Image Retargeting by Content-Aware Synthesis: **Supplemental Materials**

Weiming Dong Member, IEEE, Fuzhang Wu, Yan Kong, Xing Mei Member, IEEE, Tong-Yee Lee Senior Member, IEEE, and Xiaopeng Zhang, Member, IEEE

1 **EVALUATION OF TEXTURE DETECTION**

In order to demonstrate the efficiency of our automatic texture detection algorithm, we manually masked the textural regions of the images in our dateset TSRD as the ground truth. Furthermore, we implemented the method of [1] and compared it with ours. However, the method in [1] does not clearly indicate how to judge whether a pixel belongs to a textural region or not according to the feature values of LU transform. Since the recall rate is more important in our image retargeting application, we choose a threshold which minimizes the difference of the recall rate and compare the precision between the two methods. It has been proved that our method has more advantages in terms of precision. As calculated in our experiments, the precision and recall rate of our method is 86.52% and 91.67%, the ones of [1] are 76.48%and 86.35%.

2 **MORE IMAGE RESIZING RESULTS 1**

In Figs. 1 and 2, we show two retargeting examples by using inverse texture synthesis [2], apparently this method is not fit for image retargeting operation. From Fig. 3 to Fig. 88, we show all the stimuli and statistics of our user study as well as the results of texture detection and saliency detection. The original images of Figs. 57-88 are picked from the RetargetMe benchmark [3]. From Fig. 89 to Fig. 91, we show examples of image enlargement by using our synthesis operator to generate the textural regions in the result. Note that for image enlargement, we also use F-MultiOp for initialization and then re-synthesis the T-regions.

3 **MORE IMAGE RESIZING RESULTS 2**

From Fig. 92 to Fig. 138, we show some retargeting results generated by our method and the other six state-ofthe-art image retargeting methods. The original images are

(b) ITS [2]

(a) Original Image

(a) Original Image

Fig. 2. Retargeting by inverse texture synthesis method.

all selected from the RetagetMe benchmark [3]. Since these original images do not contain any textures or prominent textural regions (e.g., the T-regions are small or there is no obvious textural elements in the T-regions), for most of them our method degenerate to the fast multi-operators method [4] during the retargeting process. We can see that the quality of our results is comparable with the state-of-the-art image retargeting methods. However, it is difficult to use these examples to show the advantages of our method due to the lack of prominent textural regions.

MORE SALIENCY DETECTION RESULTS 4

In Figs. 139, 140, and 141, we show three more saliency detection results of texture images. We can see that our algorithm can better mark the visually important areas of a texture image, especially the non-object areas.

Weiming Dong, Fuzhang Wu, Yan Kong, Xing Mei and Xiaopeng Zhang are with NLPR-LIAMA, Institute of Automation, Chinese Academy of Sciences, Beijing, China. E-mail: {Weiming.Dong, Xiaopeng.Zhang}@ia.ac.cn.

Tong-Yee Lee is with National Cheng-Kung University, Taiwan. E-mail: tonylee@mail.ncku.edu.tw.

5 DEFINITION OF WINDOWED TOTAL MEA-SURES

In our automatic texture detection algorithm, we use a general pixel-wise *windowed total variation* measure [5], which is written as:

$$\mathcal{D}_x(p) = \sum_{q \in R(p)} g_{p,q} \cdot |(\partial_x S)_q|,$$

$$\mathcal{D}_y(p) = \sum_{q \in R(p)} g_{p,q} \cdot |(\partial_y S)_q|,$$
 (1)

where q belongs to R(p), the rectangular region centered at pixel p. $\mathscr{D}_x(p)$ and $\mathscr{D}_y(p)$ are windowed total variations in the x and y directions for pixel p, which count the absolute spatial difference within the window R(p). $g_{p,q}$ is a weighting function defined according to spatial affinity, expressed as

$$g_{p,g} \propto \exp\left(-\frac{(x_p - x_q)^2 + (y_p - y_q)^2}{2\sigma^2}\right),$$
 (2)

where σ controls the spatial scale of the window. In an image with salient textures, both the detail and structure pixels yield large \mathcal{D} , which indicates that the *windowed total variation* is responsive to visual saliency.

