances of the original T-regions as well
as the local continuity.

Initialization. We employ patch-based synthesis frame-
work which is effective for image textures to synthesize the
resized T-regions. In our experiments, we find that a good
initialization will increase the quality of the resized results.
Therefore, we use the resized T-regions generated by F-
MultiOp in initial retargeting as the initial guess. With the
help of significance map during F-MultiOp operation, this
will effectively preserve the globally visual appearance and
the visually salient areas in the result.

Neighborhood metric. The neighborhood similarity metric
is the core component of example-based texture synthesis

algorithms [31]. We denote Zp as the spatial neighborhood
around a sample p, which is constructed by taking the union
of all pixels within its spatial extent defined by a user speci-
fied neighborhood size. We formulate the distance metric
between the neighborhoods of two sample p and q as:

MðZp;ZqÞ ¼ mp �
� X

p02Zp

kcp0 � cq0 k2 þ v � kxp0 � xq0 k2
�
; (2)

where p0 runs through all pixels 2 Zp, q
0 2 Zq is the spatially

corresponding sample of p0, c represents the pixel color in
RGB space, and x is the local coordinate of a sample pixel.
Different from traditional texture synthesis that usually
defines the neighborhood metric as a simple sum-of-
squared of the pixel attributes (such as colors and edges),
we add the spatial information to the neighborhood metric.
The spatial item can preserve the global appearance without
causing over-smoothing and generating obvious partial/
broken objects (detailedly discussed in Section 4). In Equa-
tion (2), mp is a penalty coefficient which is used to avoid

overusing the same patches in the resulting image:

mp ¼ 1þ b � tp;
where tp is number of times that patch Zp has been used in
the resulting image, b ¼ 10 is a constant. In Fig. 11, we can
see the importance of adding mq to the neighborhood metric

in avoiding unexpected repeat patterns. Note that for
Fig. 11c we also did not integrate the significance map dur-
ing the initial retargeting process, so the salient yellow trees
in the middle of the original image are lost in the result.

Optimization. Therefore, given an original exemplar T-
region I , our goal is to synthesize an output O that contains
similar visual appearances to I . We formulate this as an
optimization problem via the following energy function:

EðI ;OÞ ¼
X

p2I ;q2O
MðZp;ZqÞ; (3)

Fig. 9. Comparison of retargeting results by using our saliency map and by using the one of HSD method [43]. More semantic informations (e.g., peo-
ple and yellow flowers) are kept in our result while better preserving the boundary continuity of the grassland.

Fig. 10. Comparison of previous normal texture synthesis methods to our method. Our method can both preserve the perspective effect and the
salient areas. Input resolution 500� 334, output resolution 260� 200. 49:09 percent users favour our result.
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where Mð; Þ measures the similarity between the input
exemplar I and output image O via our local neighbor-
hoods metric as defined in Equation (2). Specifically, for
each output sample q 2 O, we find the corresponding input
sample p 2 I with the most similar neighborhood (accord-
ing to Equation (2)), and sum their squared neighborhood
differences. The goal is to find an output O with a low
energy value. Furthermore, we follow the EM-like method-
ology in [48] to optimize Equation (3) because of its high
quality and generality with different boundary conditions.

We perform our synthesis process in multi-resolutions
through an iterative optimization solver. For Equation (2),
we use larger v in lower resolution to increase the spatial
constraint. This scheme helps to preserve the global appear-
ance during synthesis process, then we decrease the v value
in higher resolution to avoid the local texel repeat. In all our
experiments, we use a three-level pyramid and within each
level, from lower to higher, we fix v ¼ 0:65; 0:25; 0:1.

Adaptive neighborhood matching. In each iteration, we search
for themost similar input neighborhood for each output sam-
ple and assign the exemplar patch from the matched neigh-
borhood to the output. This will gradually improve the
synthesis quality. During the search step, exhaustively exam-
ining every input sample to minimize the energy value in
Equation (2) can be computationally expensive. Previous
works use K-means [48] or K-coherence [50] to find an
approximate nearest neighborhood (ANN). These strategies
can efficiently accelerate the search process. However, when
the texel diversity increases, the ANNs may not be accurate
enough to improve the neighborhood quality, which will
cause dissatisfied results (see Fig. 7i). Therefore, we also
search for the exact nearest neighborhoods by brute-force
method over the exemplar image. Since the nearest neighbor-
hoods are independent from each other, we implement our
EM-based synthesis algorithm fully onGPUby implementing
the search in a parallel framework, which will dramatically

accelerate the search process. Specifically, in each thread, we
calculate the similarity of two neighborhoods in the M-step
and perform the average operation for each pixel in the E-
step. Moreover, to further accelerate the neighborhood
matching process, we use an adaptive scheme to narrow the
searching domain in finer layers. Since our synthesis algo-
rithm is a hierarchical frameworkwhich contains three layers,
we use an adaptive scheme to gradually narrow the searching
domain. In layer 1 where the images are processed in the low-
est resolution, we search the best patch from the whole exem-
plar for each patch in the resulting image, we search for the
best matching from the whole exemplar. Then, in layer 2, for
each patch in the resulting image, we narrow the searching
domain to the 40 percent pixels of the exemplar around its
corresponding patch. Furthermore, we narrow the searching
domain to 20 percent in the finest layer. Note that in the two
finer layers, we still perform full search in the first matching
operation and narrow the domain in the latter steps.

Synthesis as a whole. We synthesize the image as a whole
when most contents of the scene are textures (usually more
than 70 percent). The advantage of this strategy is that it can
better preserves the global visual appearance and effectively
reduce the object broken artifacts. Fig. 2, 11, 17, 20, and 21
show five typical examples of this class. Our results are
directly generated by the synthesis operator.

3.6 Merge of T-Regions and NT-Regions

Sincewe resize the T- andNT- regions by different strategies,
there may exist discontinuity of image contents between
them. As demonstrated in Fig. 12, the image content on the
boundary between T- and NT-regions may be changed after
synthesis. To reduce the discontinuity artifact, we grow the
boundary by expanding 4 pixels on both inward and out-
ward sides. We then get an overlapping area between the T-
andNT- regions in the resized image. Afterwards, we re-syn-
thesize those boundary pixels by using the original image as
the input example. The inclusion of NT- pixels on the bound-
ary in the synthesis process helps to maintain the content
consistency. Figs. 12b and 12c compare the results without
andwith fixing the discontinuity, respectively.

4 RESULTS AND DISCUSSION

We have implemented our method on a PC with Intel Core
(TM) i7 950 CPU, 3.06 GHz, 16 GB RAM, and nVidia
Geforce GTX 770 GPU with 2048 MB video memory. Our T-
region synthesis algorithm is fully implemented on GPU
with CUDA. The texture detection and saliency detection

Fig. 11. The artifact of repeat patterns can be avoided by increasing the
neighborhood matching cost with a penalty coefficient.

Fig. 12. Reducing the discontinuity artifact by growing the T-region boundaries in the original image, so as to provide overlapping regions for deter-
mining the seamless cut-path in the result. Input 500� 327, output 260� 333. 52:73 percent users favour our result.
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are both performed in real-time. The timing of retargeting
examples shown in this paper ranges from 10 seconds to 40
seconds, depending on the sizes of the output T-regions.
Specifically, during the resizing process, the timing of ini-
tialization (image smoothing and retargeting by F-MultiOp)
ranges from 5 seconds to 12 seconds; the timing of texture-
aware synthesis of T-regions ranges from 5 seconds to 28
seconds; the merge of T-regions and NT-regions are per-
formed in real-time.

Figs. 1, 2, 7-21 show our image retargeting results.We per-
form auser study for visual comparison (detailedly described
below). For each figure, we put our result and the results gen-
erated by some state-of-the-art methods. We can see that our
texture-aware synthesis method can preserve the overall tex-
ture features in terms of texel shape, perspective variation,
boundary continuity, content completeness, and clarity. The
perspective appearance remains perspective; the shapes of
texels are reasonably preserved, without over-squeezing/
over-stretching or uneven distortion of texels within the
regions; the boundary betweenT- andNT- regions is continu-
ous; most prominent textural contents are retained.