To help distinguish prominent structures from the texture elements, besides \mathcal{D} , the *windowed inherent variation* is also used

$$\mathcal{L}_{x}(p) = |\sum_{q \in R(p)} g_{p,q} \cdot (\partial_{x}S)_{q}|,$$
$$\mathcal{L}_{y}(p) = |\sum_{q \in R(p)} g_{p,q} \cdot (\partial_{y}S)_{q}|.$$
(3)

 \mathscr{L} captures the overall spatial variation. Different from the expression in Eq. (1), it does not incorporate the modulus. So the sum of ∂S depends on whether the gradients in a window are coincident or not, in terms of their directions, because ∂S for one pixel could be either positive or negative.

REFERENCES

- A. T. Targhi, M. Björkman, E. Hayman, and J.-O. Eklundh, "Realtime texture detection using the lu-transform," in ECCV Workshop on Computation Intensive Methods for Computer Vision, Austria, 2006.
- [2] L.-Y. Wei, J. Han, K. Zhou, H. Bao, B. Guo, and H.-Y. Shum, "Inverse texture synthesis," ACM Trans. Graph., vol. 27, no. 3, pp. 52:1–52:10, 2008.
- [3] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir, "A comparative study of image retargeting," ACM Trans. Graph., vol. 29, no. 6, pp. 160:1–160:10, 2010.
- [4] W. Dong, G. Bao, X. Zhang, and J.-C. Paul, "Fast multi-operator image resizing and evaluation," *Journal of Computer Science and Technology*, vol. 27, no. 1, pp. 121–134, 2012.
- [5] L. Xu, Q. Yan, Y. Xia, and J. Jia, "Structure extraction from texture via relative total variation," ACM Trans. Graph., vol. 31, no. 6, pp. 139:1– 139:10, Nov. 2012.
- [6] D. Panozzo, O. Weber, and O. Sorkine, "Robust image retargeting via axis-aligned deformation," *Computer Graphics Forum*, vol. 31, no. 2, 2012.

- [7] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani, "Summarizing visual data using bidirectional similarity," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2008, pp. 1–8.
- [8] S.-S. Lin, I.-C. Yeh, C.-H. Lin, and T.-Y. Lee, "Patch-based image warping for content-aware retargeting," *IEEE Transactions on Multimedia*, vol. 15, no. 2, pp. 359–368, 2013.
- [9] Y. Pritch, E. Kav-Venaki, and S. Peleg, "Shift-map image editing," in *IEEE International Conference on Computer Vision (ICCV)*, 2009, pp. 151–158.
- [10] M. Rubinstein, A. Shamir, and S. Avidan, "Multi-operator media retargeting," ACM Trans. Graph., vol. 28, no. 3, pp. 23:1–23:12, 2009.
- [11] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross, "A system for retargeting of streaming video," ACM Trans. Graph., vol. 28, no. 5, pp. 126:1–126:10, 2009.
- [12] M.-M. Cheng, G.-X. Zhang, N. Mitra, X. Huang, and S.-M. Hu, "Global contrast based salient region detection," in *IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), june 2011, pp. 409 –416.
- [13] S. Goferman, L. Zelnik-Manor, and A. Tal, "Context-aware saliency detection," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 34, no. 10, pp. 1915–1926, Oct. 2012.
- [14] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, "Saliency detection via graph-based manifold ranking," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2013, pp. 3166–3173.
- [15] Q. Yan, L. Xu, J. Shi, and J. Jia, "Hierarchical saliency detection," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1155–1162.
- [16] R. Margolin, A. Tal, and L. Zelnik-Manor, "What makes a patch distinct?" in *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR), 2013, pp. 1139–1146.

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 3. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 1

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 3	$\mathbf{78.18\%}$	7.27%	9.09%	12.73%	30.91%	5.45%	0.00%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 4. Input resolution is 500×375 , output resolution is 280×360 .

TABLE 2

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 4	45.45%	12.73%	25.45%	29.09%	21.82%	20.00%	1.82%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 5. Input resolution is $456\times 340,$ output resolution is $264\times 340.$

TABLE 3

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 5	$\mathbf{29.09\%}$	5.45%	5.45%	23.64%	10.91%	7.27%	61.82%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 6. Input resolution is 500×332 , output resolution is 250×332 .

TABLE 4

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 6	40.00%	9.09%	14.55%	61.82%	3.64%	12.73%	14.55%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 7. Input resolution is 540×322 , output resolution is 270×332 .

TABLE 5

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 7	$\mathbf{54.55\%}$	3.64%	23.64%	34.55%	3.64%	7.27%	25.45%

(a) Original

(d) Ours

(b) Texture Mask

(c) Saliency Map

(f) BDS [7]

(g) Cropping

Fig. 8. Input resolution is 332×500 , output resolution is 332×260 .

TABLE 6 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 8	52.73%	5.45%	12.73%	36.36%	27.27%	16.36%	0.00%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 9. Input resolution is 500×340 , output resolution is 260×340 .

TABLE 7

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 9	$\mathbf{43.64\%}$	16.36%	14.55%	23.64%	25.45%	27.27%	0.00%

Fig. 10. Input resolution is 500×340 , output resolution is 260×340 .

TABLE 8

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 10	32.73%	12.73%	27.27%	14.55%	30.91%	10.91%	10.91%

(c) Saliency Map

(d) Ours

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 11. Input resolution is 325×500 , output resolution is 325×280 .

TABLE 9

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 11	$\mathbf{61.82\%}$	0.00%	27.27%	40.00%	14.55%	0.00%	0.00%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(g) PBW [8]

(h) Shift-Map [9]

(j) Saliency Map

Fig. 12. Input resolution is 500×358 , output resolution is 280×358 .

TABLE 10

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 12	$\mathbf{43.64\%}$	10.91%	9.09%	7.27%	27.27%	14.55%	25.45%

Fig. 13. Input resolution is 500×333 , output resolution is 280×332 .

 TABLE 11

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 13	36.36 %	7.27%	9.09%	30.91%	18.18%	10.91%	27.27%

(a) Original

(d) Ours

(e) AAD [6]

(c) Saliency Map

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

Fig. 14. Input resolution is 345×500 , output resolution is 345×260 .

 TABLE 12

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 14	$\mathbf{70.91\%}$	5.45%	20.00%	5.45%	1.82%	1.82%	7.27%

(j) Shift-Map [9]

Fig. 15. Input resolution is 400×400 , output resolution is 300×200 .

 TABLE 13

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 15	60.00%	20.00%	27.27%	9.09%	5.45%	10.91%	12.73%

(j) Shift-Map [9]

Fig. 16. Input resolution is 400×400 , output resolution is 300×260 .

 TABLE 14

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 16	47.27%	21.82%	23.64%	27.27%	3.64%	18.18%	3.64%

Fig. 17. Input resolution is 500×333 , output resolution is 260×210 .

 TABLE 15

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 17	52.73 %	16.36%	32.73%	12.73%	3.64%	18.18%	5.45%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 18. Input resolution is 500×333 , output resolution is 260×333 .

 TABLE 16

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 18	49.09 %	3.64%	21.82%	20.00%	10.91%	5.45%	24.45%

(j) Shift-Map [9]

Fig. 19. Input resolution is 340×500 , output resolution is 340×250 .

TABLE 17 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 19	32.73%	21.82%	29.09%	10.91%	12.73%	16.36%	25.45%

Fig. 20. Input resolution is 500×327 , output resolution is 260×327 .

TABLE 18

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 20	52.73%	21.82%	10.91%	14.55%	14.55%	14.55%	7.27%

(a) Original

(b) Texture Mask

(c) Saliency Map

(d) Ours

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 21. Input resolution is 333×500 , output resolution is 333×260 .

 TABLE 19

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 21	61.82%	0.00%	3.64%	56.36%	0.00%	21.82%	0.00%

(i) Texture Mask

(j) Saliency Map

Fig. 22. Input resolution is 500×332 , output resolution is 260×332 .

TABLE 20 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 22	21 .82%	18.18%	20.00%	21.82%	27.27%	18.18%	0.00%

Fig. 23. Input resolution is 500×334 , output resolution is 250×334 .

TABLE 21

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 23	34.55%	20.00%	12.73%	9.09%	27.27%	29.09%	12.73%

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 24. Input resolution is $344 \times 500,$ output resolution is $344 \times 310.$

TABLE 22 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 24	80.00%	1.82%	14.55%	25.45%	10.91%	3.64%	0.00%

Fig. 25. Input resolution is 500×375 , output resolution is 260×260 .