4.1 Textural Scene Retargeting Dataset (TSRD)

Although images from the RetargetMe benchmark [5] have
a large variety in their content, most of their T-regions are
simple or not prominent. To represent more general

situations that real world images fall into, we construct a
textural scene retargeting dataset with 86 images. They all
contain diversified and large textural patterns (occupying
more than 50 percent areas of the whole image). These
images are collected from RetargetMe (32 images), CSSD
[43] (Fig. 9a) and internet. Some images in the RetargetMe
benchmark which also contain textures are not included in
TSRD because either the T-regions are small or the textures
are relatively smooth without obvious texels (such as a still
water surface, a smooth snowfield, and a manicured lawn).
The images in the new dataset can be roughly divided into
three types: pure textures with vivid global visual effects
(Type 1), images with textures around one or more salient
objects (Type 2), images with distinct T- and NT- regions
(Type 3). For the exemplars in this paper, Figs. 8a, 9a, 10a,
17a and 21a belong to Type 1. Figs. 2a, 11a, 15a, and 16a
belong to Type 2. Figs. 1a, 6a, 7a, 11a, 12a, 13a, 14a, 18a, 19a
and 20a belong to Type 3. The whole dataset and the com-
parisons with previous state-of-the-art methods are all
shown in the supplemental material.

4.2 Comparison with Previous Methods

We compare our method with six state-of-the-art image
retargeting approaches, i.e., axis-aligned deformation [3],
bi-directional similarity (BDS) [6], Cropping, Multi-Opera-
tor (F-MultiOp [9] and MultiOp [15]), patch-based warping
(PBW) [4] and Shift-Map [10]. The experiments are per-
formed on TSRD.

For AAD and PBW, we choose them for comparison since
they are two typical continuous image warping approaches,
which have been recently presented and testified to be
among the best warping methods. SV [21] is also a good
warping method which has been proved by the test on
RetargetMe benchmark. However, in [3] the user study
demonstrates that AAD is better than SV, so we only com-
pare our method with AAD and PBW. The AAD results are
generated with authors’ program by using the default
parameters. The PBW results are provided by the original
author. When dealing with images in TSRD, compared to
our method, the main problem of AAD and PBW is in many
cases they will over-squeeze some contents (e.g., Figs. 1e,
3e, 13c and 20c) or the salient objects (e.g., Figs. 2c, 15e and
19e), while over-stretch the background (Figs. 14e and 16e),
which makes some visually important regions to be too
small in the resulting images. In many results the content
structures of the scenes are obviously imbalance. The main
reason is because warping usually tends to maintain as
many as contents while preserving the aspect ratios of the
areas with large energy or significance values. In most

Fig. 13. Visual comparison. Our method better preserves the scene lay-
out and the perspective effect of the lavender. Perspective is lost in the
cropping result. 67:27 percent users favour our result.

Fig. 14. Input resolution 500� 333. Target resolution 250� 333. 60:00 percent users favour our result.
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images of TSRD, these areas are usually the T-regions (Type
3) or the salient objects (Type 2). Therefore, to maintain the
shape of those “important” areas, we can find that in the
results generated by AAD or PBW, the T-regions are either
overstretched (e.g., Fig. 16e) or over-squeezed (e.g.,
Figs. 20c and 21c). Uneven distortion to the salient objects
may also appear if their significance values are low, such
as Figs. 2c and 18c. Specifically, as shown in Fig. 17c, when
the scene is almost all constructed by textures (Type 1), all
the contents maybe be distorted if we use warping-based
methods.