 TABLE 23

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 25	$\mathbf{45.45\%}$	30.91%	0.00%	18.18%	3.64%	34.55%	9.09%

(h) Shift-Map [9]

Fig. 26. Input resolution is 500×334 , output resolution is 260×200 .

TABLE 24 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 26	49.09%	21.82%	16.36%	32.73%	10.91%	5.45%	7.27%

(h) Shift-Map [9]

(i) Texture Mask

Fig. 27. Input resolution is 500×333 , output resolution is 300×333 .

(j) Saliency Map

 TABLE 25

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 27	27.27%	14.55%	14.55%	12.73%	34.55%	18.18%	23.64%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 28. Input resolution is 400×400 , output resolution is 200×400 .

 TABLE 26

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 28	$\mathbf{52.73\%}$	0.00%	18.18%	32.73%	7.27%	9.09%	25.45%

Fig. 29. Input resolution is 500×345 , output resolution is 260×345 .

TABLE 27

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 29	30.91 %	9.09%	25.45%	34.55%	10.91%	0.00%	27.27%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 30. Input resolution is 500×332 , output resolution is 260×332 .

 TABLE 28

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 30	$\mathbf{56.36\%}$	5.45%	23.64%	20.00%	9.09%	7.27%	20.00%

(j) Shift-Map [9]

Fig. 31. Input resolution is 333×500 , output resolution is 333×250 .

 TABLE 29

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 31	67.27%	5.45%	3.64%	56.36%	0.00%	0.00%	0.00%

(a) Original Image

(b) Texture Mask

(c) Saliency Map

(d) Ours

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 32. Input resolution is $400\times400,$ output resolution is $240\times240.$

TABLE 30 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 32	41.82%	30.91%	3.64%	14.55%	5.45%	41.82%	3.64%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

 TABLE 31

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 33	40.00%	0.00%	36.36%	30.91%	3.64%	7.27%	34.55%

(h) Shift-Map [9]

(i) Texture Mask

Fig. 34. Input resolution is 500×335 , output resolution is 330×332 .

(j) Saliency Map

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 34	60.00%	12.73%	10.91%	20.00%	10.91%	12.73%	7.27%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 35. Input resolution is $500\times 332,$ output resolution is $260\times 332.$

 TABLE 33

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 35	38.18%	10.91%	18.18%	30.91%	23.64%	1.82%	23.64%

(h) Shift-Map [9]

Fig. 36. Input resolution is 500×313 , output resolution is 260×313 .

TABLE 34

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 36	$\mathbf{52.73\%}$	16.36%	16.36%	32.73%	16.36%	5.45%	3.64%

(i) Texture Mask

(j) Saliency Map

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 37. Input resolution is 500×333 , output resolution is 260×333 .

TABLE 35 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 37	$\mathbf{41.82\%}$	21.82%	7.27%	16.36%	5.45%	9.09%	36.36%

(a) Original Image

(b) Texture Mask

(c) Saliency Map

(d) Ours

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 38. Input resolution is 332×500 , output resolution is 280×332 .

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 38	$\mathbf{54.55\%}$	23.64%	9.09%	9.09%	5.45%	29.09%	0.00%

Fig. 39. Input resolution is 500×333 , output resolution is 260×330 .

 TABLE 37

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 39	$\mathbf{63.64\%}$	0.00%	0.00%	34.55%	10.91%	18.18%	5.45%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 40. Input resolution is 555×347 , output resolution is 256×347 .

TABLE 38

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 40	65.45%	1.82%	16.36%	23.64%	21.82%	3.64%	25.45%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(j) Saliency Map

Fig. 41. Input resolution is 500×333 , output resolution is 260×333 .

 TABLE 39

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 41	52.73%	1.82%	0.00%	36.36%	38.18%	0.00%	5.45%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 42. Input resolution is 400×400 , output resolution is 200×400 .

 TABLE 40

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 42	69.09 %	1.82%	29.09%	20.00%	16.36%	0.00%	3.64%

(a) Original

(b) Texture Mask

(c) Saliency Map

(d) Ours

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 43. Input resolution is 340×500 , output resolution is 340×300 .

 TABLE 41

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 43	47.27%	5.45%	14.55%	49.09%	7.27%	0.00%	30.91%

(i) Texture Mask

(j) Saliency Map

Fig. 44. Input resolution is 500×313 , output resolution is 250×313 .

TABLE 42

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 44	69.09 %	0.00%	30.91%	21.82%	9.09%	5.45%	12.73%

Fig. 45. Input resolution is 500×331 , output resolution is 250×331 .

TABLE 43

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 45	61.82 %	0.00%	23.64%	29.09%	14.55%	1.82%	14.55%

TABLE 44

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 46	$\mathbf{54.55\%}$	5.45%	7.27%	23.64%	0.00%	9.09%	50.91%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 47. Input resolution is $400\times267,$ output resolution is $200\times267.$

TABLE 45

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 47	43.64%	18.18%	14.55%	20.00%	38.18%	37.27%	16.36%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 48. Input resolution is 500×332 , output resolution is 250×332 .

TABLE 46

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 48	$\mathbf{58.18\%}$	25.45%	3.64%	41.82%	1.82%	20.00%	9.09%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 49. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 47

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 49	60.00%	16.36%	14.55%	21.82%	29.09%	3.64%	5.45%

(d) Ours

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 50. Input resolution is 358×500 , output resolution is 358×300 .

TABLE 48 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 50	$\mathbf{65.45\%}$	7.27%	30.91%	20.00%	5.45%	0.00%	0.00%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 51. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 49

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 51	58.18%	21.82%	38.18%	9.09%	3.64%	18.18%	0.00%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 52. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 50

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 52	49.09 %	29.09%	14.55%	10.91%	38.18%	12.73%	1.82%

TABLE 51

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 53	56.36%	5.45%	18.18%	21.82%	10.91%	5.45%	27.27%

(b) Texture Mask

(c) Saliency Map

(e) AAD [6]

(f) BDS [7]

(g) Cropping

(d) Ours

(h) F-MultiOp [4]

(i) PBW [8]

(j) Shift-Map [9]

Fig. 54. Input resolution is 360×400 , output resolution is 180×252 .

TABLE 52

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 54	$\mathbf{41.82\%}$	20.00%	10.91%	34.55%	0.00%	32.73%	3.64%

Fig. 55. Input resolution is 500×340 , output resolution is 250×340 .

TABLE 53

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 55	45.45%	20.00%	5.45%	29.09%	23.64%	3.64%	1.82%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 56. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 54

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 56	60.00%	0.00%	10.91%	38.18%	0.00%	9.09%	14.55%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

Fig. 57. Input resolution is 460×300 , output resolution is 230×300 .

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

 TABLE 55

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 57	$\mathbf{43.64\%}$	7.27%	38.18%	29.09%	23.64%	16.36%	1.82%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 58. Input resolution is 500×333 , output resolution is 375×333 .

(j) Saliency Map

 TABLE 56

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 58	$\mathbf{81.82\%}$	30.91%	0.00%	16.36%	29.09%	34.55%	0.00%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 59. Input resolution is 500×332 , output resolution is 375×332 .

 TABLE 57

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 59	38.18%	41.82%	0.00%	5.45%	25.45%	38.18%	0.00%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 60. Input resolution is 500×330 , output resolution is 250×330 .

TABLE 58

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 60	32.73%	16.36%	0.00%	$\mathbf{43.64\%}$	29.09%	34.55%	20.00%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 61. Input resolution is 460×340 , output resolution is 230×340 .

 TABLE 59

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 61	52.73%	23.64%	0.00%	40.00%	27.27%	21.82%	3.64%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 62. Input resolution is 472×348 , output resolution is 354×348 .

 TABLE 60

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 62	56.36%	25.45%	0.00%	16.36%	43.64%	30.91%	0.00%

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 63. Input resolution is 472×348 , output resolution is 354×348 .

TABLE 61

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 63	30.91%	16.36%	0.00%	38.18%	29.09%	10.91%	32.73%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 64. Input resolution is 500×332 , output resolution is 375×332 .

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 64	45.45%	32.73%	0.00%	9.09%	25.45%	34.55%	38.18%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(j) Saliency Map

Fig. 65. Input resolution is 500×304 , output resolution is 250×304 .

TABLE 63

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 65	83.64%	23.64%	0.00%	34.55%	20.00%	27.27%	1.82%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 66. Input resolution is 500×313 , output resolution is 250×313 .