For cropping, we choose it for comparison since in most
cases it is the first choice of the users during the compara-
tive study of [5]. On the other hand, a texture usually
appears a certain self-similarity, so maybe a simple crop-
ping will be enough to well summarize its content. The
results are created by an expert photographer. When deal-
ing with images in TSRD, compared to our method, the
main problem of cropping is some important contents will
be unavoidably lost if there are multiple important contents
located near the different sides of the input image, such as
the largest sheep in Fig. 18e, and the trees and mountain in
Fig. 19c. Our synthesis strategy can narrow the distance
between the important contents and make them to appear
together in the result. Moreover, as discussed in [5], crop-
ping should be considered as a reference, not as a proper
retargeting algorithm. Here we still decide to compare with
cropping only because sometimes it can benefit from the

self-similarity characteristic of some textures and generate
good retargeting results.

For BDS, we choose it for comparison since it is a syn-
thesis-based image summarization method. The results
are generated by imagestack program (http://code.
google.com/p/imagestack/). For each exemplar, we use
different parameters to generate four images and manu-
ally choose the best one as the final result. At each gradu-
ally resizing step, we set the EM iteration times as 50 and
refinement interation times for each intermediate target as
20. When dealing with the images in TSRD, compared to
our method, the main problem of BDS is that there will be
obvious boundary discontinuity, such as the mountain in
Fig. 1c, the beach in Fig. 12e, the sky in Fig. 13d, and the
grassland in Fig. 18d. The reason is that BDS only uses
color distance for neighbourhood matching, while the inte-
gration of spatial information in our algorithm can ensure
the content continuity. The second problem often appears
in BDS is the over-smoothing of some areas, such as the
left-bottom tulips in Fig. 1c, the middle of the bough and
the bottom of the trunk in Fig. 2d, and the small yellow
flowers in Fig. 14c. We consider that it is due to the strat-
egy of bidirectional similarity, sometimes one area in the
resulting image is “obliged” to be similar as multiple areas
of the original image. Our single-directional framework
can avoid this problem. In fact, for image retargeting
application, content loss is allowed, most of the users will
be satisfied if the important contents are preserved.

Fig. 15. Input resolution 500� 340. Target resolution 260� 340. 43:64 percent users favour our result.

Fig. 16. Input resolution 500� 331. Target resolution 250� 331. 61:82 percent users favour our result.

Fig. 17. Input resolution 500� 332. Target resolution 250� 332. 49:09 percent users favour our result.
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Another common problem of BDS is spatial structure mis-
match of content. That is, some patches may appear in
wrong places, such as the mountain patches in the sky of
Fig. 1c, the flowers patches in the sky of Fig. 3c, and the
house patches in the sky of Fig. 20d. The other phenome-
non of this problem is spatial relationship of some contents
may be wrong in the result, such as the child and the sea-
birds in Fig. 15c, and the farm cattle and the farmer in
Fig. 22c (the the farmer should be above the blue line). We
consider that this is also due to the lack of spatial con-
straint in the synthesis algorithm. We use Fig. 22 to show
the main problems of BDS, the two exemplars are picked
from the original paper [6]. Moreover, missing a good sig-
nificance map also causes the loss of visually important
contents in the results, such as the missing of salient red
flowers in Fig. 16c and yellow flowers in Fig. 17d. Our
good saliency map also makes it enough for our optimiza-
tion process to only use a single-directional neighbour-
hood matching since the important areas are preserved in
the initial retargeting operation. This also efficiently accel-
erates the speed of the synthesis process. In our experi-
ments, we find that BDS usually costs more than 20
minutes to generate a good result, which limits its practical
use in many applications. On the other hand, PatchMatch
method [18] can also perform image retargeting by synthe-
sis. We do not compare with PatchMatch since it shares
the same framework as BDS so that it can be treated as a
parallel method for image retargeting.