 TABLE 64

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 66	78.18%	5.45%	0.00%	38.18%	21.82%	5.45%	43.64%

(i) Texture Mask

(j) Saliency Map

Fig. 67. Input resolution is 480×360 , output resolution is 480×270 .

 TABLE 65

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 67	34.55%	34.55%	0.00%	0.00%	32.73%	36.36 %	23.64%

(b) Ours

(c) AAD [6]

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(j) Saliency Map

Fig. 68. Input resolution is 480×360 , output resolution is 360×360 .

 TABLE 66

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 68	40.00%	50.91%	0.00%	34.55%	5.45%	3.64%	9.09%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

Fig. 69. Input resolution is 500×340 , output resolution is 250×340 .

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 69	20.00%	20.00%	0.00%	12.73%	21.82%	29.09%	$\mathbf{38.18\%}$

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 70. Input resolution is 480×360 , output resolution is 480×270 .

 TABLE 68

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 70	32.73%	27.27%	0.00%	29.09%	25.45%	21.82%	25.45%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 71. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 69

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 71	$\mathbf{43.64\%}$	10.91%	0.00%	25.45%	14.55%	9.09%	34.55%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 72. Input resolution is 500×344 , output resolution is 375×344 .

 TABLE 70

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 72	25.45%	25.45%	21.82%	18.18%	23.64%	21.82%	20.00%

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 73. Input resolution is 500×316 , output resolution is 375×316 .

 TABLE 71

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 73	23.64%	27.27%	0.00%	20.00%	25.45%	$\mathbf{29.09\%}$	25.45%

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 74. Input resolution is 500×281 , output resolution is 500×210 .

 TABLE 72

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 74	27.27%	$\mathbf{29.09\%}$	0.00%	21.82%	27.27%	25.45%	23.64%

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 75. Input resolution is 500×374 , output resolution is 375×374 .

 TABLE 73

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 75	41.82%	40.00%	34.55%	36.36%	5.45%	7.27%	14.55%

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 76. Input resolution is 500×351 , output resolution is 375×351 .

TABLE 74 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 76	41.82%	27.27%	0.00%	29.09%	10.91%	27.27%	41.82%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 77. Input resolution is 500×333 , output resolution is 250×333 .

TABLE 75

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 77	34.55%	67.27%	0.00%	25.45%	21.82%	27.27%	0.00%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 78. Input resolution is 500×329 , output resolution is 250×329 .

TABLE 76

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 78	85.45%	7.27%	43.64%	20.00%	5.45%	0.00%	0.00%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 79. Input resolution is 500×334 , output resolution is 375×334 .

TABLE 77 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 79	32.73%	32.73%	0.00%	29.09%	30.91%	34.55%	29.09%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 80. Input resolution is 500×332 , output resolution is 250×332 .

TABLE 78

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	MultiOp	PBW	Shift-Map
Figure 80	52.73 %	16.36%	0.00%	20.00%	34.55%	29.09%	23.64%

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 81. Input resolution is 500×334 , output resolution is 375×334 .

(j) Saliency Map

TABLE 79

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 81	29.09%	29.09%	27.27%	23.64%	16.36%	12.73%	21.82%

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 82. Input resolution is 500×333 , output resolution is 375×333 .

 TABLE 80

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 82	40.00%	16.36%	0.00%	20.00%	21.82%	25.45%	43.64%

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 83. Input resolution is 460×345 , output resolution is 345×345 .

 TABLE 81

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 83	45.45%	9.09%	18.18%	23.64%	29.09%	5.45%	41.82%

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) F-MultiOp [4]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 84. Input resolution is 540×312 , output resolution is 405×312 .

 TABLE 82

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 84	27.27%	36.36%	3.64%	18.18%	21.82%	30.91%	12.73%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 85. Input resolution is 512×323 , output resolution is 256×323 .

TABLE 83

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 85	36.36%	18.18%	23.64%	18.18%	12.73%	16.36%	18.18%

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 86. Input resolution is 500×367 , output resolution is 375×367 .

 TABLE 84

 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 86	32.73%	29.09%	0.00%	34.55%	18.18%	9.09%	21.82%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

Fig. 87. Input resolution is 600×429 , output resolution is 300×429 .

(f) MultiOp [10]

(g) PBW [8]

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

TABLE 85 User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 87	21.82%	14.55%	23.64%	43.64%	20.00%	3.64%	7.27%

(h) Shift-Map [9]

(i) Texture Mask

(j) Saliency Map

Fig. 88. Input resolution is 500×343 , output resolution is 250×343 .

TABLE 86

User study. We show the percentages when our method and the competitors have been chosen by the participants.

	Ours	AAD	BDS	Cropping	F-MultiOp	PBW	Shift-Map
Figure 88	49.09%	7.27%	36.36%	50.91%	7.27%	0.00%	5.45%

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) F-MultiOp [4]

(f) Shift-Map [9]

Fig. 89. Input resolution is 500×333 , output resolution is 750×332 . Our method well preserve the DPI of the T-regions in the result, as well as the texel shape and the globally visual effect of T-regions. The quality of the T-regions in AAD and F-MultiOp results are reduced by up-sampling while there are also obvious texel shape distortion. There are over-smoothing areas in BDS result. There is repeat-copying artifact in shift-map result.

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) F-MultiOp [4]

Fig. 90. Input resolution is 500×375 , output resolution is 640×375 . Our method well preserve the DPI of the T-regions in the result, as well as the texel shape and the globally visual effect of T-regions. The quality of the T-regions in AAD and F-MultiOp results are reduced by up-sampling while there are also obvious texel shape distortion. There are over-smoothing areas in BDS result.

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) F-MultiOp [4]

Fig. 91. Input resolution is 500×375 , output resolution is 750×375 . Our method well preserve the DPI of the T-regions in the result, as well as the texel shape and the globally visual effect of T-regions. The quality of the T-regions in AAD and F-MultiOp results are reduced by up-sampling while there are also obvious texel shape distortion. There are over-smoothing areas in BDS result.

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(i) Texture Mask

Fig. 92. Input resolution is 500×396 , output resolution is 375×396 .

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 93. Input resolution is 500×369 , output resolution is 375×369 .

93

(c) AAD [6]

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

Fig. 94. Input resolution is 500×332 , output resolution is 375×332 .

(h) Shift-Map [9]

(i) Texture Mask

94

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

Fig. 95. Input resolution is 500×374 , output resolution is 375×374 .

(i) Texture Mask

(c) AAD [6]

(e) Cropping

(h) Shift-Map [9]

(i) Texture Mask

(g) SV [11]

Fig. 96. Input resolution is 500×332 , output resolution is 375×332 .

(c) AAD [6]

(e) Cropping

(f) MultiOp [10]

(d) BDS [7]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 97. Input resolution is $500\times 303,$ output resolution is $250\times 303.$

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 98. Input resolution is 500×375 , output resolution is 375×375 .

98

(c) AAD [6]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(d) BDS [7]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 99. Input resolution is 500×341 , output resolution is 250×341 .

(c) AAD [6]

(f) MultiOp [10]

(g) SV [11]

(e) Cropping

(h) Shift-Map [9]

(i) Texture Mask

Fig. 100. Input resolution is 384×385 , output resolution is 288×385 .

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 101. Input resolution is 500×375 , output resolution is 375×375 .

(a) Original Image

(d) BDS [7]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 102. Input resolution is 500×332 , output resolution is 250×332 .

(f) MultiOp [10]

(c) AAD [6]

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 103. Input resolution is $500\times328,$ output resolution is $250\times328.$

(b) Ours

(c) AAD [6]

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 104. Input resolution is 500×335 , output resolution is 250×335 .

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 105. Input resolution is 392×300 , output resolution is 294×300 .

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 106. Input resolution is 500×375 , output resolution is 250×375 .

(c) AAD [6]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 107. Input resolution is $500\times 334,$ output resolution is $375\times 334.$

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(g) SV [11]

(i) Texture Mask

Fig. 108. Input resolution is $500\times395,$ output resolution is $250\times395.$

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) MultiOp [10]

(f) SV [11]

(g) Shift-Map [9]

(h) Texture Mask

Fig. 109. Input resolution is $500\times375,$ output resolution is $625\times375.$

110

(c) AAD [6]

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

Fig. 110. Input resolution is $500\times 330,$ output resolution is $375\times 330.$

(h) Shift-Map [9]

(i) Texture Mask

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 111. Input resolution is $500\times 397,$ output resolution is $250\times 397.$

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 112. Input resolution is 500×375 , output resolution is 375×375 .