For F-MultiOp and MultiOp, we choose them for compari-
son since the MultiOp framework outperforms most algo-
rithms according to the comparative study [5]. F-MultiOp
method has been demonstrated in [9] that it can generate
results of the similar quality as MultiOp, so we consider
these two methods as the same in our comparison. The
MultiOp results of the 32 images collected from RetargetMe
benchmark are directly downloaded from the AAD website
(http://igl.ethz.ch/projects/retargeting/aa-retargeting/aa-
comparisons/dataset/index.html), including the AAD
results of those 32 images. The other results are generated by
using F-MultiOp, which are all provided by the original
author. When dealing with images in TSRD, compared to
our method, the main problem of multi-operator methods is
the uneven distortion to objects or texels, such are the tulips
in Fig. 1d, the tire in Fig. 2e, the girl and flowers in Fig. 16d,
the flowers in Fig. 17e, the sportsman in Fig. 19d, and the
bricks in Fig. 21f. Themain reason is although the integration
of cropping operator can somewhat avoid the overall distor-
tion, the unavoidable use of seam carving and homogeneous
scaling operators (to protect the similarity between original
image and resulting image) may still cause uneven distor-
tions to objects or texels, especially when the T-regions are
distributed throughout one dimension of the original image
(see Figs. 1a, 14a, and 17a). This problem can only be solved
by using a synthesis-based strategy. On the other hand, as
shown in Fig. 13f, some important contents may be over-
squeezed due to the lack of a good significancemap.

Fig. 18. Input resolution 500� 333. Target resolution 260� 333. 52:73 percent users favour our result.

Fig. 19. Input resolution 460� 300. Target resolution 230� 300. 43:64 percent users favour our result.

Fig. 20. Input resolution 500� 333. Target resolution 260� 333. 52:73 percent users favour our result.
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For Shift-Map, we choose it for comparison since some-
times it can generate a synthesis-like result which selectively
stitches some contents together to construct a resized image.
The results are partly provided by the original author, partly
generated with the authors’ online system, and partly gener-
ated with a public implementation (https://sites.google.
com/site/shimisalant/home/image-retargeting) after the
online system is taken down. When dealing with images in
TSRD, compared to our method, the main problem of Shift-
Map is that in many cases it will unpredictably lose some
important contents (e.g., the left cherry tree in Fig. 3f, the
river in Fig. 13h, the child in Fig. 15f, and the largest sheep in
Fig. 18f) or degenerate to cropping which will damage the
composition of the original image (e.g., the girl’s location is
too left in Fig. 16f, and the sportsman’s location is too right in
Fig. 19f). The main reason is because stitching are minimized
due to the global smoothness term. On the other hand, to get
a good retargeting result by using Shift-Map, sometimes the
user need to gradually resize the image by manually setting
the number of removed columns/rows. This strategy is use-
ful in preserving salient objects in the resulting image but
ineffective for our images because for textures it usually
does not contain distinct long boundaries that can help to
penalize the removal of a large area. We consider that this is
just the reason that in some cases shift-map degenerates to
cropping when dealing with our images. Another problem
of shift-map method is that it may also cause boundary dis-
continuity artifacts, such as the string of the tire in Fig. 2f, the
grassland boundary in Fig. 18f, and the mountain boundary
in Fig. 20f.

For example-based texture synthesis, apparently the normal
texture synthesis algorithms such as texture optimization

[48] and appearance-space texture synthesis [49] are not fit
for image retargeting since they are originally designed for
enlargement but have no effective schemes for size
decrease. Inverse texture synthesis [36] can produce a small
texture compaction that summarizes the original. Its frame-
work is very similar as BDS method so it will suffer the
same problems as BDS if being used for image retargeting.
On the other hand, the textural contents in most of our
images are not standard textures so pure texture synthesis
framework will easily cause content discontinuity or dam-
age the globally varying effects.

Generally speaking, as shown in Fig. 1, the joint utiliza-
tion of F-MultiOp and example-based synthesis makes
our image retargeting method to be more suited for
images with large T-regions. Specifically, the scheme of
using content-similarity-based F-MultiOp for initial retar-
geting and NT-region retargeting ensures the preserva-
tion of spatial structure and content layout in the
resulting image, and also avoids the boundary disconti-
nuity artifact in NT-region; the generation of texture-
based significance map makes the T- and NT-regions to
be more balanced and avoids the over-stretching or over-
squeezing of content in the resulting image; the example-
based synthesis scheme well preserves the global visual
effects especially the shape of texture elements in the T-
regions; the integration of spatial information in the syn-
thesis process solves the problems of spatial structure
mismatch and excessive blur which are often appear in
BDS [6] results (see Fig. 22).