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 113. Input resolution is 500×275 , output resolution is 250×275 .

(a) Original Image

(d) BDS [7]

(g) SV [11]

(e) Cropping

(h) Shift-Map [9]

(f) MultiOp [10]

(i) Texture Mask

Fig. 114. Input resolution is 500×281 , output resolution is 375×281 .

(a) Original Image

(e) Cropping

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 115. Input resolution is $500\times 369,$ output resolution is $250\times 369.$

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(i) Texture Mask

Fig. 116. Input resolution is $500 \times 435,$ output resolution is $375 \times 435.$

(d) BDS [7]

STI MSPI

100

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

Fig. 117. Input resolution is 500×333 , output resolution is 375×333 .

(i) Texture Mask

~KRH

(e) Cropping

四个民族好

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 118. Input resolution is 500×342 , output resolution is 375×342 .

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 119. Input resolution is $500\times 333,$ output resolution is $250\times 333.$

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

(d) BDS [7]

(g) SV [11]

(e) Cropping

(i) Texture Mask

(h) Shift-Map [9]

Fig. 121. Input resolution is $500\times 333,$ output resolution is $375\times 333.$

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(i) Texture Mask

Fig. 122. Input resolution is 500×333 , output resolution is 375×333 .

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 123. Input resolution is 500×332 , output resolution is 250×332 .

(c) AAD [6]

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 124. Input resolution is $500\times375,$ output resolution is $250\times375.$

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) MultiOp [10]

(f) SV [11]

(g) Shift-Map [9]

(h) Texture Mask

Fig. 125. Input resolution is 500×356 , output resolution is 625×356 .

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 126. Input resolution is $333 \times 500,$ output resolution is $333 \times 250.$

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(i) Texture Mask

Fig. 127. Input resolution is $333 \times 500,$ output resolution is $250 \times 500.$

(a) Original Image

(b) Ours

(d) BDS [7]

(e) Cropping

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 128. Input resolution is $500\times375,$ output resolution is $250\times375.$

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 129. Input resolution is $332\times500,$ output resolution is $332\times250.$

129

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(i) Texture Mask

Fig. 130. Input resolution is 500×364 , output resolution is 375×364 .

(a) Original Image

(b) Ours

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

Fig. 131. Input resolution is $500\times375,$ output resolution is $250\times375.$

(c) AAD [6]

(a) Original Image

(d) BDS [7]

(g) SV [11]

(e) Cropping

(h) Shift-Map [9]

(f) MultiOp [10]

(i) Texture Mask

Fig. 132. Input resolution is 500×261 , output resolution is 375×261 .

(a) Original Image

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 133. Input resolution is 500×333 , output resolution is 250×333 .

(c) AAD [6]

(e) Cropping

(f) MultiOp [10]

(d) BDS [7]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 134. Input resolution is $332\times500,$ output resolution is $332\times375.$

(d) BDS [7]

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 135. Input resolution is 333×500 , output resolution is 333×375 .

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(i) Texture Mask

Fig. 136. Input resolution is $500 \times 400,$ output resolution is $375 \times 400.$

(d) BDS [7]

(e) Cropping

(i) Texture Mask

(g) SV [11]

(a) Original Image

(c) AAD [6]

(d) BDS [7]

(e) Cropping

(f) MultiOp [10]

(g) SV [11]

(h) Shift-Map [9]

(i) Texture Mask

Fig. 138. Input resolution is $333 \times 500,$ output resolution is $333 \times 375.$

(a) Original Image

(b) Our saliency map

(c) RC [12]

(d) CAS [13]

(e) SDG [14]

(f) HSD [15]

(g) WMP [16]

Fig. 139. Comparison of our saliency detection result and the results of some state-of-the-art methods.

(a) Original Image

(c) RC [12]

(d) CAS [13]

(e) SDG [14]

(f) HSD [15]

(g) WMP [16]

Fig. 140. Comparison of our saliency detection result and the results of some state-of-the-art methods.

(a) Original Image

(c) RC [12]

(d) CAS [13]

(e) SDG [14]

(f) HSD [15]

(g) WMP [16]

Fig. 141. Comparison of our saliency detection result and the results of some state-of-the-art methods.