In Figs. 23 and 24, we show two examples of only
using our synthesis operator to retarget a general image
which does not contain obvious textural patterns. Results
show that our synthesis operator can also works well for
some general images. However, since our synthesis oper-
ator is specifically designed for dealing with textural pat-
terns, we can not assure of synthesizing satisfied results
for arbitrary non-textural images. In fact in our frame-
work, the NT-region is retargeted by F-MultiOp instead
of the synthesis operator.

4.3 User Study

To evaluate our method further, we perform a user study
to compare the results from different methods. All the
stimuli are shown in the supplemental material. A total of
55 participants (24 males, 21 females, age range 20-45)
from different backgrounds attended the comparison of 86
sets of resized images. In the experiment, we showed the
original image, our result, and the images of the competi-
tors. We then ask which image the participant prefers. For

Fig. 21. Input resolution 500� 340. Target resolution 250� 340. 45:45 percent users favour our result.

Fig. 22. The BDS results often suffer artifacts of excessively blur, spatial
structure mismatch and boundary discontinuity.
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each group, the original image is separately shown in the
first row, while the results are randomly displayed in two
additional rows within the same page. We allow the par-
ticipant to choose at most two favourite images from the
results. We did not provide a time constraint for the deci-
sion time. However, we recommend for the participants to
finish the tests within 45 min. We allow the participants to
move back and forth across the different pages by clicking
the mouse. The average finishing time is 35 min 27 sec. A
total of 7,231 votes are reported. Fig. 25 shows the the sta-
tistics of how many times the results of each method has
been chosen as favourite retargeting results. Based on the
statistics, our method outperforms all competitors in gen-
eral. For each test exemplar in TSRD, we show the percen-
tages when our method and the competitors have been
chosen by the participants in the supplemental material.
Note that the objective metric OIRA [51] can also be used
for quality comparison.

4.4 Limitations

The main limitation of our algorithm is the speed.
Although we implement our synthesis operator fully on
GPU, we still cannot get real-time performance like most
warping-based methods, especially when the T-regions
are large. Our method may generate unsatisfied results
when the texels are very large (like an object) and have
different attributes (color, shape, orientation, etc.).

Fig. 26 shows such one example, the texels (a candy) are
large and visually different from each other. Therefore,
we can see that there are obvious object discontinuity in
our result. In this case, one possible way to improve
retargeting quality is to use object carving [8] to entirely
remove some objects.

5 CONCLUSION AND FUTURE WORK

The scenes containing textural regions are very common
in natural images. However, as shown in our paper,
most of them cannot be well handled by current general
image resizing algorithms due to the lack of high level
semantic information. We introduces a novel concept
and robust method to solve the problem. An automatic
methodology is proposed to detect the textures and
adjust the saliency information. Then we use a synthesis-
based image retargeting system to achieve natural retar-
geting effects with minimum texel visual appearance
damage. The integration of the spatial information
ensures the content consistency between the original
image and the result images. Our texture-aware strategy
can be integrated into most existing general image retar-
geting frameworks and enhance their robustness. Experi-
ments show that our system can handle a great variety
of input scenes especially non-standard textural regions
(for example Fig. 11a is combined with many separate
textural objects). For future work, extending the exam-
ple-based synthesis operator to 3D scene resizing can be
an interesting direction.

Fig. 23. Input resolution 500� 334. Target resolution 250� 334. 34:55 percent users favour our result.

Fig. 24. Retargeting a general image with our method. Our synthesis operator can also handle some non-textural images.

Fig. 25. The statistics of the user study result. Fig. 26. Input resolution 456� 340. Target resolution 264� 340.
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